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Abstract

The health system in developed countries is facing a problem of scalability in order to accommodate the
increased proportion of the elderly population. Scarce resources cannot be sustained unless innovative
technology is considered to provide health care in a more effective way. The Smart Home provides pre-
ventive and assistive technology to vulnerable sectors of the population. Much research and development
has been focused on the technological side (e.g., sensors and networks) but less effort has been invested
in the capability of the Smart Home to intelligently monitor situations of interest and act in the best in-
terest of the occupants. In this article we model a Smart Home scenario, using knowledge in the form of
Event-Condition-Action rules together with a new inference scheme which incorporates spatio-temporal
reasoning and uncertainty. A reasoning system called RIMER, has been extended to permit the monitoring
of situations according to the place where they occur and the specific order and duration of the activities.
The system allows for the specification of uncertainty both in terms of knowledge representation and
credibility of the conclusions that can be achieved in terms of the evidence available.

Keywords: Decision support, monitoring and diagnosis, ambient intelligence, Smart Home, uncertainty,
spatio-temporal reasoning.

1. Introduction

The relative increased proportion of the elderly pop-

ulation due to demographic progression combined

with advances in medical therapy means that peo-

ple can live longer and health care at home is now

a feasible and attractive area of application. There

is also a growing tendency to decentralize health

care, shifting from the hospital to the community

and hence home-centred health care has become an

important health management issue 1,2. As a con-

sequence of the ageing process the propensity to

suffer chronic illnesses which demand close moni-

toring increases. Fortunately, advances in technol-

ogy and problem solving skills are making avail-

able new options for assistive health care. Current

research blends work in Ambient Intelligence with

tasks related to monitoring, problem identification
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and emergency intervention. By Ambient Intelli-

gence (AmI) 3,4,5,6 here we mean “a digital environ-

ment that proactively, but sensibly, supports people

in their daily lives” 7. Other terms such as Ubiqui-

tous Computing 8 or Smart Environments 9 are used

with similar connotations.

A variety of environments can be used for the

deployment of ambient intelligence. Typical places

researchers are currently looking at include class-

rooms, cars, houses, offices, ambulances, hospitals,

and airports 3,10. The most well-known realization

of the concept of Ambient Intelligence nowadays are

Smart Homes (SH). By Smart Home here we mean

“a house equipped with sensors and actuators which

can be coordinated by intelligent software to benefit

its inhabitants” 11. A Smart Home can help peo-

ple at risk in their living place by preventing hazards

and by assisting them as much as possible when they

need health services 12,13,14. For example, people

with dementia or Alzheimer’s disease can live an in-

dependent life for longer under the protection of a

SH 15. Technology has made significant advances

in developing sensors and networks that allow the

monitoring of the environment, and the provision of

alerts to users. However there has been insufficient

progress on data analysis and interpretation to take

full advantage of these technologies.

Intelligent monitoring is required to fully ex-

ploit the potential of this supported environment and

some relevant studies have been reported. Williams

et al. 16 introduced intelligence into CarerNet, which

simulated a SH to provide a telecare solution for a

patient discharged from hospital. Sixsmith 17 un-

dertook a three month patient trial which identified

unsafe conditions by detecting deviations from nor-

mal activity patterns. Twenty-two residents, aged

over 60 years, generated 61 alerts (46 of which were

false alarms, with 15 genuine alerts). Whilst no pri-

mary emergencies were encountered, the study de-

termined that the supported environment enhanced

feelings of safety and security, and stimulated inde-

pendence of the residents and their carers.

An appreciation of spatio-temporal events and

the lack of certainty in the temporal nature of these

events are key to successfully monitoring dynamic

activities within a SH. The importance of probabilis-

tic reasoning in the area of clinical decision sup-

port was recognized by Shortliffe and utilized in

the landmark rule based decision support system,

MYCIN 18. A theoretical treatment of constraints

in temporal reasoning was investigated by Dechter

et al. 19, who developed a formalism that enabled

representation of time constraints between activities.

In a more recent clinical application of intelligent

monitoring, Bellazzi et al. 20 applied Bayesian es-

timation to investigate daily patterns of blood glu-

cose level time series, from a diabetic patient. The

problem was specified by stochastic equations, and

solved using a Markov chain technique. In the con-

text of the SH environment, Patterson et al. 21 used

a Radio Frequency Identification (RFID) enabled

glove to monitor routine activities and study fine

grained temporal activity, yielding context-aware in-

formation. They utilized probabilistic models for

activity recognition, and investigated the impact of

increasing complexity. With their approach they

could reason about aggregated object instances and

abstract to their classes, to provide a description of

household activity.

In this article, we apply a methodology referred

to as Rule-base Inference Methodology using the Ev-

idential Reasoning (RIMER) 22, extended within an

active database framework 23 to investigate spatio-

temporal aspects of human activities monitoring.

Although there are many possible architectures with

which to implement intelligent SH systems, rule-

based systems offer a simple framework and are

amenable to verification and validation 24,4. Uncer-

tainty is inevitable in a SH application due to the

vagueness intrinsic to human communication, in-

accuracy or incompleteness resulting from limited

knowledge and the imprecision of instruments. It is

therefore necessary to use a scheme for represent-

ing and processing vague, imprecise or incomplete

information in conjunction with precise data.

The concept of a belief rule-base and its asso-

ciated inference methodology were proposed in 22

as a formalism based on the Evidential Reasoning

(ER) approach 25,26,27. In a belief rule-base, each

possible consequent of a rule is associated with a

belief degree. Such a rule-base is capable of cap-

turing complicated and even continuous causal re-

International Journal of Computational Intelligence Systems, Vol.1, No. 4 (December, 2008), 361-378

Published by Atlantis Press 

  Copyright: the authors 

                  362



Monitoring and Diagnosis in a Smart Home

lationship between different factors while the tradi-

tional IF-THEN rules are its special cases 28,29,30,31.

Combining spatio-temporal reasoning with un-

certainty reasoning captures essential concepts that

we believe can improve the ways in which SHs can

be designed. We address a case study in which the

occupant has become motionless (possibly due to a

fall or fainting) to test the knowledge representation

and inference logic. A thorough practical commu-

nity based assessment is beyond the scope of this

work and has not been undertaken.

The article is structured as follows. Section 2

will provide a general description of SHs and the

specific features of a SH scenario that will be used in

the rest of the article. Section 3 will provide a back-

ground on what has been explored before in terms of

monitoring and diagnosis in a SH system. The com-

bination of space, time and uncertainty are explained

in section 4 and exemplified in a SH setting in sec-

tion 5. Conclusions and future work are outlined in

section 6.

2. Smart Homes

A Smart Home 32,33,34,35,36,37,38 can be described as

a house that is supplemented with technology, for

example sensors and devices, in order to increase

the range of services provided to its occupants by

reacting in an intelligent way. The technology will

have two main components: a set of sensors and a

networking layer linking those sensors with com-

puting facilities. Common sensors monitor carbon

monoxide, smoke, heat, motion (as used for bur-

glary alarms) and window or door opening. Some

devices have been enriched with sensors to detect

usage 15. For example a sensor can detect that a wa-

ter tap is open/closed or that a cooker is in use, or

a microwave can scan a bar code on food to auto-

mate the cooking process. A layout plan of a SH

enriched with sensors and devices is shown in Fig-

ure 1. This type of interface can be used to simulate

activity or to display real world data. The SH com-

prises the following rooms/environment: reception,

kitchen, toilet/bathroom, living room, bedroom, and

the outside.

Fig. 1. The layout of an example Smart Home
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The network comprises a controller (computer)

and wired or wireless infrastructure. The controller

is normally located within the premises, but may be

connected remotely via the Internet. It communi-

cates with sensors so that for example, the cooker

can be turned off automatically. An obvious way to

turn off a device would be with a timer but this can

be a very rigid mechanism. A more useful and flex-

ible use of the device demands the intelligent anal-

ysis of several factors in order to decide if the turn-

ing off of a cooker is meaningful given a context.

Many different devices can be used in a house to

gain understanding of the activities of daily living

(ADL) or at least to have more information of the

context when particular situations of interest hap-

pen. This knowledge increases the possibilities of

assessing situations and taking decisions correctly.

In order to illustrate our methodology we restrict

ourselves to the use of basic sensors described in the

previous paragraph and focus on the potential uses

of this technology for health related monitoring. De-

tecting a transition in moving from room A to room

B is represented by an event tdAB on. For example,

tdRK on will represent that the person is activating

an RFID sensor while passing through the door com-

municating the kitchen with the reception area. This

event alone is not enough to detect the direction the

occupant is moving to so disambiguation is needed

with the help of the movement sensors. The acti-

vation of movement sensors in the kitchen is repre-

sented by at kitchen on and the absence of acti-

vation by at kitchen off. A similar convention is

used with sensors at other rooms.

3. An Investigation into Rule-Based Design of

Smart Homes Systems

3.1. ECA rules

Dynamic systems like Smart Homes can be modeled
by considering the occurrence of meaningful events
and the contexts in which those events occur to de-
tect situations of interest, and enable decisions to be
taken. Active databases 39 can be used to store infor-
mation gathered from a SH. A characteristic feature
of Active Databases is their use of Event-Condition-
Action (ECA) rules as a way to react to the incoming

information. ECA rules have a syntax of the follow-
ing format:
ON <Event>, IF <Condition>, DO <Action>

This means that whenever an occurrence of the event

described in the ON clause is detected, if the con-

dition described in the IF clause (usually imposing

constraints on different aspects of the events de-

scribed in the ON clause) is true, the action de-

scribed in the DO clause is obeyed by the system.

When the ON clause is satisfied the rule is said to be

‘triggered’ and if in addition to that the IF clause is

satisfied then the rule is ‘fired’.

ON movement sensors activated at kitchen

FollowedBy

RFID sensor in kitchen door activated

IF no_movement_detected for ten units of time

DO assume occupant safety compromised

AND

inform carers

For example, the above rule is triggered when

movement is detected in the kitchen, a spatial transi-

tion occurs and then no further movement in an ad-

joining room is detected. Under the conditions that

the assisted occupant is known to be at home (this

conclusion is the consequence of another rule or set

of rules which can have as a resulting action: ‘set

status variable occupant at home=true’) the action

recommended is to initiate an intervention, e.g. re-

quest a visit from carer.

3.1.1. Uncertainty in ECA rules

Despite the growing research interest in SHs, rela-

tively little work has been carried out in extending

them to encompass the management of uncertain in-

formation. It is also generally accepted that when-

ever real world information is to be represented in

a system, it will be of imperfect nature. Sources of

uncertainty in ECA rules include:

• Uncertain event. The occurrence of the event de-

scribed in the ON clause may be uncertain, e.g. “It

is most likely that the occupant has fallen” or “The

occupant is in the kitchen with 80% certainty”.

• Uncertain condition. Uncertain conditions might

include uncertain queries, e.g. “a sensor can be

considered activated with ‘high’ confidence”.
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• Uncertain relationship between the event/condition
and the actions. Uncertainty may be caused by
weak implication that may occur when an ex-
pert is unable to establish a precise correlation
between the event/condition and the action except
by using degrees of belief. One such situation may
lead to the specification of a rule expressing that if
some events are detected in a context suggesting a
monitored person is active and they are followed
(say 10 units of time later) by other events sug-
gesting sudden suspension of activities, then there
is a significant chance (80% as determined by an
expert) that the occupant may be in a compro-
mised situation (e.g., has fallen or fainted). The
antecedent event associated with the ON clause
refers to continuously monitored events in the
SH. In standard IF-THEN rules these events are
often merged with the IF condition, and this ter-
minology is adopted in the following examples.

IF at_kitchen_on with ‘high’ confidence

Followed_by

tdRK_on with ‘medium’ confidence

Followed_by

no_movement_detected for 10 units of time

THEN assume with 80% confidence

that occupant is compromised

Depending on incoming sensor-related events,

the system evaluates all the ECA-rules to identify

which event part matches the actual situation. These

selected rules may conflict with each other if the

event parts of more than one rule are matched si-

multaneously. Resolving the conflict is a crucial is-

sue in a rule-base inference formalism, especially

when uncertainty is involved. Within the RIMER

framework rule aggregation using an ER approach

resolves the conflict and provides the aggregated

conclusion. This will be explained in section 4.2.

The input for an antecedent attribute may not be

available or may be only partially known. In the in-

ference process, such incompleteness should be con-

sidered because it is related to the strength of a con-

clusion. This will be explained in section 5. Both

complete and incomplete inference can be accom-

modated in a unified manner within the proposed

RIMER framework.

3.2. Time dependent rules

Monitoring activities in a SH is a time dependent

activity in the sense that being able to represent and

reason about the order in which activities developed

and their duration is essential for a correct diagnosis

of the situations. Here we extend the RIMER frame-

work with a temporal dimension. In addition, the

system addresses specific areas of the house, rooms

and their connecting areas, by the way of events,

providing RIMER with spatio-temporal reasoning.

For example there are states of being in a room (stay-

ing in a region)and events of passing from one room

to another (a transition in between regions), (see 40).

3.2.1. Time order

Instantaneous events are associated with points

in time. Here we assume a framework where

events can be associated with a linear, dis-

crete, totally-ordered, representation of time

. . . tn−2, tn−1, tn, tn+1, tn+2, . . . over this time struc-

ture order relations like ‘<’ (‘earlier than’) and ‘=’

(‘simultaneous’) can be defined, in a similar way as

we do with other ordered structures like integers.

Hence, the two possible relative positions between

two time points t1 and t2 are that either one is earlier

than the other or they are simultaneous. We will use

classical logic 41 connectives: ∧ (“and”), ∨ (“or”),

and ¬ (“not”) to describe different possible tem-

poral constraints over the temporal structure or the

event occurrences associated with elements of that

structure.

In our framework, a rule

IF (E1 ∧E2 ∧C3 ∧C4) THEN A

will be depicted slightly differently to represent that

the conjunction in the antecedent of the rule is also

including temporal order. For that purpose we in-

troduce two symbols ∧̈ and ∧: where A ∧̈ B can be

intuitively read as ‘A is true and later B is true’ and

A ∧: B can be intuitively read as ‘A is true and si-

multaneously B is true’. They can be more formally

defined as follows:

A ∧̈ B if and only if

∃t1, t2 such that:

t1 < t2 and A is true at t1 and B is true at t2
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A ∧: B if and only if

∃t such that:

A is true at t and B is true at t

So, for example, lets say we use a predicate “oc-

curs(E)” to represent that event E has been detected

and “true(C)” to represent that a condition C is ful-

filled in the current state of the system:

IF (occurs(E1) ∧: true(C3))∧̈ (occurs(E2) ∧: true(C4))
THEN A

can be used to depict a scenario where it is mean-

ingful that event E1 occurs when condition C3 is true

and that is followed by the occurrence of event E2

when conditions C4 is true. Other notions of order

between events occurrences can be defined based on

the previous ones, for example:

B∧̈ A if and only if ¬(A ∧: B)∧¬(A∧̈ B)

as we are assuming a totally ordered linear temporal

structure.

This in turn has an effect on how rules are trig-

gered. We depict a situation where events E1, E2,

E3, and E4 have been recorded simultaneously with

timestamp tn and events E12, and E13 have been

recorded simultaneously with timestamp tm.

Now let’s assume we also have a rule with the

following antecedent

IF occurs(E3) ∧: occurs(E1) T HEN . . .

This rule will be triggered by the events that oc-

curred at time tn, however a rule with the following

antecedent:

IF occurs(E3) ∧: occurs(E12) T HEN . . .

cannot be triggered. The following rule with a

slightly different antecedent will be triggered by the

events recorded in the database in the order given

above:

IF occurs(E3) ∧̈ occurs(E12) T HEN . . .

Other operators can be defined in terms of those,

for example ORnext can be defined as:

a ORnext b =de f

a OR b OR (a ANDlater b) OR (b ANDlater a)

where OR is the classical logic disjunction.

Naturally in this framework the responsibility

lies in the Knowledge Engineer who writes the rules

using the correct operators to depict the meaningful

situations that have to be captured. How events are

registered in a particular time depends on the tem-

poral granularity of the system. The usual computa-

tional trade offs apply here. The finer the granular-

ity, the richer the depiction of the world but the heav-

ier the computation. Whilst, the coarser the granu-

larity, the easier becomes computing, but subtleties

are lost. Here we assume that a sensor will keep its

value when excited until the next reading when it is

refreshed so there is no lost signal if the sensor is

excited at a time between tn and tn+1.

Actions can also have time attached. The time of

the action is always the time when the rule advising

a particular course of action is fired. Actions can be

grouped in two main types:

1. recommendations to personnel: e.g.,“call/visit

the occupant” if he/she has been inactive for a

significant period of time during daytime, and

2. recording actions for the system itself: e.g.,

“assume occupant moved from reception to

Living room” after detecting a sequence: mo-

tion in Reception, followed by occupant iden-

tified by tag detector in Reception to Living

room door, followed by motion in the Living

room.

3.2.2. A richer temporal language

Powerful temporal concepts can be built out of the

language developed, which refer to time passing in

a more succinct way.

A notion that “n units of time have elapsed”

(with n ∈ {1,2, . . .} and finite) can be defined as:

UnitsElapsed(n) =de f

event occurrence1 ∧̈ . . . ∧̈ event occurrencen

Timed event occurrences will be recorded each time
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sensors are read and equally, this process of read-

ing sensors at regular intervals will be attached to

a time stamp. Each sensor reading will produce

at least one event detection as a special case of

‘event occurrence’. This can be ‘no event’, i.e.,

the detection that no event has occurred.

Other definitions can be provided based on the

previous concept:

U pperBoundUnitsElapsed(n) =de f

UnitsElapsed(1)∨ . . .∨UnitsElapsed(n)

to express that at most n units of time have elapsed.

IsTrueAt(P,n) =de f UnitsElapsed(n) ∧: P

to express that condition P is true when exactly n

units of time elapsed.

IsTrueBe f ore(P,n) =de f

U pperBoundUnitsElapsed(n) ∧: P

to express that condition P is true at a time when less

than or exactly n units of time have elapsed. Notice

we cannot introduce concepts like “sometimes in the

future” or “always in the future” as they will imply

translation into unbounded IF-THEN rules (we do

not know exactly how far in the future the event

occurs) but naturally we can use bounded temporal

operators 42 based on an interval [a,b] (with a < b

and both a and b finite):

SometimeWithinF utInt[a,b](P) =de f

UnitsElapsed(a)∧̈ (U pperBoundUnitsElapsed(b) ∧: P)

AlwaysWithinFutInt[a,b](P) =de f

¬SometimeWithinFutInt[a,b](¬P)

Similar (mirroring) definitions can be provided

for the past fragment, for example to define:

IsTrueA f ter(P,n), SometimeWithinPastInt[a,b](P),
and AlwaysWithinPastInt[a,b](P).

4. RIMER as a system to design Smart Homes

There are two essential components in a rule-based

SH system: a knowledge base and an inference en-

gine. They are combined to infer useful conclusions

from rules established by experts, e.g. from the car-

ing personnel and facts obtained from sensors and

other sources (e.g., databases).

Fig. 2. General Architecture
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The general architecture of the system is illus-

trated in Figure 2. The knowledge base is de-

fined and generated by the experts using a relational

database. Some human or social aspects of the situ-

ation cannot be sensed or inferred by sensors or de-

vices and in those cases expert judgment is needed

to provide an approximation of the real situation

with some degree of confidence. The rules-matching

component then searches through a combination of

facts to find those combinations that satisfy the an-

tecedent of rules and select rules that should be fired.

Time-related ordering is used to decide which of the

rules, out of all that apply, have the highest priority

and should be fired first and which of the rules can-

not be used. The activation weight determination is

used to calculate the matching degree of the facts to

the IF part of the rules. These selected rules may

conflict with each other if the IF parts of more than

one rule are matched simultaneously. Then the rule

combination scheme based on the ER algorithm is

applied to get the final aggregated assessment which

solves the rule conflicts. The database will be up-

dated based on the new assessment and be fed into

the rule-base and the new situation.

In the above sections, we have presented a gen-

eral SH environment and explained how diagnosis

in such cases is based on spatio-temporal consid-

erations. Here we expand those considerations in

relation to vagueness, imprecision and incomplete-

ness of the information available. The design and

implementation of rule-based SH systems for sup-

porting decision making will be presented by using

the RIMER framework which is based on Dempster-

Shafer’s theory of evidence 43, decision theory 44,45

and fuzzy set theory 46,47,48,49. Yang et al. 22 pro-

posed a new methodology for building a hybrid

rule-base system using a belief structure and for in-

ference in the rule-based system using the ER ap-

proach 50,51,25,26,27 .

4.1. Belief Rule-Base

A basic rule-base is composed of a collection of “IF-

THEN” rules. To take into account a degree of belief

in a consequent, attribute weights and a rule weight,

a simple “IF-THEN” rule is extended to a so-called

belief rule with all possible consequents associated

with belief degrees. A belief rule, Rk, is defined as

follows:

Rk : IF (X1 is Ak
1) AND . . . AND (XTk

is A
Tk

k )

T HEN {(C1,β1,k), . . . ,(CN ,βN,k)} (1)

with rule weight θk and attribute weights

δ1k,δ2k, . . . ,δTk,k where k ∈ {1, . . . ,L}. βi,k(i ∈
{1, . . . ,N}), such that ∑N

i=1 βi,k 6 1, is the belief de-

gree to which Ci is believed to be the consequent

if in the kth rule the input satisfies the antecedent

referential value vector Ak = {Ak
1,A

k
2, . . . ,A

k
Tk
}. L is

the number of all belief rules used in the rule-base.

If ∑N
i=1 βi,k = 1 , the kth belief rule is said to

be complete; otherwise, it is incomplete. Note that

1−∑N
i=1 βi,k denotes the ignorance. And ∑N

i=1 βi,k 6

0 denotes total ignorance about the output given in

the kth rule. It is further assumed that T is the to-

tal number of antecedent attributes used in the rule

base.

Take for example the following belief rule, where

values “High confidence”, “Medium confidence”,

“Low confidence” and “None” are abbreviated as

(H), (M), (L) and (N) respectively. The logical sym-

bol ∧̈ is replaced by ANDlater which the ASCII

version used in the implementation.

Rk: IF at_kitchen_on with (H) ANDlater

tdRK_on with (L) ANDlater

no_movement_detected with (H)

THEN estimated confidence that

the occupant is compromised is

{(H, 0); (M, 0.4); (L, 0.6), (N, 0)}

Here {(H,0),(M,0.4),(L,0.6),(N,0)} is a be-

lief distribution representation of the person’s com-

promised health status (e.g. has fallen or fainted),

indicating that we are 40% sure (the level of confi-

dence) that the occupant has fainted is medium, and

60% sure that the occupant has fainted is low. In this

belief rule, the total degree of belief is 0.4+0.6=1, so

the assessment is complete.

Remark 1: Note that in a rule-base, a referen-

tial value set can be a set of meaningful and dis-

tinctive evaluation levels for describing an attribute

(here an event or a condition), e.g., it can be sub-

jective linguistic terms. The referential value set for

‘at kitchen on’ is given by A1 = {H,M,L,N}. In a

general rule-base, the attributes involved in each rule
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can be different in type, so their referential value sets

may be also different in type.

Remark 2: Let X = (X1,X2, . . . ,XTk
),

Ak = (Ak
1,A

k
2, . . . ,A

k
Tk

), C = (C1,C2, . . . ,CN),

βk = (β1,k,β2,k, . . . , βN,k), and δ = (δ1,δ2, . . . ,δTk
).

X is referred to as an input vector to the kth rule,

Ak a packet antecedent, Ak
i (i = 1,2, ,Tk) the ith refer-

ential values of the packet antecedent Ak, C the con-

sequent vector, βk the vector of the belief degrees,

and δ the attribute weights of all the T antecedent

attributes in the rule base. Suppose all L rules are

independent of each other, which means that the an-

tecedent referential value vectors {A1, . . . ,AL} are

independent of each other.

In a traditional rule, the consequent is either

100% true or 100% false. Such a rule base has

limited capacity in representing knowledge in a real

world. A belief rule like the one given represents

functional mappings between antecedents and con-

sequents possibly with uncertainty. It provides a

more informative and realistic scheme than a sim-

ple IF-THEN rule base when we need to consider

uncertainty in knowledge representation.

4.2. Inference using the evidential reasoning

(ER) approach

Given an input to the system, UEC = (Ui|i =
1, . . . ,T ), how can the rule base be used to infer and

generate an output? T is the total number of an-

tecedent attributes in the rule base, Ui(i = 1, . . . ,T )
is the ith antecedent attribute, which can be one of

the following types: continuous, discrete, symbolic

and ordered symbolic. Before the start of an infer-

ence process, the matching degree of an input to

each referential value in the antecedents of a rule

needs to be determined so that an activation weight

for each rule can be generated. This is equivalent to

transforming an input into a distribution of referen-

tial values by using belief degrees. The antecedent

attributes involved in a rule for a SH system could

be quantitative or qualitative, so that the input for

each antecedent attribute may be different both in

type and in scale. To facilitate data collection, it

is desirable to acquire assessment information in a

manner appropriate to a particular attribute.

Using the notations provided above, the activa-

tion weight of the kth rule, wk, is calculated as 22:

wk =
θk ×∏Tk

i=1(αi,k)
δ i

∑L
j=1 θ j ×∏Tk

l=1(αl, j)δl

(2)

where:

δ i =
δi

maxi=1,...,Tk
{δi}

so 0 6 δi 6 1

Here αi,k(i = 1, . . . ,Tk), called the individual match-

ing degree, is the degree of belief to which

the input for the ith antecedent attribute be-

longs to its referential value Ak
i in the kth

rule, αi,k > 0 and ∑Tk

i=1 αi,k 6 1. The set

αk = ∏Tk

i=1(αi,k)
δi , is called the combined match-

ing degree. Note that 0 6 wk 6 1(k = 1, . . . ,L) and

∑L
i=1 wi = 1. Also note that wk = 0 if the kth rule is

not activated.

Having determined the activation weight of each

rule in the rule base, the ER approach 25,26) can be

directly applied to combine the rules and generate

final conclusions. Suppose the outcome of the com-

bination yields the following

O(U) = {(C j,β j)| j = 1, . . . ,N} (3)

The outcome expressed by equation ( 3) reads that

if the input is given by UEC = (Ui|i = 1, . . . ,T ) then

the consequent is “C1 to a degree of β1”, “C2 to a

degree of β2”, . . . , and “CN to a degree of βN”. Us-

ing the analytical format of the ER algorithm 22 the

combined belief degree in C j can be generated as

follows:

β j =
µ × [M1 −M2]

1−µ × [∏L
k=1(1−wk)]

(4)

with

M1 = ∏L
k=1(wkβ j,k + 1−wk ∑N

j=1 β j,k)

M2 = ∏L
k=1(1−wk ∑N

j=1 β j,k)

µ = [
N

∑
j=1

M1 − (N −1)M2]−1

where j = 1, . . . ,N and wk is calculated by equation

( 2).

This permits the computation of the belief degree

distribution.
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4.3. Implementation Steps

Considering both the time dependent rules and the

rule with belief structures, the rule-based inference

can be implemented in the following steps:

Step 1: Establish the belief rule expression matrix

for a belief rule-base;

Step 2: Trigger rules based on the occurrence or-

dering of each event in the IF part (for time

dependent rules):

1. Check the antecedent attributes/events

involved in the rule-base (by index) and

their occurrence orderings, represented

by a matrix via index, i.e., [Oi j], i =
1, . . . ,Tj and j = 1, . . . ,K; where Tj is

the number of attributes/events in the IF

part of the jth rule; K is the number of all

the rules in the rule base. For example,

Oi j = 2 means that the ith event occurs

in the 2nd place in the IF part of the jth

rule.

2. Check the observed antecedent at-

tributes (by index) and their occurrence

orderings, represented by a vector [am].
am = 2 means that the mth event occurs

in the 2nd place in the IF part.

3. If the input ordering of the data coming

from the SH matches the IF part order-

ing in the jth rule, then the jth rule is

activated.

Step 3: Transform the various types of input infor-

mation into a distribution with the degree of

belief using the technique in Section 4.2. Each

belief is the individual matching degree of the

input to the linguistic value.

Step 4: Calculate rule activation weight. The acti-

vation weights wk (k = 1, . . . ,L) are generated

by using equation ( 2).

Step 5: Combine activated rules using the ER 26

by using equation ( 4). The ER approach is

implemented in the IDS software 52, through

which the activated rules can be combined to

yield the final outcome.

Real System

Belief Rule Base 

),,( , ikki

Input (U) )(P

Simulated output (O)

Observed output (O )

Fig. 3. Illustration of Optimal LearningProcess

4.4. Optimal method for training belief rule

bases in RIMER

Although it is possible to establish a belief rule base

by extracting knowledge from experts, the perfor-

mance of the system can be improved if the rules are

fine tuned through learning from available historical

data.

The adjustable parameters of a rule base are be-

lief degrees (β1,k,β2,k, . . . ,βN,k), rule weights θk for

k = 1, . . . ,L and attribute weights (δ1,δ2, . . . ,δTk
) 22.

Figure 3 sketches the process of training a be-

lief rule base, where U is a given input, O the cor-

responding observed output, either measured using

instruments or assessed by experts, O the simulated

output generated by the belief rule based system,

ξ (P) the difference between O and O, and

P = (βi,k,θk,δj; i = 1, . . . ,N;k = 1, . . . ,L; j = 1, . . . ,T )
(5)

are the adjustable parameters. The objective of

the training is to minimize the difference ξ (P) by

adjusting the parameters P. This objective is diffi-

cult to achieve manually even by experts, however

there are computer algorithms available to solve the

problem. Yang et al. 53 and Liu et al. 54 discuss in

more detail how the problems can be constructed for

different types of output and algorithms applied to

solve them. By using the optimal learning methods

for training the belief rules, the belief rule based sys-

tem can learn from SH data the relationship between

event/condition and the possible action. It has also

been demonstrated 53 that learning could start with

a random rule base and therefore prior-knowledge

does not have to be provided.

5. Case study

5.1. Problem description

Consider a scenario where there is a potential hazard

related to the SH occupant and different procedures

can be put in place to prevent the hazard or to re-

act if there is an indication that the occupant may

be at risk. Absence of motion for a period which is

considered unusually prolonged combined with the

occupant’s location and the time of the day can be

considered an indication that the occupant may be

at risk. It is in the interest of the occupant that the

system reacts preemptively, e.g., initiate direct con-

tact with the occupant for confirmation. If contact

is made, consider situation to be normal, otherwise

trigger a pre-established emergency procedure.

However, there could be ambiguous scenarios,

e.g., when the occupant is standing under doors for

a prolonged period of time, which results in absence

of motion in the rooms. If the occupant remains mo-

tionless under a door connecting two rooms: is it

likely that the person has fallen, fainted, is resting or

is talking to someone else in another room?

First we give a general schema without consid-

ering uncertainty representation and then we show

how this information can be dealt with by following

the RIMER approach.

We will assume that the occupant has

‘fainted’,and no motion sensors have been activated

for a considerable length of time. Below we exem-

plify with the door connecting the reception area

with the Living room. Similar groups of schema

rules should be in the Knowledge Base with respect
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to the other doors. Using the operator “ANDlater”

introduced in Section 3, which checks the order of

arrival of the knowledge atoms to the Knowledge

base, an IF-THEN rule can be given as follows:

IF at_kitchen_on ANDlater

tdRK_on ANDlater

no_movement_detected

THEN assume the occupant has fainted

The above mentioned IF-THEN rule is the rule

without considering the uncertainties involved. The

following sub-sections will extend this rule in such

a way that the belief rule can cover different levels

of uncertainty.

5.2. Referential Grades of the Antecedents and

Actions

The number of referential grades used for each an-

tecedent decides the size of the rule base. If the num-

ber is too large, there will be too many rules, and the

inference process will be more demanding. If it is

too small, the grades may not be able to cover the

value range of an antecedent attribute. This is es-

pecially true for a conventional rule base. Normally

3 to 9 referential grades are used. The number of

referential grades for a consequent attribute is also

comparable to those of the antecedent attributes. Be-

cause of the presence of uncertainty in the system,

the observation or confidence for each input state

may be uncertain. This example uses the input states

(“at kitchen on”, “tdRK on” and no motion sensors

activated for a considerable length of time) to pre-

dict if a occupant has fainted. The necessary com-

binations of states “at kitchen on” and “tdRK on”

are based on the monitoring from the equipment and

the opinion given by experts. This judgment is in-

evitably associated with uncertainties due to inabil-

ity to provide precision all the time about the sen-

sors, or the lack of information, or the vagueness

and ambiguity in the meaning of some attributes and

their assessment. So the input states could be di-

rectly associated to a distribution using their referen-

tial linguistic grades with the degrees of belief based

on subjective judgments. For illustration purposes,

each of these input states and the output state (con-

fidence to which the person may have a health prob-

lem, e.g., had fainted) are defined as having values

of High (H), Medium (M), Low (L) or None (N).

That is, the grades for “at kitchen on” are:

Ak
1 ∈ {H,M,L,N}, k ∈ {1, . . . ,L}

similarly we also use those grades for “tdRK on”

(Ak
2) and for “no movement” (Ak

3). Each state is

assessed into a belief distribution representation of

these four values. For example if the assessment of

“at kitchen on” is

{(H,β1),(M,β2),(L,β3),(N,β4)}

implies the possibility of “at kitchen on” be-

ing triggered and also the confidence level of

“at kitchen on” if it occurs, where βi(i = 1, . . .4,)
represents the degree of confidence in a particular

belief.

If a “NOT” connective is used in the rule it has

the semantics of “failing to detect”. This can be used

in two ways, a) the corresponding sensor was not

activated (for example, no movement was produced

in the kitchen so that sensor will stay off) and b)

even when there was an activation, the context ad-

vised not to consider it as such (for example, a sen-

sor signal is dismissed because other aspects of the

scenario lead to the belief that it is malfunctioning).

This can be also rephrased by stating that the event is

assessed as “None” with belief degree 1. For exam-

ple, for “None”, if the occupant is believed to be at

home with confidence graded “None”, then it means

the occupant is absent from home.

For the consequent attribute, four cases are con-

sidered, i.e., High (H) possibility that the occupant

has fainted; Medium (M) possibility that the occu-

pant has fainted; Low (L) possibility that the occu-

pant has fainted and, in the most positive scenario,

None (N) meaning that nothing significant has hap-

pened. So this example uses the input states to pre-

dict “if a occupant has fainted” in terms of qualita-

tive linguistic terms.

5.3. Defining the Rule Base

Space constraints do not allow us to give a full ac-

count of all the rules of all knowledge bases, instead

we focus on how to attach the representation of un-

certainty to a rule related to the detection of our ref-

erence scenario. Using the linguistic grades, one of
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the conventional rules for predicting “if a occupant

has fainted” is given:

IF at_kitchen_on with (H) ANDlater

tdRK_on with (H) ANDlater

at_reception_off with (H)

THEN assume with confidence (H)

the occupant has fainted

The rule has only one consequent with a belief

degree being always exactly one. Such conventional

IF-THEN rules cannot capture the continuous re-

lationships between the antecedent and the conse-

quents. Therefore, the expert system may not be

able to accurately reflect the real context, in this case

what happens in the SH. We can extend the rules

using the belief structure to provide better flexibil-

ity and versatility which are needed to model hu-

man reasoning more adequately. The definitions of

the extended rules using linguistic terms with the

consequents having the dedicated degrees of belief

are given in Table 1. Note that in the table we uti-

lize at reception off with high confidence to imply

“no movement detected” in the observed time pe-

riod. There are sixteen rules according to the num-

ber of linguistic terms in the input states. The de-

grees of belief in the consequents were assigned

by the researchers as a result of the observation of

the given expert judgments. In a more systematic

scheme, the belief degrees could be trained using ex-

pert judgments as test data and may also be updated

once new evidence becomes available. The rule base

can be applied to both discrete and continuous rea-

soning processes.

The rule given in this section is represented by

the 2nd row of the table.

IF at_kitchen_on with (H) ANDlater

tdRK_on with (M) ANDlater

at_reception_off with (H)

THEN the estimation that

the occupant has fainted is

{(H, 0.7); (M, 0.3); (L, 0); (N, 0)}

Here (H, 0.7); (M, 0.3); (L, 0); (N, 0) means the

system has a degree of confidence of 70% that “the

occupant has fainted” occurred with high possibility,

and of 30% that “the occupant has fainted” occurred

with medium possibility. The example aims to de-

termine a confidence degree to which the expert be-

lieves that the occupant may have a health problem

so that the emergency procedure can be applied. For

example, if the final output for “if a occupant has

fainted” is with low or zero confidence, then no fur-

ther actions are needed. If the final output for “if a

occupant has fainted” is with medium or high confi-

dence, the possible further actions can be applied.

Table 1. Rule-base table

Rule Antecedents Consequent

at kitchen
on tdRK

at reception

off Belief distribution

1 H H H {(H, 0.9), (M, 0.1), (L, 0), (N, 0)}
2 H M H {(H, 0.7), (M, 0.3), (L, 0), (N, 0)}
3 H L H {(H, 0), (M, 0.4), (L, 0.6), (N, 0)}
4 H N H {(H, 0), (M, 0), (L, 1), (N, 0)}
5 M H H {(H, 0.7), (M, 0.3), (L, 0), (N, 0)}
6 M M H {(H, 0.3), (M, 0.7), (L, 0), (N, 0)}
7 M L H {(H, 0), (M, 0.3), (L, 0.7), (N, 0)}
8 M N H {(H, 0), (M, 0), (L, 1), (N, 0)}
9 L H H {(H, 0), (M, 0.4), (L, 0.6), (N, 0)}
10 L M H {(H, 0), (M, 0.3), (L, 0.7), (N, 0)}
11 L L H {(H, 0), (M, 0), (L, 0), (N, 1)}
12 L N H {(H, 0), (M, 0), (L, 0), (N, 1)}
13 N H H {(H, 0), (M, 0), (L, 0), (N, 1)}
14 N M H {(H, 0), (M, 0), (L, 0), (N, 1)}
15 N L H {(H, 0), (M, 0), (L, 0), (N, 1)}
16 N N H {(H, 0), (M, 0), (L, 0), (N, 1)}
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5.4. Belief rule inference using the evidential

reasoning (ER) approach

Using the rule-base in Table 1 and the RIMER infer-

ence scheme, the consequent estimate is generated.

Following we explore some possible combinations

of values to see how the system reacts.

Case 1: The input for “at kitchen on” is given by

the expert with a belief distribution, for ex-

ample: {(H, 0.9); (M, 0.1); (L, 0); (N, 0)}
which means that the experts are 90% sure

that “at kitchen on” occurred with high con-

fidence, 10% that “at kitchen on” occurred

with medium confidence. The input for

“tdRK on” is given by the expert with a belief

distribution, for example: {(H, 0.9); (M, 0.1);

(L, 0); (N, 0)} Moreover, there is no motion

sensors activated for a considerable length of

time, represented as: {(H, 1); (M, 0); (L, 0);

(N, 0)} i.e., 100% sure that nothing happened.

In summary, it is represented as:

IF at_kitchen_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)}

confidence ANDlater

tdRK_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)}

confidence ANDlater

at_reception_off with

{(H, 1); (M, 0); (L, 0), (N, 0)}

confidence

THEN ....

The output is implemented as in the following

steps:

Step 1: Transform the input. Here the input

is given as a distribution using linguistic

terms with the degrees of belief based on

subjective judgments. Each belief is the

individual matching degree of the input

to the linguistic value. For example, the

matching degree of the input to the lin-

guistic value “High” of “at kitchen on”

is 0.9, and 0.8 for “Medium”, etc.

Step 2: Calculate rule activation weight.

The activation weights wk for all the six-

teen rules Rk(k = 1, . . . ,16) are gener-

ated by using equation ( 2) in Section 4.1

by w1 = 0.81,w2 = 0.09,w3 = 0,w4 =
0,w5 = 0.09,w6 = 0.01,w7 = 0,w8 =
0,w9 = 0,w10 = 0,w11 = 0,w12 =
0,w13 = 0,w14 = 0,w15 = 0,w16 =
0, respectively. For example, α1 =

∏T1

i=1(α1,i)
δi = 0.9×0.9×1 = 0.81, see

explanation for equation (2). Here T1 is

the number of antecedent attribute in the

ist rule and T1 = 3. Following the same

steps, αi can be obtained, and then us-

ing equation (2), ωi(i = 1, . . . ,16) can be

obtained. Note that the attribute weights

and the rule weights are assumed to be

one.

Step 3: Combine activated rules. The ER ap-

proach 26 is employed to combine the

activated rules. Using the IDS software,

the activated rules can be combined to

yield the following outcome (see Case 1

in Figure 4):

O(U(1)) = {(C j,β j), j = 1, . . . ,4} =

{(H, 0.8969); (M, 0.1031); (L, 0); (N, 0)}
(6)

where β j is given by equation ( 4), and

(C1, C2, C3, C4)= (H, M, L, N).

which means that we are 89.69% sure that

the occupant has fainted with high confidence,

10.31% sure that the occupant has fainted

with medium confidence, 0% sure that noth-

ing happens for the occupant.
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Fig. 4. Belief distribution for Case1: at kitchen on (H),

tdRK (H), at reception off (H); Case2: at kitchen on (H),

tdRk (M), at reception off (H); Case3: at kitchen (H),

tdRK (L), at reception off (H); Case4: at kitchen on(L),

tdRk (L), at reception off (H)

Case 2: Suppose that the input information is give
as follows:

IF at_kitchen_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)}

confidence ANDlater

tdRK_on with

{(H, 0.2); (M, 0.8); (L, 0), (N, 0)}

confidence ANDlater

at_reception_off with

{(H, 1); (M, 0); (L, 0), (N, 0)}

confidence

THEN ...

Following similar steps than in Case 1, the

system output is (see Case 2 in Figure 4):

O(U(2)) = {(C j,β j), j = 1, . . . ,4} =
{(H, 0.7276); (M, 0.2724); (L, 0); (N, 0)}

Case 3: Suppose that the input information is give
as follows:

IF at_kitchen_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)}

confidence ANDlater

tdRK_on with

{(H, 0); (M, 0.2); (L, 0.8), (N, 0)}

confidence ANDlater

at_reception_off with

{(H, 1); (M, 0); (L, 0), (N, 0)}

confidence

THEN ...

Following similar steps than in Case 1, the

system output is (see Case 3 in Figure 4):

O(U(3)) = {(C j,β j), j = 1, . . . ,4} =
{(H, 0.0517); (M, 0.4022); (L, 0.5461); (N, 0)}
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Case 4: Suppose that the input information is given
as follows:

IF at_kitchen_on with

{(H, 0.1); (M, 0.1); (L, 0.8), (N, 0)}

confidence ANDlater

tdRK_on with

{(H, 0); (M, 0.2); (L, 0.8), (N, 0)}

confidence ANDlater

no_movement_detected with

{(H, 1); (M, 0); (L, 0), (N, 0)}

confidence

THEN ...

Following similar steps than in Case 1, the

system output is (see Case 4 in Figure 4):

O(U(4)) = {(C j,β j), j = 1, . . . ,4} =
{(H, 0.0076); (M, 0.0543); (L, 0.9381); (N, 0)}

We may notice that firstly, if the activation

weight of a rule is equal to 0 (e.g., w3 = 0), then

the weight and the belief degree of this rule will

have no influence on the final output; If the acti-

vation weight of a rule is not equal to 0, then the

weight and the belief degrees of this rule will affect

the final output. The degree to which the final out-

put can be affected is determined by the magnitude

of the activation weight and the belief degrees. The

logic behind the approach is that if the consequent

in the kth rule includes Ci and the kth rule is acti-

vated, then the overall output must be Ci to a certain

degree. As shown from the examples, the degree is

measured by both the degree to which the kth rule

is important to the overall output and the degree to

which the antecedents of the kth rule are activated

by the actual input. The distribution assessment pro-

vides a panoramic view about the output status, from

which one can see the variation between the orig-

inal output and the revised output on each linguis-

tic term. From the above examples we may notice

that if vague information coexists with ignorance or

incompleteness caused due to the evidence not be-

ing strong enough to make simple true or false judg-

ments but with degrees of belief, the RIMER system

can provide a flexible and effective way to represent

and deal with such uncertain assessment information

to arrive at rational conclusions.

Fig. 5. Belief distribution for at kitchen on (H), tdRk (H),

at reception off (incomplete)

5.5. Inference based on incomplete input

information

Assume one of the main events in the antecedent

of our IF-THEN rule is not known. For example,

we know “at kitchen on” with high confidence and

“tdRK on” with relatively high confidence, but we

only have partial evidence that after some time units

the person is not moving, i.e., we are not 100% sure,

lets say the belief distribution is (H, 0.7); (M, 0); (L,

0), (N, 0). This could be due a sensor fault, expert’s

inability to provide precise judgments, or informa-

tion not being transmitted properly over the network

from the SH to the computing centre. We can still

infer the result based on the rule-base. To illustrate

how incomplete input can be dealt with in the infer-

ence methodology, in the above case study we use

the following input information:

IF at_kitchen_on with

{(H, 0.8); (M, 0.2); (L, 0), (N, 0)} confidence

ANDlater

tdRK_on with

{(H, 0.9); (M, 0.1); (L, 0), (N, 0)} confidence

ANDlater

at_reception_off with

{(H, 0.7); (M, 0); (L, 0), (N, 0)} confidence

THEN ...

Notice that the experts are only 70% certain that

there is no movement detected (at reception off). In

other words, the degree of ignorance is 0.3. Due to
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the assumed incomplete input for, we need to up-

date the belief degree of the relevant rules to reflect

the incompleteness. If we apply our methodology as

in the previous section then the conclusion from the

system will be: (high, 0.5946); (medium, 0.1319);

(low, 0.0055); (nothing, 0); (unknown, 0.2680)

where “Unknown” in the above result means that the

output is also incomplete due to the incomplete input

(see Figure 5). Hence, both complete and incom-

plete inference can be accommodated in a unified

manner within the proposed RIMER framework.

6. Conclusions

Smart Homes are considered as one way to decen-

tralize the delivery of health care to the population.

Although there are many possible applications, cur-

rent SH settings are devoted to their use as a protec-

tive environment for vulnerable people where their

daily activities can be monitored in order to pre-

vent hazards, profile behavior to facilitate diagnostic

tasks or to react to a problem.

Although the hardware and communication lay-

ers of these systems are available and have been con-

sidered at length in the literature, the software side

of these systems have not made similar advances.

This article shows how the combination of spatio-

temporal and uncertainty reasoning (using the ER

approach) can improve the ways in which SHs can

be designed. We emphasized the importance of em-

bedding into the system spatio-temporal knowledge

in order to assess how the diagnosis of a situation is

dependent on where it is occurring and on the order

and duration of the events that lead to that situation.

We have introduced the temporal operators “AND-

later” and “ANDsim”, upon which a richer temporal

language can be constructed. In the current imple-

mentation the operators are parsed before run time

and IF-THEN rules produced with antecedents using

>, = and Boolean operators. Future work will be

oriented towards including the more complex tem-

poral operators in the final language interpreted by

the inference engine. This enriches the way a deci-

sion support system can help to diagnose if the situa-

tion deserves intervention. Equally important is the

ability to cope with uncertainty due to the lack of

complete information or the unreliability of some of

the technical components involved (e.g., networks

and sensors). The resulting system can represent

knowledge about the activities in a SH. The knowl-

edge can then be used to detect a problem, which

is occurring or is likely to occur, to infer about the

nature of the problem and to advise with interven-

tion procedures through which the problem can be

resolved in order to ameliorate the situation. This

intervention can be achieved by controllable devices

in the house or manually by carers (e.g., nurses, se-

curity personnel, relatives).

So far SHs systems design has neglected these

issues and the focus of the literature has been much

more on the possible benefits of the associated tech-

nology than on how to achieve them. Here we pro-

vide a solid foundation for the development of these

kind of systems. Much remains to be done, particu-

larly regarding verification of the reasoning process

in a practical setting where the occupant is under-

taking normal ADL. However the case studies de-

veloped can bring to the attention of the future de-

velopers the importance of these concepts and the

need to provide systems with solid theoretical foun-

dations.

In a belief rule based system, while human ex-

pert knowledge is used to construct a roughly cor-

rect belief rule base (a potential weakness), learn-

ing can help to fine tune system performance if the

system input-output data are available. We believe

that reasoning with fine-tuned logical rules is more

acceptable to human users than the recommenda-

tions given by a black box system (e.g. neural net-

work), because such reasoning is comprehensible,

provides explanations, and can be verified automat-

ically and validated by human inspection. It also in-

creases confidence in the system, and may help to

discover important relationships and combinations

of features 53.

In conclusion, combining spatio-temporal rea-

soning with uncertainty reasoning captures essential

concepts that we believe should be considered when

designing a SH system. Equally these characteris-

tics are important to other applications of Ambient

Intelligence, whether the environment under consid-

eration is a hospital, a manufacturing unit or a street.
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