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Management strategies 
in a SEIR‑type model of COVID 19 
community spread
Anca Rǎdulescu1*, Cassandra Williams1 & Kieran Cavanagh2

The 2019 Novel Corona virus infection (COVID 19) is an ongoing public health emergency of 
international focus. Significant gaps persist in our knowledge of COVID 19 epidemiology, transmission 
dynamics, investigation tools and management, despite (or possibly because of) the fact that the 
outbreak is an unprecedented global threat. On the positive side, enough is currently known about the 
epidemic process to permit the construction of mathematical predictive models. In our work, we adapt 
a traditional SEIR epidemic model to the specific dynamic compartments and epidemic parameters of 
COVID 19, as it spreads in an age‑heterogeneous community. We analyze management strategies of 
the epidemic course (as they were implemented through lockdown and reopening procedures in many 
of the US states and countries worldwide); however, to more clearly illustrate ideas, we focus on the 
example of a small scale college town community, with the timeline of control measures introduced 
in the state of New York. We generate predictions, and assess the efficiency of these control measures 
(closures, mobility restrictions, social distancing), in a sustainability context.

�e COVID 19 outbreak originated in December 2019, from a single focus in the Wuhan region (China) and 
over the course of less than three months had spread to every continent except Antarctica, a�ecting at this point 
(start of August 2020) 213 countries and territories, with more than 18,000,000 worldwide infections (more 
than 4,500,000 in the US alone) and over 690,000 fatalities (over 150,000 in the US, and growing). Depend-
ing on the age and immune system of each individual, clinical manifestations vary from mild to severe, to life 
threatening. Most critical complications (like severe pneumonia, acute cardiac injury, septic shock) have been 
reported to have highest prevalence in the > 80 age bracket (with the mortality rate increasing from children, to 
young adults and adults, to the elderly). In the incipient stages of the epidemic, the public concern was curbed 
by the relatively low overall COVID 19 mortality rate (initially around 3.3%), comparable with the rates of less 
threatening viral epidemics, such as the seasonal �u, rather than with those of notorious outbreaks like Ebola 
( 50%), or SARS ( 10%). What �rst started to raise a strong reason for concern was the faster spread ( R0 ∼ 3 ) via 
only mildly symptomatic cases. It became increasingly apparent over the following weeks of the outbreak that 
its control required international coordination. Over six months down the line—a�er unprecedented global and 
local travel bans, functional shutdown of many branches of economic, educational and social life; a�er city and 
even country-wide mandated quarantines, self isolation and social distnacing—the epidemic is far from subsid-
ing, raising huge survival, economic and sustainability concerns. A�er having transcended in many countries a 
�rst epidemic wave (during which the immediate focus was on clinical survival and organizing the �rst response 
of the health care systems), the focus has been shi�ing towards long-term mitigation, and facing subsequent 
waves. An additional emerging concern concentrates around the plethora of potentially life long health e�ects 
related to survival a�er COVID 19 infection. �is concern is slowly starting to contribute to the shaping of the 
mitigation process.

Based on recent �ndings, it has been established that the current epidemic has a speci�c signature. First, 
it exhibits a unique communicability timeline. �e SARS-COV-2 virus has a relatively long incubation period 
(de�ned as the length of time between the individual’s exposure to the virus, and the presence of symptoms). 
�e average incubation period has been estimated to be approximately 6 days, with observed variations between 
2 and 27  days1). However, multiple studies have shown that people infect others before their own symptoms 
 develop2–5. In addition, the degree of infectiousness varies for an individual along this presymptomatic stage, with 
a high surge around 2–3 days before symptom onset, following an initial latent period, with lower communica-
bility. Newer epidemiological research of COVID 19 has also revealed a signi�cant percentage of asymptomatic 
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carriers (broadly estimated between 6 and 41%6). Since they never develop symptoms, they are unaware that 
they are carrying the virus. �eir infectiousness appears to be signi�cantly lower than that of individuals who 
are in di�erent stages of developing symptoms, but may still signi�cantly contribute to the epidemic dynamics. 
Distinction between presymptomatic and asymptomatic individuals is therefore very important when developing 
public health strategies to control transmission, but it is also very di�cult to make and requires careful tracking 
strategies. Presymptomatic and asymptomatic transmission, combined with the limited testing and tracking 
resources, hamper detection and contribute to the pandemic spread.

�e second signature aspect of COVID 19 is that it presents signi�cant age di�erences in symptom develop-
ment and prognosis. Children and young adults exposed to the virus can be contaminated as much as the more 
advanced age groups. However, their milder symptoms can pass undetected, and they can more easily act as 
carriers of the virus, e�ectively unrestrictedly spreading it to others. On the other hand, the elderly population 
is more likely to exhibit serious to critical symptoms post exposure. �e mortality rates di�er correspondingly 
between their age groups, as will be described in more detail in the upcoming sections. �e original focus 
of medical care was aimed towards increasing survival, especially in the high risk elderly. With fatality rates 
apparently subsiding worldwide, the emerging concern extends to the potential long-term health consequences, 
primarily in the younger populations, upon infection and recovery from COVID 19.

�ird, it has been established that COVID 19 may not confer long-term immunity, allowing people to get 
reinfected. �is is important on a clinical scale, since patients with subsequent reinfections may have diminished 
chances of survival. On the larger scale, the potential for reinfection not only adds to the rate of the spread, but 
also question viability of social measures like herd immunity.

�e reaction to the overwhelming pandemic consisted of a combination of containment and mitigation strate-
gies (primarily based upon social isolation), aimed to compensate for the clinical unpreparedness, and diminish 
or control the load on the overburdened health care systems by “�attening the infection curve.” Gradually over 
a few weeks, as more countries and territories became a�ected, global travel was shut down, universities and 
schools were closed, followed by bars, restaurants and other entertainment venues, and �nally by most churches 
and other religious or spiritual gatherings. �e general population was asked to either quarantine or observe 
social distancing, depending upon suspicion of active symptoms, and upon the gravity of the local situation. 
�ese measures have been directly in�uenced in most places by (1) limitations in testing abilities; (2) the unpre-
paredness of the clinical �eld, of medical resources and suppliers to cater to an outbreak of this magnitude; (3) 
the di�culty in providing an immediate prevention plan.

As the �rst infection peak waned in some countries and regions, the immediate concerns moved towards 
reopening strategies. �e epidemiological factors weighing on reopening are tightly intertwined with economic, 
health and societal needs (which press towards reopening more venues), and with the psychological impact of 
the long-lasting pandemic on individuals (one result of which is a wide-spread reluctance to continue abiding 
by social isolation and distancing rules). When planning for the return to “normal,” the same mitigation aspects 
that represent central discussion points are: (1) which destinations are safer to visit; (2) what aspects of social 
distancing are most e�ective, and (3) for how long should they be enforced. Over six months of world-wide 
research on COVID 19 clinical and epidemiological aspects have lead to a better understanding of both viral 
and social dynamics, better classifying destinations by infection risk. For example, outdoor gatherings have been 
shown to pose signi�cantly lower risk than indoor similar encounters; a visit to the doctor’s o�ce is considered 
a very low risk, while school attendance, or working in an o�ce are considered a moderate risk, and going to 
the gym, or eating at an indoor bar are deemed as high risk  behaviors7. �e many research e�orts converging 
on COVID epidemiology resulted on more extensive knowledge of how isolation, social distancing and hygiene 
contribute in combination to keeping infection at bay. A�er mixed directives at the start of the pandemic, the 
use of masks is now considered a crucial aspect in controlling the epidemic spread, especially in closed spaces, 
and in conjunction with respecting a minimum distance of six feet between individuals.

While our increasing knowledge from clinical observations and epidemiological studies has been shaping 
better mitigation strategies, answers to some of the critical questions cannot be extrapolated directly from �eld 
observations, and bene�t from constructing testable mathematical models that can generate predictions. �ese 
can be used to inform our potential future directions, based on the current state of the epidemic, and also based 
on our better understanding of our actions thus far. A plethora of epidemic models of COVID 19 have already 
aimed at addressing some of these  aspects8–11. With our model, we will focus on a few speci�c questions.

A �rst important question regards the timeline of the original travel bans and isolation measures, and whether 
the timing, size (local versus global) and priorities were optimally weighted. �e �rst institutions to close in 
most places were the schools and university campuses. Only then came retail and entertainment (such as gyms, 
restaurants and theaters). Essential services such as doctor’s o�ces, food stores and pharmacies remained open 
to the general public, as well as many outdoor parks. Some of the last to be shut down were religious/spiritual 
services and gatherings; while supporting people psychologically or spiritually, these may have considerably 
added to the infection rate. A model can assist with establishing the impact of di�erent shutdown combinations, 
by re-creating the conditions at time zero of the outbreak, and simulating how di�erent strategies would have 
changed the outcome that we now observe. �e answer to this question is of increasing importance, as hotspots 
are emerging in other areas across the US and in some places in Europe, and as we are beginning to see the threat 
of subsequent waves. Retrospective modeling may help public health and governmental o�cials learn from the 
�rst wave so that future waves are handled di�erently, resulting in a less detrimental impact.

�e second question regards timing and e�ciency of the social distancing requirements. It has been shown 
repeatedly that hygiene measures, in conjunction with respecting a six foot distance and wearing a mask work 
e�ectively towards diminishing the risk of infection. However, overwhelming evidence from media reports in 
many countries suggests that there is very wide variability in the population’s response to these measures (which 
may be mandated or not, depending on location). While in some regions social distancing was e�ciently applied 
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as a successful mitigation measure, in some of the regions which have been most a�ected, such measures are still 
being observed by only a relatively small percentage of the population. A model can illustrate the relative impor-
tance of social distancing versus decreasing actual mobility. Indeed, the general expectation is that a su�ciently 
long and e�cient isolation will successfully curb the outbreak. However, that is not realistic. Not only are there 
necessities (e.g., for food, medical care or essential work) that constantly send people out of their homes in the 
path of exposure, but one also has to account for the psychological reaction to the long-term isolation measures, 
and for the increasing psychological tolerance to the epidemic (both feeding into increasingly risky behaviors). 
A model can incorporate all these aspects, and estimate the importance of social distancing measures not only 
under isolation, but as mobility is gradually being restored.

Finally, one obvious question that needs to be considered regards the timeline of reopening strategies. Reo-
pening has been posing an extremely di�cult optimization problem over the past few months, weighing on one 
hand the high risk of further epidemic spread, loss of human lives, and an enormous economic pressure on the 
heath care systems, and on the other hand sustainability issues related to exhaustion of resources and global 
economic shutdown. �e di�culty of the problem is increased by the fact that the two parts to be reconciled are 
measurable in di�erent units (loss of human life versus livelihood), and are tightly intertwined. To make matters 
worse, it is becoming increasingly apparent that, beyond its immediate life-threatening risk (which seems to be 
currently decreasing on an epidemiological scale), infection with COVID 19 may increase subsequent risk to 
potentially critical life-long health problems. Current optimistic estimates based on a preliminary vaccine quote 
months of necessary testing, and do not make it clear how administration of a vaccine would impact an infected, 
but asymptomatic individual. Modeling could generate informed predictions as to the most sustainable long-term 
mitigation strategies, including which venues are safest to reopen, and whether social distancing alone may o�er 
su�cient protection while relaxing the mobility restrictions.

In this paper, we aim to focus on these basic questions, using a model speci�cally tailored to incorporate the 
signature of the COVID 19 dynamics, and the limitations in our response to it. Using a traditional SEIR setup 
that accounts for long incubation, di�erent age compartments, asymptomatic and presymptomatic carriers, 
potential lack of immunity and minimal testing, we simulate the epidemic dynamics �rst within one community 
with a speci�c social pattern. We set out to understand the e�ects of the social measures that were imposed in 
this community upon the �rst epidemic surge. We do so based on the example of the response timeline in New 
York State; this can be, however, easily modi�ed to match other states’ timeline, or the widely di�erent response 
strategies implemented in other countries. We follow up by exploring the need and e�ciency of maintaining or 
relaxing such measures in the process of reopening, and as a long-term strategy.

Methods
Improving on the basic SEIR model. One of the most traditional and relatively simple mathematical 
frameworks to study epidemics at the population level is the Susceptible/Exposed/Infectious/Recovered (SEIR) 
compartmental model. A classical SEIR model considers four compartments: the susceptible population S(t) at 
time t (i.e., healthy individuals who have not been exposed to the disease); the exposed population E(t) (indi-
viduals who have contracted the virus but are not yet symptomatic); the infected population I(t) (exhibiting signs 
and symptoms of the illness); the recovered population R(t) (in an oversimpli�ed view, the number of individu-
als who can no longer infect others). In a closed system which does not account for births or deaths, the sum of 
these compartments N = S(t) + E(t) + I(t) + R(t) remains constant in time. �e coupled dynamics of these 
compartments are described by the following system of equations:

�e parameter β is the average number of contacts per person per time, multiplied by the probability of disease 
transmission via a contact between a susceptible individual, and an individual carrying the virus. �e carrier 
can be either infected or exposed, with the fraction SI/N2 representing the likelihood of an arbitrary contact to 
be between a susceptible and an infectious individual, and the fraction SE/N2 corresponding to the likelihood 
of a contact to be between a susceptible and an exposed individual. �e model allows the possibility that a con-
tact with an exposed individual may have di�erent probability of transmission than that made with an infected 
individual, which is re�ected in the scaling factor q). �e transition rate at which people are exposed then takes 
the form −d(S/N)/dt = βS(I + qE)/N2 , leading to the �rst equation dS/dt = −βS(I + qE)/N  . �e rate of 
transfer from the exposed to the infectious stage is a fraction 1/δ of the number of exposed individuals, where δ 
is the average time for an exposed individual to become infectious. �e rate of recovery is a fraction 1/γ of the 
infectious population, where γ is the average time it takes a person to die or recover once in the infectious stage. 
�is model has already been used in its original form for an early assessment of the epidemic in Wuhan,  China11. 
We will adapt this model to encompass recent epidemiological information in a few di�erent ways.

Transmission. Clinical evidence con�rms that COVID 19 transmission occurs from person to person through 
several di�erent routes: contact with respiratory droplets generated by an infected individual through the breath-

(1)

dS

dt
= −βS(I + qE)/N

dE

dt
= βS(I + qE)/N − E/δ

dI

dt
= E/δ − I/γ

dR

dt
= I/γ
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ing, sneezing, or coughing of an infected individual; direct (person-to-person) or indirect (hand-mediated) 
transfer of the virus from contaminated fomites to the mouth, nose, or  eyes12. �e onset and duration of viral 
shedding and the period of infectiousness for COVID 19 are not yet known with certainty. Based on existing 
literature, the incubation period (the time from exposure to development of symptoms) of SARS-CoV-2 ranges 
typically from 2–14  days13, with a mean of 5.2  days11. Based on current evidence, scientists believe that persons 
with mild to moderate COVID 19 may shed replication-competent SARS-CoV-2 for up to 10 days following 
symptom onset, while a small fraction of persons with severe COVID 19, including immunocompromised per-
sons, may shed replication-competent virus for up to 20  days13. With an R0 value for COVID 19 estimated 
between 1.9–3.311,14,15, and an infectious period of 10–20  days13 (recovery rate 1/γ between 0.05 and 0.1), the 
infection rate 1/δ was estimated between 0.07–0.5, and the transmission rate β = R0γ between 0.1–0.311. While 
tra�c limiting measures act to diminish transmission by decreasing the overall number of contacts (preventing 
susceptible individuals and carriers from sharing the same space), social distancing measures such as disinfect-
ing hands, observing physical distance, wearing masks, avoiding contamination by touching surfaces can all be 
seen as factors that act on decreasing the parameter β (by diminishing the probability of disease transmission 
when a susceptible person and a carrier do share the same location).

In terms of viral load pro�le, SARS-CoV-2 peaks at around the time of symptom  onset16,17, suggesting that 
the peak of the transmission may occur at an early stage of  infection12, likely even a few days prior to any detect-
able  symptoms9,18,19. To capture these patterns in the transmission timeline, we further partition the traditional 
Exposed compartment, to di�erentiate between latent individuals L(t) (who have been exposed to the virus, but 
are still in the latent, relatively noninfectious stage), and presymptomatic individuals P(t) (who entered the high 
transmission stage, but are not yet symptomatic).

Asymptomatic and presymptomatic transmission. In our model, we account separately for presymptomatic and 
asymptomatic transmission, by introducing two new compartments, P(t) and A(t) respectively. To do so, we 
used recent epidemiological data that estimates the proportion of asymptomatic cases (the extent of truly asymp-
tomatic infection in the community remains unknown). �e proportion of people whose infection is asymp-
tomatic likely varies with age due to the increasing prevalence of underlying conditions in older age  groups20. 
Transmission from infected people without symptoms is di�cult to study, since substantiating information 
needs to be gathered via detailed contact  tracing20. Available data, mainly derived from epidemiological studies 
of cases and contacts, vary in quality and do not deliver consistent  conclusions12. In a recent review, the pro-
portion of asymptomatic cases among positive diagnoses was estimated at 16% (with a range from 6 to 41%)6. 
Another review, found 25% of individuals to be asymptomatic at the time of the positive testing, but only 8.4% 
of these remained so throughout the follow-up  period21. Our corresponding model parameters were based on 
these estimated ranges.

In terms of infectiousness, it was suggested by data-validated modeling studies that pre-symptomatic trans-
mission contributed to 48% and 62% of transmissions in Singapore and China,  respectively22, which suggests a 
large transmission scaling factor (q value) corresponding to the pre-symptomatic compartment (shortly preced-
ing symptom onset). On the other hand, the coe�cient chosen for the Latent and the Asymptomatic compart-
ment is relatively small, since the WHO stated in June that transmission from purely asymptomatic individuals 
is  low23. However, the statement has been since then subject to assiduous controversy, and does not mean that 
asymptomatic transmission cannot have a considerable contribution to driving the growth of the COVID 19 
pandemic, as other mathematical modeling studies have  suggested24,25. By means of our compartmental con-
struction and realistic estimates of our epidemiological parameters, we include this possibility in our analysis.

Mortality. �e high mortality rate in the COVID 19 pandemic requires that our model have a designated com-
partment for fatalities, which we will call D. �e particular age dynamics and distribution of COVID 19 require 
age dependent mortality rates (as discussed below). �e fatality compartment is the only compartment of the 
model with no further interaction with the rest of the epidemic system.

Immunity. Recent evidence suggests that a large percent of recovered individuals may develop immunity, but 
whether this is e�cient in the long term remains questionable. Immune response to SARS-CoV-2 involves both 
cell-mediated immunity and antibody production. However, whether the detection of antibodies to SARS-
CoV-2 indicates protective immunity has not yet been  established26. Most individuals infected with SARS-
CoV-2 display an antibody response between day 10 and day 21 a�er  infection27–30; for modeling purposes, it 
can be therefore assumed that immunity is established around the same time as the cessation of viral shedding 
(which in our model we identify as “recovery”). It was found that SARS-CoV-2 antibody levels may persist over 
the course of seven  weeks31, or at least in 80% of the cases until day  4932, but results on the full longevity and 
e�ciency of the antibody response are inconsistent. Primary infection with SARS-CoV-2 was shown to protect 
rhesus macaques from subsequent challenge and casts  doubts33 on reports of re-infections with SARS-CoV-234. 
Based on the observed dynamics of antibody waning in other (seasonal) coronaviruses, a study showed that the 
duration of protective immunity lasted 6-12  months35. To re�ect all this information, our model used di�erent 
scenarios of immunity length from 60 to 365 days, when returning recovered individuals to the susceptible pool. 
Since the length of immunity is not a factor we are speci�cally investigating in this paper, we used for consist-
ency a �xed immunity window of 180 days for all our illustrations. Longitudinal serological studies that follow 
patients’ immunity over an extended period of time would be required to improve these estimates of the dura-
tion of  immunity36.
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Age di�erences in epidemiological pro�le. To represent the wide age di�erences in epidemiological pro�les of 
COVID 19, we introduce four age compartments: Children (C, 0–18 years of age), Young adults (Y, C, 18–30 
years of age), Adults (A, 30–70 years) and Elderly (E, > 70 years). �e boundaries between these groups were 
set to in accordance to epidemiological data, but were adapted to also account for social mobility patterns (e.g., 
K-12 school versus college attendance). �ese four groups will have not only di�erent infection/recovery/fatal-
ity parameters (re�ecting di�erent clinical pro�les), but will also exhibit di�erent social interactions (based on 
knowledge of age-based di�erences in social behaviors, and on how these were di�erentially altered in response 
to the outbreak).

Data from Germany shows that in symptomatic children, initial SARS-CoV-2 viral loads at diagnosis are 
comparable to those in  adults19, and that symptomatic children of all ages shed infectious virus in early acute 
 illness37. However, the percentages of post-exposure presence and severity of infection vary widely among dif-
ferent age groups. A review study that used age-speci�c case data from 32 settings in six countries quanti�ed the 
di�erences in infection rates and symptom severity across ages, and estimated susceptibility and clinical fraction 
by  age38. �e study found age-varying susceptibility to infection by SARS-CoV-2, where children are less suscep-
tible than adults to becoming infected on contact with an infectious person, and also experience no symptoms 
or subclinical (mild and unreported) symptoms on infection more frequently than adults. More speci�cally, 21% 
(12–31%) of infections in those aged 10 to 19 years resulted in clinical cases, which increased to 69% (57–82%) in 
adults aged over 70 years. �e age-speci�c susceptibility pro�le suggested that relative susceptibility to infection 
was 0.40 (0.25–0.57) in those aged 0 to 9 years, compared with 0.88 (0.70–0.99) in those aged 60 to 69 years. We 
used this study to inform our model when choosing the asymptomatic proportions in each age compartment.

Long-term prognosis for COVID 19 patients also di�ers widely, with fatality rates increasing consistently 
with  age9 (likely due to factors such as age-based variations in immune response, presence of co-morbidities, 
etc). Fatality rates recorded for the duration of COVID 19 have also varied in time, and with geographic  region39 
(e.g., between 1–6% in the US, 6–15% in Italy). When broken up by age, the worldwide data suggests a very small 
mortality rate of 0–0.2% in children ages 0–18, slightly higher rates of 0.2–0.3% in young adults 18–30 years of 
age, rates roughly between 0.3–3.6% in adults 30–70 years, and signi�cantly higher rates that go up to 6–20% in 
the elderly individuals over 70 years of  age39. We used this data to inform our model when choosing the mortality 
versus recovery rates for each age compartment.

Finally, di�erences in contact and hygiene patterns among individuals of di�erent ages can also be responsible 
for the di�erences in transmission, and subsequently in the number of infections within each age  group38. �e 
mobility patterns assumed by our model, together with their age-based di�erences, are described in detail in 
the following sections.

Assembling age‑compartmental dynamics. Our basic compartmental model of propagation in a pop-
ulation of N individuals will involve seven compartments X ∈ {S, L,A,P, I ,R,D} . From the traditional model, 
we continue to use the original SIR compartments. In addition, we introduce (as discussed above) four new 
compartments, to adapt to the speci�c characteristics of the COVID 19 epidemiology: L represents the propor-
tion of Latent individuals (who have contracted the virus but are not yet contagious); A represents the compart-
ment of Asymptomatic individuals (who have contracted the virus, may infect others, but will never present any 
symptoms); P represents Presymptomatic individuals (who have contracted the virus, are able to infect others, 
and have not yet, but will soon develop symptoms); D represents the fatalities compartment. Each age group 
age ∈ {C,Y ,A,E} is therefore characterized by the compartments Sage , Lage,Aage,Page , Iage , Rage , Dage . We can 
then write the following system, describing the epidemic coupling between compartments and age groups, and 
implements the provisions described above:

�e exposure rate β is age dependent, based on age behavioral di�erences which may be riskier or more conserva-
tive (e.g., children touch their faces more o�en and may �nd social distancing more challenging than adults, 
young adults are more socially interactive than the elderly). In the next modeling steps, when people are allowed 
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tra�c to di�erent locations, the rate β will also be location dependent, since di�erent places observe di�erent 
hygiene protocols, and di�erent social patterns. �e second proportionality factor in the infection term changes to 
QI�I + QA�L + QP�P + QA�A , where �I =

∑
age I

age , �L =

∑
age L

age , �P =

∑
age P

age , and �A =

∑
age A

age 
. �is is because individuals in a speci�c age group are exposed to infected, latent, asymptomatic and presymp-
tomatic people from all four age groups that interact in one location.

Healthy individuals leave the S compartment when exposed to the virus, and enter the latency compart-
ment L, at a rate equal to the transmissions parameter β multiplied by the “exposure risk.” �e risk is calculated 
as a weighed sum of the proportion of spreaders in the population, with larger scaling factors assigned to the 
Presymptomatic and Infectious compartments ( QP and QI , respectively, and a lower scaling factor QA given to the 
Latent and Asymptomatic compartments, according to the current literature on transmission dynamics). Latent 
individuals leave the compartment at a rate that re�ects the number �1 of days estimated for the virus to start 
more pronounced shedding (corresponding to a stage of more dramatic transmission by a person who will sub-
sequently develop symptoms). However, since not all individuals further develop symptoms, an age-dependent 
proportion α(age) of the Latent individuals will move into the Asymptomatic compartment, leaving the remain-
ing proportion 1 − α(age) to join the high transmission Presymptomatic compartment. Asymptomatic individu-
als will recover to the R compartment without any further transitions, at a rate re�ecting the time θ estimated for 
the viral shedding to subside. Meanwhile, Presymptomatic individuals go on to develop symptoms and enter the 
Infectious compartment, at a rate inverse proportional to the time �2 estimated for the presymptomatic stage. 
Symptomatic individuals leave the compartment at a rate based on the recovery time γ ; they may recover (with 
potential immunity), or die. In our model, the age-speci�c parameter d(age) accounts for the fatality percentage. 
A fraction ρ of the survivors recover with limited immunity, hence they remain in the Recovered compartment, 
before re-joining the Susceptible compartment at a rate re�ecting the approximate duration of the immunity ϕ . 
Empirical parameter ranges, their corresponding sources and the values used in our model are listed in Table 1.

Incorporating social dynamics. Finally, we expand the model to incorporate compartmental daily 
dynamics, allowing people age-speci�c mobility to di�erent locations with potentially di�erent exposure rates. 
To �x our ideas, we study a small “college town” community, including all age groups in equal proportion (1000 
individuals), in which the contamination is initiated by two exposed adults. Daily travel is designed to re�ect 
this pro�le, and our model is speci�cally tailored towards analyzing (1) the e�ciency of epidemic mitigation 
measures, mandated to such communities as the outbreak was developing, and (2) the optimal timeline and 
conditions for reopening, which is one of the crucial open questions in all communities, as well as at a global 
stage. �e model can be easily adapted to re�ect a community with a di�erent social pro�le. Our future work is 
focused on extending the model to multiple coupled communities, and aims to understand how the behavior 
patterns of one can easily a�ect the others.

In our current model, during each day, people travel from home to one of the following seven locations: 
medical o�ce (e.g., doctor, hospital); shops (food, pharmacy); church (religious, spiritual gatherings); university 
campus (young adult education); school (children education); park (children entertainment); bars/restaurants 
(adult social and entertainment venues). Table 2 speci�es the baseline values of the exposure rate β for each 
destination and age group, making educated estimates of the e�ects of hygiene restrictions and speci�c social 
interactions in each place.

To keep track of the day’s dynamics to and from di�erent locations, we use a mobility 7 × 7 × 4 array M, so 
that each entry M(place, X, age) speci�es what fraction of the community travels to each location place, from 
each SEIR compartment X, for each age group age. �ese entries are time-dependent, allowing us to investigate 
not only extent, but also timing of quarantines and isolation measures.

Table 1.  Summary of model parameters, along with the corresponding references to the empirical ranges in 
existing literature.

Parameter Description

Model’s value Source

C Y A E

β Transmission rate at destinations 0.08–0.1 (See Table 2) 11

QI Transmission scaling factor for I 1 22

QA Transmission scaling factor for A and L 0.2 *

QP Transmission scaling factor for P 1.2 22

�1 + �2 Incubation period 6 days 11,13

�1 Latency period 4 days 11,13,18,19

�2 Presymptomatic period 2 days 18,19

α Asymptomatic incidence 80% 60% 40% 20% 6,21

θ Length of asymptomatic transmission 12 days 13

γ Time to recovery or death 10 days 13

d Fatality rate 0.1% 0.25% 2% 6% 39

ρ Immunity incidence 0.8 32

ϕ Immunity length 180 days 31,32,34,35
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For simplicity, in this �rst iteration of the model we assume that individuals may travel to at most one place 
each day, and spend there a speci�ed amount of time, which is the same (6 h) across places, epidemic compart-
ments and age groups. �e SEIR dynamics at each of the destinations is di�erent, and di�erent than the cor-
responding dynamics at home (where the exposure rate is assumed smaller than at all destinations).

In our mathematical simulation, we dispatch theoretical people to all destinations in the morning, according 
to the day’s mobility array (Appendix A, Tables 3, 4, 5, 6), which accounts for the fraction of each compartment 
and age group in the community that chooses to visit that particular location during the speci�ed day. To re�ect 
the fact that limitations in testing and contact tracing may allow virtually unrestricted mobility in absence of 
speci�c symptoms, we assumed similar mobility of the E, P and A compartments to that of the S compartment. 
Mobility from the Infectious compartment is drastically reduced (except tra�c for health care), and subsequently 
restored a�er recovery. Also for simplicity, the mobility array is consistent throughout six days of the week. Every 
seventh day (Sunday), the primary activity is attendance of spiritual or social gatherings (broadly labeled in our 
destination vector as “church”). We study the dynamics and e�ects of such periodic large gatherings separately, 
since they have been identi�ed by �eld studies as a critical contribution to the overall epidemic dynamics.

At each destination, the coupled compartmental dynamics is applied for 6 h. Compartmental dynamics with 
home parameters is applied to the population staying home, for an equal amount of time. Upon return from the 
destinations, home dynamics is applied for the rest of the day (18 h). �e code is implemented in the Matlab 
package, using an Euler method with step-size h = 15 min, tracking the progress of the outbreak within the 
community for 500  days41, which is a rough estimate of the time needed for clinical prevention and treatment 
development. �is observation window can be adapted to incorporate future changes to this clinical timeline.

Each destination place has four age-speci�c exposure rate parameters β(place, age) , speci�ed for our model 
in Table 2. �at is because the ability to maintain hygiene and social distance varies between places (e.g., doctor 
versus bar), and between ages (with children, for example, being less likely to abide by the strict rules of either 
hygiene or distancing). Once at home, the parameter rate assumes a smaller value β0 . One signi�cant limita-
tion of this approach is that it cannot capture speci�cs of the home dynamics, such as household structure (and 
the higher likelihood of infection of other household members from an infected person). �is will be further 
discussed in the Limitations section, and will be the subject of future work.

We will study the e�ects of practicing social distancing at speci�c locations and in a residential setting, 
by varying the value of the respective parameter β . We will also study the e�ects of imposing early and late 
shutdowns of various destinations, by altering the mobility array. In this project, we investigate the schedule of 
measures that was government mandated in New York State communities (closing schools and campuses, then 
restaurants and bars, then churches, etc). We then investigate the e�ects of di�erent opening timelines, and the 
di�erential consequences of relaxing the restrictions on mobility versus lightening the social distancing measures.

Results
Figures 1 and 2 illustrate the long term dynamics of the system constructed in “Methods” section, in absence of 
any isolation, quarantine or closure measures. Figure 1 illustrates the interplay between model compartments 
(shown in di�erent colors) for each of the four age groups (captured as a di�erent panel). Figure 2 illustrates a 
comparison between age groups (shown in di�erent line styles) in each of the seven compartments (shown in 
separate panels). �ere is a period of seemingly exponential growth in infections, followed by a peak at around 
100 days, and a decline, with the number of fatalities monotonically increasing towards a di�erent asymptotic 
value for each group (largest in the elderly, smaller in adults, etc). We will observe how these dynamics are 
a�ected by shutting down di�erent locations at a speci�c time in the system’s evolution. In further illustrations, 
we will focus in particular on the number of infected cases (relevant to the current stage of the epidemic, and to 
the strain on the health care system), on recovered individuals (who may be subject to life long consequences, 
whether they had been symptomatic of not), and on fatalities (as a traditional measure of epidemic impact in 
terms of life loss).

�e �rst response strategies applied in response to the COVID 19 epidemic were focused primarily on man-
dated closures (i.e., mobility restrictions) rather than on social distance requirements (e.g., the recommenda-
tions on wearing masks were rather mixed over the �rst few weeks of the outbreak). Around the US, university 
campuses were among the �rst to dramatically limit their tra�c (to virtually negligible), followed by closing 

Table 2.  Qualitative pro�le of exposure rates, for the community destinations. �e baseline value of β was 
obtained as the product between the inverse of the time length θ during which the individual spreads the virus, 
and the reproduction value R0 . �e reproduction value for this outbreak was estimated as R0 = 340. �is led 
to β = 0.1 , which was lowered to β0 = 0.08 in case of the home exposure rate, and adapted multiplicatively 
for each destination and age to re�ect the corresponding patterns. For example: the likelihood of exposure for 
an adult is 3 times higher at a bar that at the doctor. In terms of age variability: children exhibit behaviors that 
make them more prone to exposure, the elderly are more careful.

Age group Home Doctor Store Church Campus School Park Restaurant

Children β0 β 2β 2β 2β 2β 2β 3β

Young β0 β 1.5β 1.5β 1.5β 1.5β β 3β

Adults β0 β 1.5β 1.5β 1.5β 1.5β β 3β

Elder β0 β β β β β β 2β
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school districts and, within the following two weeks, by additionally shutting down activity in restaurants, bars 
and entertainment venues. In Figs. 3, 4 and 5, we illustrate the e�ect of independently closing these three loca-
tions to all tra�c. �e closures are introduced in the model at the approximate time in the course of epidemic 
development as they were implemented in most New York State communities; the timeline of the response varied 
widely between states.

Figure 1.  System dynamics in absence of any preventive measures. Each column shows the evolution of one 
age group (from le� to right: Children, Young adults, Adults and Elderly). �e Symptomatic and Recovered 
compartments are shown in separate panels, for clarity of the illustration (larger scale than the other 
compartments). �e number of Susceptible individuals is shown in blue, the Latent in pink, Asymptomatic in 
cyan, Presymptomatic in orange, Infected in red, the Recovered in green and the Fatalities in black.

Figure 2.  System dynamics in absence of any preventive measures. Each panel shows the dynamics in one 
model compartment (from le� to right: Susceptible, Exposed, Infected, Recovered and Dead.) In each panel, 
each age is represented by a di�erent line type: Children as a dotted line, Young adults are a dashed line, Adults 
as a thin solid line and Elderly as a thick solid line.
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�e model predicts that, even when implemented early in the process, the e�ect of each of the three measures 
taken separately is quite limited in size, and localized to the age groups directly a�ected. Closing the campus 
produced a small, but noticeable e�ect in Young adults, lowering (but not visibly shi�ing) the infection curve, 
as well as reducing the recovered compartment, and slightly diminishing fatalities primarily within the speci�c 
age group of Young adults. �e e�ects on other age groups appeared negligible, hence this cannot be viewed as 
an e�cient control measure to apply in and of itself. �is analysis is restricted to the social dynamics within the 
community, limiting the campus interaction between Young adults and the other age compartments (only indi-
rectly a�ected by the campus closure). �e simulation did not include Young adult exodus from the community 
upon campus closure, or increased tra�c to other locations to compensate, which will both be addressed in our 
future work on coupled communities.

Similarly, closing schools produced a very limited observed e�ect in our model, and primarily a�ected the 
Children age group (lowering infections, recoveries, and the already very low number of fatalities). However, 
this e�ect may be signi�cantly underestimated by the nature of our model, which limits the interaction of chil-
dren with other age compartments, especially that which occurs in a typical household. While young adults in a 
community of primarily college students are likely to observe more separation once in their own homes (single 
living), children will interact with their families, even when completely separated from others in the community. 

Figure 3.  E�ect of the campus closure on the system dynamics. �e le� panel shows the rise and fall of the 
infected compartment, the center panel shows the recovered compartment and the right panel shows the 
accumulation of fatalities. Each age group is represented in one color: Children (blue), Young adults (pink), 
Adults (red) and Elderly (black). �e solid curves illustrate the solutions in absence of closures; the dashed 
curves show the e�ect of the campus closure implemented 10 days a�er infection.

Figure 4.  E�ect of the school district closure on the system dynamics. �e le� panel represents the infected 
compartment, the center panel shows the recovered compartment and the right panel, the fatalities. Each age 
group is represented in one color: Children (blue), Young adults (pink), Adults (red) and Elderly (black). �e 
solid curves illustrate the solutions in absence of closures; the dashed curves show the e�ect of the school 
closure imposed 15 days a�er infection.

Figure 5.  E�ect of bar closures on the system dynamics. �e le� panel represents the infected compartment, 
the center panel shows the recovered compartment and the right panel, the fatalities. Each age group is 
represented in one color: Children (blue), Young adults (pink), Adults (red) and Elderly (black). �e solid curves 
illustrate the solutions in absence of closures; the dashed curves show the e�ect of the bars closure implemented 
25 days a�er infection.
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COVID spread from children to adults, and within the same household are currently subject to intense scienti�c 
debates. However, these dynamics cannot be intrinsically captured by a simple, single community SEIR model, 
and would require further compartmentalization, or agent-based modeling, in future work.

Closing the bars has a qualitatively di�erent e�ect, due to both the speci�c social dynamics and also to the 
nature of the interactions being restricted (a place with high exposure parameter β being eliminated). Fig-
ure 5 suggests that even a slightly delayed closure (25 days) visibly lowers the infection curve in all age groups 
(including Children, who do not directly attend bars in our model), slightly shi�s the infection curves to the 
right, diminishes the asymptotic number of fatalities and lowers the number of individuals in recovery, for all 
age groups.

Link tracing the infection networks in various geographic regions suggests that signi�cant community con-
tamination has been occurring at religious / spiritual gatherings (church and synagogue services, weddings, 
etc.) A notorious patient #31 in Korea reportedly infected in February over 1160 individuals in her Shincheonji 
Church of Jesus congregation by attending service twice a�er onset of  symptoms42. One of the initial large spikes 
in infections was observed in New York City the week of March 17, due to a quick spreading in tightly knit Jew-
ish communities in  Westchester43 and  Brooklyn44. Many churches have been heavily criticized for continuing 
to observe speci�c rites which contravened the hygiene and distancing directives given in conjunction with the 
pandemic (people in close proximity, using the same spoon and cup for  communion44,45). Starting with March 
23rd, many New York State churches announced suspension of services, or no-attendance  services46.

Our model builds in a relatively small daily church attendance, but also one day per week focused speci�cally 
on such community activity, re�ected into doubled exposure rates at the respective location (from 2β to 4β ) due 
to proximity to others, sharing utensils, etc. We experimented by �rst enforcing stricter separation speci�cally 
during service (lowering the exposure parameter only for the weekly gatherings), which was ine�cient. We then 
completely shut down attendance (by updating the mobility array) at day 25 from the original infection. Figure 6 
shows that completely closing down these events produces a qualitatively similar, but larger e�ect to that of the 
bar and restaurant shutdown, with a lowering and slight shi� in infection curves; it was also accompanied by 
decreasing fatalities across the board for all ages.

While each of these closures considered independently produced a relatively small e�ect on curbing infection 
(hence the number of people in potential need of treatment), as well as on shi�ing the epidemic timeline—they 
become more e�cient when applied in combination. Figure 7 illustrates their compounded contribution to “�at-
tening the curve,” and to a signi�cant reduction of infection, number of recovered individuals and fatalities in all 
age groups. In the context of this outbreak potentially challenging our health care capacity, the decrease in the 
infection maximum value is crucial, but the delay can also be of great practical importance, allowing time for a 

Figure 6.  E�ect of shutting down attendance to religious services. �e le� panel represents the infected 
compartment, the center panel shows the recovered compartment and the right panel, the fatalities. Each age 
group is represented in one color: Children (blue), Young adults (pink), Adults (red) and Elderly (black). �e 
solid curves illustrate the solutions in absence of closures; the dashed curves show the e�ect of the church 
gathering restrictions implemented 25 days a�er infection.

Figure 7.  Cumulative e�ect of realistic closing procedures on the system dynamics. �e le� panel represents 
the infected compartment, the center panel shows the recovered compartment and the right panel, the 
fatalities. Each age group is represented in one color: Children (blue), Young adults (pink), Adults (red) and 
Elderly (black). �e solid curves illustrate the solutions in absence of closures; the dashed curves represent the 
cumulated e�ects of closing the campus at day 10, the school district at day 15, the bars and churches at day 25 
(the approximate timeline of the real life implementations of these closures in New York State).
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more prepared medical response to the occurrence of this maximum. �e signi�cant reduction of the Recovered 
compartment is also clinically relevant, in light of COVID infection being associated with increased risk for 
potentially serious and long-term health problems (the evidence of which is gradually starting to emerge, even 
in completely asymptomatic individuals).

Overall, our model predicted that, in combination, closing access to speci�c destinations can act as a �rst 
step, but could not in and of itself suppress the epidemic outbreak (e.g., the fatality curve is still increasing at the 
end of the 500 day observation interval, as infection persists and even launches into smaller subsequent waves). 
�at is because, even with completely shutting down mobility to speci�c venues, exposure will continue to occur 
at destinations associated with essential needs (food, medicine, medical care), as well as in the residential space. 
�is suggests that control of the outbreak can only be obtained by following an e�cient hygiene and social dis-
tancing protocol when interacting in such spaces. Using our model, we explored the e�ects of practicing social 
distancing in all locations, including in the residential space, in addition to the closure and isolation measures 
that had already been implemented. We modeled this e�ect by reducing the exposure factor β in all locations, 
as shown in Fig. 8. �e simulation suggests that social distancing represents a necessary and e�cient strategy in 
curbing the e�ects of the outbreak. Practically speaking: directly lowering exposure at the remaining locations 
(by allowing ample personal space, wearing masks, and by showing caution and good hygiene when interacting 
with various exposed surfaces) is predicted to be very e�cient, especially in conjunction with the existing reduced 
mobility of the individuals to speci�c locations. While any degree of social distancing leads to improvements in 
the outcome, notice that a 20% reduction in β has a weaker e�ect, and does not completely eliminate the potential 
for secondary waves; in contrast, a 40% reduction is a very e�cient control measure.

Figure 8.  E�ect of exercising social distancing in addition to the existing shutdowns. �e le� panel represents 
the infected compartment, the center panel the recovered, and the right panel, the fatalities. Each age group is 
represented in one color: Children (blue), Young adults (pink), Adults (red) and Elderly (black). �e dashed 
curves illustrate the original predictions; the thin solid curves represent the evolution of the system when the 
value of the exposure parameters were decreased by 20% of the original values, to re�ect the e�ect of social 
distancing at all destinations; the thick solid curves represent a deeper, 40% reduction of β values.

Figure 9.  E�ect of li�ing closures and relaxing social distancing a�er 100 days. From le� to right, the panels 
represent the infected, the recovered and the fatalities compartments. Each age group is represented in one 
color: Children (blue), Young adults (pink), Adults (red) and Elderly (black). �e dashed curves illustrate the 
prediction with closures and social distancing in place. �e thin solid curves illustrate the prediction with both 
closures and social distance restrictions li�ed. �e thick solid curves represent a scenario in which closures are 
li�ed, but social distancing is maintained. In the top panels, β is reduced by 20% with social distancing; in the 
bottom panels, it is reduced by 40%.
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Figure 10.  E�ect of li�ing closures and relaxing social distancing a�er 200 days. From le� to right, the panels 
represent the infected, the recovered and the fatalities compartments. Each age group is represented in one 
color: Children (blue), Young adults (pink), Adults (red) and Elderly (black). �e dashed curves illustrate the 
prediction with closures and social distancing in place. �e thin solid curves illustrate the prediction with both 
closures and social distance restrictions li�ed. �e thick solid curves represent a scenario in which closures are 
li�ed, but social distancing is maintained. In the top panels, β is reduced by 20% with social distancing; in the 
bottom panels, it is reduced by 40%.

Table 3.  Mobility array for Children. Each entry shows which fraction of the Children compartment 
(speci�ed by the row) travels each day to each location (speci�ed by the column).

Doctor Store Church Campus School Park Restaurant

S/R 0.01 0.02 0.1 0 0.5 0.3 0

L/A/P 0.01 0.02 0.1 0 0.5 0.3 0

I 0.2 0 0 0 0.2 0.1 0

D 0 0 0 0 0 0 0

Table 4.  Mobility array for Young adults. Each entry shows which fraction of the Young adult compartment 
(speci�ed by the row) travels each day to each location (speci�ed by the column).

Doctor Store Church Campus School Park Restaurant

S/R 0.01 0.1 0.01 0.4 0.1 0.01 0.3

L/A/P 0.01 0.1 0.01 0.4 0.1 0.01 0.3

I 0.2 0.1 0 0.2 0 0 0.2

D 0 0 0 0 0 0 0

Table 5.  Mobility array for Adults. Each entry shows which fraction of the Adult compartment (speci�ed by 
the row) travels each day to each location (speci�ed by the column).

Doctor Store Church Campus School Park Restaurant

S/R 0.02 0.15 0.15 0.15 0.1 0.15 0.2

L/A/P 0.02 0.15 0.15 0.15 0.1 0.15 0.2

I 0.3 0.1 0.1 0.05 0.05 0 0.1

D 0 0 0 0 0 0 0
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Our �nal analysis consisted of using the model to implement di�erent reopening strategies and timelines. In 
Fig. 9, we compare the outcomes of three di�erent scenarios with the same timeline (reopening at 100 days from 
the start of the epidemic, corresponding broadly to the point when a few states started the reopening process in 
the US). In the top panels, we implemented weaker social distancing (translated in the model by a 20% reduc-
tion in the exposure factor β at all accessible locations); the bottom panels represent the outcome of the same 
reopening schedule, but with a stricter, 40%, social distancing.

One extreme scenario (dotted curves), is to postpone reopening inde�nitely, and continue imposing the 
mobility restrictions, as well as strict (e.g., 40%) social distancing measures. �is scenario delivered, of course, 
the best outcome, but the conditions are unrealistic, and undesirable in the context of optimizing epidemiologi-
cal safety versus economic survival. �e other extreme (dashed curves) was to simultaneously withdraw both 
mobility and social distancing restrictions, and fully reopen on day 100. �is was, of course, the riskiest plan, 
which lead to only slightly �attening the �rst epidemic wave (now delayed by approximately 100 days). As a 
middle ground, we considered the scenario of restoring mobility on day 100, but preserving social distancing.

Even with the weaker social distancing (top panels), the model predicted clear quantitative advantages to 
taking the middle ground versus the riskier path: the infections were substantially curbed (even though not 
as much as with perpetual closures), the recovered population and fatalities were decreased in all age groups. 
When considering the stronger social distancing scheme (bottom panels), the outcomes of the three strategies 
were qualitatively di�erent. With the riskier scenario, the infection wave was again delayed, and in fact even less 
e�ciently suppressed. In contrast, the extreme scenario of perpetual closures and social distancing e�ciently 
controlled the infection, both in terms of size, and of possibility of future waves (subsequent peaks). Interest-
ingly, however, a similar e�ect was obtained by merely sustaining the strict social distancing, but otherwise 
restoring all social mobility to destinations. While restoring mobility slightly raised all curves, it did not do so 
signi�cantly, and, more importantly, it maintained the control of the epidemic (convergence without further 
damped oscillations).

In Fig. 10, we compare the outcomes of the same three scenarios, but with a reopening timeline of 200 days 
from the start of the epidemic (corresponding broadly to the current point, for many communities in the US). 
Notice that, in the case of weaker social distancing (20% reduction in β ), fully reopening at a time when the 
infection is headed down a decreasing slope has the potential to immediately prompt a sharp second spike, 
which would be signi�cantly milder if social distancing were maintained in place. As before, the combination 
of restricted mobility and social distancing are not e�cient when applied for only the limited time (200 days), 
even with strict social distancing. However, prolonging social distancing by itself is enough to e�ciently control 
the epidemic (reduce the size of infected, recovered and fatality compartments and suppress future waves), even 
when mobility is restored.

Discussion
Comments on the model. In this paper, we constructed and brie�y analyzed a compartmental system of 
equations that captures the epidemic dynamics of the ongoing COVID 19 outbreak. In a community including 
people from all age groups, we �rst simulated numerically the e�ects of the social mobility restrictions that were 
mandated in New York State communities upon emergence of the �rst epidemic wave (closing of campuses, 
schools, restaurants, entertainment and spiritual gatherings), with timing matching approximately the average 
time (from the original infection in the community) when these measures were implemented in the �eld. We 
then simulated di�erent reopening timelines and strategies, in search of an optimal combination that would 
restore mobility, yet maintain an adequate level of control of the epidemic.

When simulating the shutting down timeline, we analyzed the e�ect of each measure applied independently, 
and observed e�ects limited in size, and to speci�c age groups. Separately closing the campus, the schools, the 
bars and the churches induced limited e�ect on �attening the infection curve, on reducing the number of exposed 
and then recovered individuals, or on the overall number of fatalities. In addition, closing the campus primarily 
bene�ted young adults; closing schools impacted children; closing the bars was most e�ective for young adults 
and adults, and closing access to group religious services primarily impacted the elderly and the adults, as shown 
by the illustrations of infected, recovered and fatality dynamics. When simulating in the sequence and at the 
approximate timing at which they were implemented, the combination of all these factors signi�cantly a�ected 
all age groups. However, while this strategy alone reduced the potency of the �rst infection wave, it did not 
e�ciently curb the epidemic (our simulations show that it in fact enhanced the possibility of more pronounced 
secondary waves).

We further investigated the e�ects of exercising caution, additional hygiene and social distancing practices 
(such as wearing a mask, disinfecting hands, respecting physical distance to others), both at home and outside 

Table 6.  Mobility array for the Elderly. Each entry shows which fraction of the Elderly compartment 
(speci�ed by the row) travels each day to each location (speci�ed by the column).

Doctor Store Church Campus School Park Restaurant

S/R 0.1 0.2 0.3 0.05 0.05 0.2 0.05

L/A/P 0.1 0.2 0.3 0.05 0.05 0.2 0.05

I 0.4 0.2 0.1 0 0 0 0

D 0 0 0 0 0 0 0
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of the home, by lowering the exposure rates in all locations. Paired with social distancing, the closure strategies 
gained dramatically in e�ciency, even when social distancing was introduced a�er mobility had already been 
reduced (which is a fair representation of the real life implementation). Stricter social distancing measures in 
addition to closures were associated with a signi�cantly improved outcome.

All these simulations, however, consider the unrealistic scenario of maintaining closures in perpetuity. �ese 
were proven to be unrealistic to maintain even over a period of 3–5 months, placing a huge strain on the economy, 
as well as on individuals’ psychological balance and livelihoods. To address the di�cult question regarding the 
best time and conditions of reopening, one needs to weigh the advantages versus the clinical implications. We 
simulated di�erent reopening strategies, while continuing to monitor in particular the same three epidemic 
compartments: the number of infected individuals (measuring symptomatic incidence, and the strain on the 
heath care system); the number of recovered individuals (measuring the virus exposures, symptomatic or not, 
which may lead to further COVID-related health issues in the future); the number of fatalities (measuring the 
overall loss of life produced by the outbreak thus far).

Our simulations considered di�erent reopening times (from an early reopening at 100 days, during the 
upward progression of the �rst epidemic wave, to a later reopening at 200 days, a�er the �rst wave peak had 
time to wane). We also compared full reopening (li�ing both mobility and social distancing restrictions) to the 
strategy of only restoring mobility, and keeping social distancing measures in place. Unsurprisingly, early full 
reopening augmented the �rst wave; later full reopening prompted a signi�cant second wave (if the �rst wave 
had already happened), or allowed the �rst wave to fully develop (in case stricter conditions had kept it in check 
thus far). Either way, full reopening did not do justice to the e�orts already invested in controlling the epidemic, 
and led to long-term outcomes comparable in size to those that could have been obtained with little to no control 
in the �rst place. In contrast, our model predicts that reopening with social distancing is a much more e�cient 
strategy, which maintains a level of control of the epidemic qualitatively comparable with that obtained with no 
reopening. �is option also builds upon the e�ciency of past measures: the prognosis is better if stricter social 
distancing had already been practiced, and the control increases with the length of time spent in lockdown.

Curbing population mobility, locally as well as globally, is a necessary and typical �rst response in the face 
of a pandemic. However, it cannot constitute a long-term plan in and o� itself, since it con�icts with economic 
and societal needs. Upon emergence of the COVID 19 outbreak, a lot of weight has been placed on reducing 
population tra�c to various destinations, and a lot of controversy has occurred around the necessity of such 
measures. As it began to appear that the epidemic was going to stay for the long haul, there has been a change in 
focus around measures that can maintain control of the outbreak, yet can be more easily maintained in the long 
term, such as social distancing. While social distancing measures have not been free of debate, they are clearly a 
more sustainable strategy, with minimal detrimental e�ects on economy or social life. Our study strongly sup-
ports the idea that collectively abiding by strict social distancing rules can e�ciently limit epidemic growth, even 
with full mobility, and even if these rules had not been strictly followed to the present day. �e optimal course 
suggested by our model towards accomplishing epidemic control without the huge economic and societal burden 
of an extended lockdown is that of maintaining strict social distancing regulations until a clinical treatment or 
prevention plan is in place.

Limitations and further work. �e model is intrinsically limited by attempting to capture social dynam-
ics via an epidemic compartmental model. �is ignores details such as household structure, and other contact 
patterns, which are crucial in the spread of a virus (e.g., one infected member of a household is more likely to 
infect all other members). One line of our future work is directed towards studying similar behaviors in contact 
networks, and matching dynamics with the mean �eld information that a compartmental model provides.

Other limitations come from the gaps in the clinical and epidemiological knowledge we posses about COVID 
19. Both our knowledge of the epidemic parameters, and some of the characteristics of the SARS-COV2 virus 
are constantly changing. �is non-stationarity makes it additionally di�cult to capture updated snapshots, and 
produce testable predictions. We aimed to build our model speci�cally enough to apply to the clinical and social 
data pertinent to the current epidemic, while keeping it su�ciently robust to generate general predictions that 
can be easily adapted to the rapid �uctuations in data trends.

For future iterations of the model, we are working on including the time-depending aspect in the epidemic 
parameters, and on incorporating some of the known feedback loops that contribute to the complexity of this 
system. One speci�c goal of our future modeling will be to study the e�ciency of testing and contact tracing 
(which permits early detection, and adequate reduction in the travel vector of infected, and even exposed indi-
viduals). Another important aspect we are adding to the model is the feedback introduced by reaching the health 
care capacity at very high infection counts (which is likely to impact the recovery versus fatality rates). Finally, 
a signi�cant feedback contribution comes from the psychological e�ects. One obvious example is “tolerance:” 
people may be inclined to loosen isolation measures in absence of an immediate epidemic threat, thus contribut-
ing to increasing this very threat.

Finally, one very important point for future study is the network aspect. Many communities already struggling 
with increasing infection spread are subject to additional exposure by individuals arriving from other locations 
and then acting as super-spreaders in the system. �is has been happening throughout the course of the infec-
tion, but is an even higher source of concern a�er reopening has restored mobility (including to large meetings), 
and travel now occurs relatively unrestricted between US states, and even internationally to some extent. One 
aspect of our future work is focused on extending this modeling framework to multiple coupled communities, 
and on aiming to understand how social distancing and behavior patterns within and between communities can 
a�ect the spread in the network as a whole.
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Appendix A: Mobility matrix
Our simulation considered a community with Monday-Saturday social dynamics speci�ed by the set of mobility 
matrices below. On Sunday, the dynamics is simply characterized by 60% of people in the S, E and I compart-
ments and all age groups attending a religious/social gathering, and no additional travel to other destinations.
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