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�e explosion of the data both in the biomedical research and in the healthcare systems demands urgent solutions. In particular,
the research in omics sciences is moving from a hypothesis-driven to a data-driven approach. Healthcare is additionally always
asking for a tighter integration with biomedical data in order to promote personalized medicine and to provide better treatments.
E	cient analysis and interpretation of Big Data opens new avenues to explore molecular biology, new questions to ask about
physiological and pathological states, and new ways to answer these open issues. Such analyses lead to better understanding of
diseases and development of better and personalized diagnostics and therapeutics. However, such progresses are directly related
to the availability of new solutions to deal with this huge amount of information. New paradigms are needed to store and access
data, for its annotation and integration and 
nally for inferring knowledge and making it available to researchers. Bioinformatics
can be viewed as the “glue” for all these processes. A clear awareness of present high performance computing (HPC) solutions in
bioinformatics, Big Data analysis paradigms for computational biology, and the issues that are still open in the biomedical and
healthcare 
elds represent the starting point to win this challenge.

1. Introduction

�e increasing availability of omics data resulting from
improvements in the acquisition of molecular biology results
and in systems biology simulation technologies represents an
unprecedented opportunity for bioinformatics researchers,
but also a major challenge. A similar scenario arises for the
healthcare systems, where the digitalization of all clinical
exams and medical records is becoming a standard in
hospitals. Such huge and heterogeneous amount of digital
information, nowadays called BigData, is the basis for uncov-
ering hidden patterns in data, since it allows the creation of
predictive models for real-life biomedical applications. But
themain issue is the need of improved technological solutions
to deal with them.

A simple de
nition of Big Data is based on the concept of
data sets whose size is beyond the management capabilities
of typical relational database so�ware. A more articulated
de
nition of Big Data is based on the three versus paradigm:
volume, variety, and velocity [1]. �e volume recalls for novel
storage scalability techniques and distributed approaches for
information query and retrieval. �e second V, the variety
of the data source, prevents the straightforward use of neat
relational structures. Finally, the increasing rate at which data
is generated, the velocity, has followed a similar pattern as
the volume.�is “need for speed,” particularly forweb-related
applications, has driven the development of techniques based
on key-value stores and columnar databases behind portals
and user interfaces, because they can be optimized for the
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fast retrieval of precomputed information. �us, smart inte-
gration technologies are required for merging heterogeneous
resources: promising approaches are the use of technolo-
gies relying on lighter placement with respect to relational
databases (i.e., NoSQL databases) and the exploitation of
semantic and ontological annotations.

Although the Big Data de
nition can still be considered
quite nebulous, it does not represent just a keyword for
researchers or an abstract problem: the USA Administration
launched a 200 million dollar “Big Data Research and Devel-
opment Initiative” in March 2012, with the aim to improve
tools and techniques for the proper organization, e	cient
access, and smart analysis of the huge volume of digital data
[2]. Such a high amount of investments is justi
ed by the
bene
t that is expected from processing the data, and this is
particularly true for omics science. A meaningful example is
represented by the projects for population sequencing. �e

rst one is the 1000 genomes [3], which provides researchers
with an incredible amount of raw data. �en, the ENCODE
project [4], a follow-up to the Human Genome Project
(Genomic Research) [5], is having the aim of identifying
all functional elements in the human genome. Presently,
this research is moving at a larger scale: as clearly appears
considering the Genome 10K project [6] and the more recent
100K Genomes Project [7]. Just to provide an order of
magnitude, the amount of data produced in the context of the
1000Genomes Project is estimated in 100 Terabytes (TB), and
the 100K Genomes Project is likely to produce 100 times such
data.�e targeting cost for sequencing a single individual will
reach soon $1000 [8], which is a�ordable not only for large
research projects but also for individuals. We are running
into the paradox that the cheapest solution to cope with these
data will be to resequence genomes when analyses are needed
instead of storing them for future reuse [9].

Storage represents only one side of the medal. �e 
nal
goal of research activities in omics sciences is to turn such
amount of data into usable information and real knowledge.
Biological systems are very complex, and consequently the
algorithms involved in analysing them are very complex as
well. �ey still require a lot of e�ort in order to improve their
predictive and analytical capabilities. �e real challenge is
represented by the automatic annotation and/or integration
of biological data in real-time, since the objective to reach is
to understand them and to achieve the most important goal
in bioinformatics: mining information.

In this work we present a brief review of the technological
aspects related to BigData analysis in biomedical informatics.
�e paper is structured as follows. In Section 2 architec-
tural solutions for Big Data are described, paying particular
attention to the needs of the bioinformatics community.
Section 3 presents parallel platforms for BigData elaboration,
while Section 4 is concerned with the approaches for data
annotation, speci
cally considering the methods employed
in the computational biology 
eld. Section 5 introduces data
access measures and security for biomedical data. Finally,
Section 6 presents some conclusions and future perspective.
A Tag Crowd diagram of the concepts presented in the paper
is shown in Figure 1.

2. Big Data Architectures

Domains concerned with data-intensive applications have in
common the abovementioned three versus, even though the
actual way by which this information is acquired, stored,
and analysed can vary a lot from 
eld to 
eld. �e main
common aspect is represented by the requirements for the
underlying IT architecture. �e mere availability of disk
arrays of several hundreds of TBs is in fact not su	cient,
because the access to the data will have, statistically, some
fails [10]. �us, reliable storage infrastructures have to be
robust with respect to these problems. Moreover, the analysis
of Big Data needs frequent data access for the analysis and
integration of information, resulting in considerable data
transfer operations. Even though we can assume the presence
of a su	cient amount of bandwidth inside a cluster, the use
of distributed computing infrastructure requires adopting
e�ective solutions. Other aspects have also to be addressed,
as secure access policies to both the raw data and the
derived results. Choosing a speci
c architecture and building
an appropriate Big Data system are challenging because of
diverse heterogeneous factors. All the major vendors as IBM
[11], Oracle [12], andMicroso� [13] propose solutions (mostly
business-oriented) based on their so�ware ecosystems. Here
we will discuss the major architectural aspects taking into
account open source projects and scienti
c experiences.

2.1. Managing and Accessing Big Data. �e 
rst and obvious
concern with Big Data is the volume of information that
researchers have to face, especially in bioinformatics. At
lower level this is an IT problem of 
le systems and storage
reliability, whose solution is not obvious and not unique.
Open questions are what 
le system to choose and will the
network be fast enough to access this data. �e issue arising
in data access and retrieval can be highlighted with a simple
consideration [14]: scanning data on a modern physical hard
disk can be done with a throughput of about 100Megabytes/s.
�erefore, scanning 1 Terabyte takes 5 hours and 1 Petabyte
takes 5000 hours. �e Big Data problem does not only rely
in archiving and conserving huge quantity of data. �e real
challenge is to access such data in an e	cient way, applying
massive parallelism not only for the computation, but also for
the storage.

Moreover, the transfer rate is inversely proportional to
the distance to cover. HPC clusters are typically equipped
with high-level interconnections as In
niBand, which have
a latency of 2000 ns (only 20 times slower than RAM and 200
times faster than a Solid State Disk) and data rates ranging
from 2.5 Gigabit per second (Gbps) with a single data rate
link (SDR), up to 300Gbps with a 12-link enhanced data
rate (EDR) connection. But this performance can only be
achieved on a LAN, and the real problems arise when it is
necessary to transfer data between geographically distributed
sites, because the Internet connection might not suitable to
transfer Big Data. Although several projects, such GÉANT
[15], the pan-European research and education network,
and its US counterpart Internet2 [16], have been funded
to improve the network interconnections among states; the
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Figure 1: Tag Crowd of the concepts presented in the paper.

achievable bandwidth is insu	cient. For example, BGI, the
world largest genomics service provider, uses FedEx for
delivering results [17].

If a local infrastructure is exploited for the analysis of
Big Data, one e�ective solution is represented by the use of
client/server architectures where the data storage is spread
among several devices and made accessible through a (local)
network. �e available tools can be mainly subdivided in
distributed �le systems, cluster �le systems, and parallel �le sys-
tems. Distributed 
le systems consist of disk arrays physically
attached to a few I/O servers through fast networks and then
shared to the other nodes of a cluster. In contrast, cluster �le
systems provide direct disk access from multiple computers
at the block level (access control must take place on the client
node). Parallel �le systems are like cluster �le systems, where
multiple processes are able to concurrently read and write
a single 
le, but exploit a client-server approach, without
direct access to the block level. An exhaustive taxonomy and
a survey are provided in [18].

Two of the highest performance parallel 
le systems are
the General Parallel File System (GPFS) [19], developed by
IBM, and Lustre [20], an open source solution. Most of
the supercomputers employ them: in particular, Lustre is
used in Titan, the second supercomputer of the TOP500 list
(November 2013) [21]. �e Titan storage subsystem contains
20,000 disks, resulting in 40 Petabyte of storage and about
1 Terabyte/sec of storage bandwidth. As regards GPFS, it was
recently exploited within the Elastic Storage [22], the IBM
le
management solution working as a control plane for smart
data handling. �e so�ware can automatically move less
frequently accessed data to the less expensive storage available
in the infrastructure, while leaving faster andmore expensive
storage resources (i.e., SSD disk or �ash) for more important
data. �e management is guided by analytics, using patterns,
storage characteristics, and the network to determine where
to move the data.

A di�erent solution is represented by the Hadoop Dis-
tributed File System (HDFS) [23], a Java-based 
le sys-
tem that provides scalable and reliable data storage that is
designed to span large clusters of commodity servers. It is an
open source version of the GoogleFS [24] introduced in 2003.
�e design principles were derived from Google’s needs, as
the fact that most 
les only grow because new data have
to be appended, rather than overwriting the whole 
le, and
that high sustained bandwidth is more important than low
latency. As regards I/O operations, the key aspects are the
e	cient support for large streaming or small random reads,
besides large and sequential writes to append data to 
les.
�e other operations are supported as well, but they can be
implemented in a less e	cient way.

At the architectural level, HDFS requires two processes:
a NameNode service, running on one node in the cluster and
a DataNode process running on each node that will process
data. HDFS is designed to be fault-tolerant due to replication
and distribution of data, since every loaded 
le is replicated
(3 times is the default value) and split into blocks that are
distributed across the nodes. �e NameNode is responsible
for the storage andmanagement of metadata, so that when an
application requires a 
le, the NameNode informs about the
location of the needed data. Whenever a data node is down,
the NameNode can redirect the request to one of the replicas
until the data node is back online. Since the cluster size can
be very large (it was demonstrated with clusters up to 4,000
nodes), the single NameNode per cluster forms a possible
bottleneck and single point of failure.�is can bemitigated by
the fact that metadata can be stored in the main memory and
the recent HDFS High Availability feature provides the user
with the option of running two redundantNameNodes in the
same cluster, one of them in standby, but ready to intervene
in case of failure of the other.
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2.2. Middleware for Big Data. �e 
le system is the 
rst
level of the architecture. �e second level corresponds to the
framework/middleware supporting the development of user-
speci
c solutions, while applications represent the third level.
Besides the general-purpose solutions for parallel computing
like the Message Passing Interface [25], hybrid solutions
based on it [26, 27], or extension to speci
c frameworks like
the R so�ware environment for statistical computing [28],
there are several tools speci
cally developed for Big Data
analysis.

�e 
rst and more famous example is the abovemen-
tioned Apache Hadoop [23], an open source so�ware frame-
work for large-scale storing and processing of data sets on
distributed commodity hardware. Hadoop is composed of
two main components, HDFS and MapReduce. �e latter
is a simple framework for distributed processing based on
theMap and Reduce functions, commonly used in functional
programming. In the Map step the input is partitioned by a
master process into smaller subproblems and then distributed
to worker processes. In the Reduce step the master process
collects the results and combines them in some way to
provide the answer to the problem it was originally trying to
solve.

Hadoop was designed as a platform for an entire ecosys-
tem of capabilities [29], used in particular by a large number
of companies, vendors, and institutions [30]. To provide an
example in the bioinformatics 
eld, in �e Cancer Genome
Atlas project researchers implemented the process of “shard-
ing,” splitting genome data into smaller more manageable
chunks for cluster-based processing, utilising the Hadoop
framework and the Genome Analysis Toolkit (GATK) [31,
32]. Many other works based on Hadoop are present in
literature [33–36]; for example, some speci
c libraries were
developed as Hadoop-BAM, a library for distributed process-
ing of genetic data from next generation sequencer machines
[37], and Seal, a suite of distributed applications for aligning
short DNA reads, manipulating short read alignments, and
analyse the achieved results [38], was also developed relying
on this framework.

Hadoop was the basis for other higher-level solutions as
Apache Hive [39], a distributed data warehouse infrastruc-
ture for providing data summarization, query, and analysis.
Apache Hive supports analysis of large datasets stored in
HDFS and compatible 
le systems such as the Amazon S3

le system. It provides an SQL-like language called HiveQL
while maintaining full support for map/reduce. To accelerate
queries, it provides indexes, including bitmap indexes, and
it is worth exploiting in several bioinformatics applications
[40]. Apache Pig [41] has the similar aim to allow domain
experts, who are not necessarily IT specialists, to write com-
plex MapReduce transformations using a simpler scripting
language. It was used for example for sequence analysis [33].

Hadoop is considered almost as synonymous for Big
Data. However, there are some alternatives based on the
same MapReduce paradigm like Disco [42], a distributed
computing framework aimed at providing a MapReduce
platform for Big Data processing using Python application,
that can be coupled with the Biopython toolkit [43] of the
Open Bioinformatics Foundation, Storm [44], a distributed

real-time computation system for processing fast, and large
streams of data and proprietary systems, for example, from
So�ware AG, LexisNexis, and ParStream (see their websites
for more information).

3. Computational Facilities for
Analysing Big Data

�e traditional platforms for operating the so�ware frame-
works that facilitate Big Data analysis are HPC clusters,
possibly accessed via grid computing infrastructures [45].
Such approach has however the possible drawback to provide
an insu	cient possibility to customize the computational
environment if the computing facilities are not owned by
the scientists that will analyze the data. �is is one of
the reasons why cloud computing services increased their
importance as economic solutions to perform large-scale
analysis on an as-needed basis, in particular for medium-
small laboratories that cannot a�ord the cost to buy and
maintain a su	ciently powerful infrastructure [46]. In this
sectionwewill very brie�y reviewbioinformatics applications
or projects exploiting these platforms.

3.1. Cluster Computing. �e data parallel approach, that is,
the parallelization paradigm that subdivides the data to
analyse among almost independent processes, is a suitable
solution for many kinds of Big Data analysis that results in
high scalability and performance 
gures.�e key issues while
developing applications using data parallelism are the choice
of the algorithm, the strategy for data decomposition, load
balancing among possibly heterogeneous computing nodes,
and the overall accuracy of the results [47].

An example of Big Data analysis based on this approach
in the 
eld of bioinformatics concerns the de novo assembly
algorithms, which typically work 
nding the fragments that
“overlap” in the sequenced reads and recording these overlaps
in a huge diagram called de Bruijn (or assembly) graph [48].
For a large genome, this graph can occupy many Terabytes of
RAM, and completing the genome sequence can require days
of computation on a world-class supercomputer. �is is the
reason why memory distributed approaches, such as Abyss
[49], are now widely exploited, although the implementation
of e	cient multisever approaches has required huge e�ort
and is still under active development.

Generally, we can say that data parallel approaches are
straightforward solutions for inferring correlations, but not
for causality. In these cases semantics and ontological tech-
niques are of particular importance, as those described in
Section 4.

3.2. GPU Computing. HPC technologies are the forefront of
accelerated data analysis revolutions, making it possible to
carry out processing breakthroughs that would directly trans-
late into real bene
ts for the society and the environment.
�e use of accelerator devices such as GPUs represents a cost-
e�ective solution able to support up to 11.5 Tera�ops within
a single device (i.e., the AMD Radeon R9 295X2 graphics
card) at about $1,500. Moreover, large clusters are adopting
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the use of these relatively inexpensive and powerful devices
as a way of accelerating parts of the applications they are
running. Presently, most of the top 10 systems from the
TOP500 list (November 2013) are equippedwith accelerators,
and in particular Titan, the second system in the list, achieved
17.59 PetaFlop on the Linpack benchmark also thanks to its
18,688 Nvidia Tesla K20 devices.

Driven by the demand of the game industry, GPUs have
completed a steady transition from mainframes to worksta-
tions PC cards, where they emerge nowadays like a solid and
compelling alternative to traditional computing platforms.
GPUs deliver extremely high �oating-point performance and
massively parallelism at a very low cost, thus promoting a
new concept of the high performance computing market.
For example, in heterogeneous computing, processors with
di�erent characteristics work together to enhance the appli-
cation performance taking care of the power budget.�is fact
has attracted many researchers and encouraged the use of
GPUs in a broader range of applications, particularly in the

eld of bioinformatics. Developers are required to leverage
this new landscape of computation with new programming
models, which ease the developers task of writing programs
to run e	ciently on such platforms altogether [50].

�e most popular microprocessor companies such as
NVIDIA, ATI/AMD, or Intel, have developed hardware
products aimed speci
cally at the heterogeneous ormassively
parallel computingmarket: Tesla products are fromNVIDIA,
Fire-stream is the AMDs device line, and Intel Xeon Phi
comes from Intel. �ey have also released so�ware compo-
nents, which provide simpler access to this computing power.
CUDA (Compute Uni
ed Device Architecture) is NVIDIAs
solution as a simple block-based API for programming;
AMDs alternative was called Stream Computing, while Intel
relies directly on X86-based programming. OpenCL [51]
emerged as an attempt to unify all of these models with
a superset of features, being the best broadly supported
multiplatform data parallel programming interface for het-
erogeneous computing, including GPUs, accelerators, and
similar devices.

Although these e�orts in developing programming mod-
els have made great contributions to leverage the capa-
bilities of these platforms, developers have to deal with a
massively parallel andhigh-throughput-oriented architecture
[52], which is quite di�erent than traditional computing
architectures. Moreover, GPUs are being connected with
CPUs through PCI Express bus to build heterogeneous par-
allel computers, presenting multiple independent memory
spaces, a wide spectrum of high speed processing functions,
and some communication latencies between them. �ese
issues drastically increase scaling to a GPU cluster, bringing
additional sources of complexity and latency. �erefore,
programmability on these platforms is still a challenge, and
thus many research e�orts have provided abstraction layers
avoiding dealing with the hardware particularities of these
accelerators and also extracting transparently high level of
performance, providing portability across operating systems,
host CPUs, and accelerators. For example, libraries and
interfaces exist for developing with popular programming
languages like OMPSs for OpenMP or OpenACCAPI, which

describes a collection of compiler directives to loops speci
c
regions of code in standard programming languages such
as C, C++, or Fortran. Although the complexity of these
architectures is high, the performance that such devices are
able to provide justi
es the great interest and e�orts in porting
bioinformatics application on them [53].

3.3. Xeon Phi. Based on Intel’s Many Integrated Core (MIC)
x86-based architecture, Intel Xeon Phi coprocessors provide
up to 61 cores and 1.2 Tera�ops of performance.�ese devices
equip the 
rst supercomputer of the TOP500 list (November
2013), Tianhe-2. In terms of usability, there are two ways an
application can use an Intel Xeon Phi: in o�oad mode or in
nativemode. In o�oadmode themain application is running
on the host, and it only o�oads selected (highly parallel,
computationally intensive) work to the coprocessor. In native
mode the application runs independently, on the Xeon Phi
only, and can communicate with the main processor or other
coprocessors through the system bus.

�e performance of these devices heavily depends on
how well the application 
ts the parallelization paradigm of
the XeonPhi and in relation to the optimizations that are
performed. In fact, since the processors on the Xeon Phi
have a lower clock frequency with respect to the common
Intel processor unit (such as for example the Sandy Bridge),
applications that have long sequential part of the algorithm
are absolutely not suitable for the native mode. On the other
hand, even if the programming paradigm of these devices is
standard C/C++, which makes their use simpler with respect
to the necessity of exploiting a di�erent programming lan-
guage such as CUDA, in order to achieve good performance,
the code must be heavily optimized to 
t the characteristics
of the coprocessor (i.e., exploiting optimizations introduced
by the Intel compiler and the MKL library).

Looking at the performance tests released by Intel [54],
the baseline improvement of supporting two Intel Sandy
Bridge by o�oading the heavy parallel computational to
an Intel Xeon Phi gives an average improvement of 1.5 in
the scalability of the application that can reach up to 4.5
of gain a�er a strong optimization of the code. For exam-
ple, considering typical tools for bioinformatics sequence
analysis: BWA (Burrows-Wheeler Alignment) [55] reached
a baseline improvement of 1.86 and HMMER of 1.56 [56].
With a basic recompilation of Blastn for the Intel Xeon Phi
[57] there is an improvement of 1.3, which reaches 4.5 a�er
somemodi
cations to the code in order to improve the paral-
lelization approach. Same scalability 
gures for Abyss, which
scales 1.24 with a basic porting and 4.2 with optimizations
in the distribution of the computational load. Really good
performance is achieved for Bowtie, which improves the code
passing from a scalability of 1.3 to 18.4.

Clearly, the real competitors of the Intel Xeon Phi are
the GPUs devices. At the moment, the comparison between
the best devices provided by Intel—Xeon Phi 7100—and
Nvidia—K40—shows that the GPU is on average 30% more
performing [58], but the situation can vary in the future.
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3.4. Cloud Computing. Advances in life sciences and infor-
mation technology bring profound in�uences on bioinfor-
matics due to its interdisciplinary nature. For this reason,
bioinformatics is experiencing a new trend in theway analysis
is performed: computation is moving from in-house com-
puting infrastructure to cloud computing delivered over the
Internet. �is has been necessary in order to handle the vast
quantities of biological data generated by high-throughput
experimental technologies. Cloud computing in particular
promises to address Big Data storage and analysis issues in
many 
elds of bioinformatics. But moving data to the cloud
can also be a problem; so hybrid solutions of cloud computing
are arising.�e point can be summarized as follows: data that
is too big to be processed conventionally is also too big to
be transported anywhere. IT is undergoing an inversion of
priorities: the code to perform the analysis has to be moved,
not the data.Virtualization represents an enabling technology
to achieve this result.

One of the most famous free portal/so�ware for the
analysis of bioinformatics data, Galaxy by the Penn state
University, is available on cloud [59]. �e idea is that with
sporadic availability of data, individuals and labs may have
a need to, over a period of time, process greatly variable
amounts of data. Such variability in data volume imposes
variable requirements on availability of compute resources
used to process given data. Rather than having to purchase
and maintain desired compute resources or having to wait a
long time for data processing jobs to complete, the Galaxy
Team has enabled Galaxy to be instantiated on cloud com-
puting infrastructures, primarily Amazon Elastic Compute
Cloud (EC2). An instance of Galaxy on the cloud behaves
just like a local instance of Galaxy except that it o�ers the
bene
ts of cloud computing resource availability and pay-as-
you-go resource ownership model. Having simple access to
Galaxy on the cloud enables asmany instances ofGalaxy to be
acquired and started as is needed to process given data. Once
the need subsides, those instances can be released as simply as
they were acquired. With such a paradigm, one pays only for
the resources they need and use, while all the other concerns
and costs are eliminated.

For a complete review on bioinformatics clouds for Big
Data manipulation, see [60]. Concerning the exploitation of
cloud computing to cope with the data �ow produced by
high-throughput molecular biology technologies, see [61].

4. Semantics, Ontologies, and Open
Format for Data Integration

�e previous sections focused mainly on how to analyse Big
Data for inferring correlations, but the extraction of actual
new knowledge requires somethingmore.�e key challenges
in making use of Big Data lie, in fact, in 
nding ways of
dealing with heterogeneity, diversity, and complexity of the
information, while its volume and velocity hamper solutions
are available for smaller datasets such as manual curation or
data warehousing.

Semantic web technologies are meant to deal with these
issues. �e development of metadata for biological informa-
tion on the basis of semantic web standards can be seen as
a promising approach for a semantic-based integration of
biological information [62]. On the other hand, ontologies,
as formal models for representing information with explicitly
de
ned concepts and relationships between them, can be
exploited to address the issue of heterogeneity in data sources.

In domains like bioinformatics and biomedicine, the
rapid development and adoption of ontologies [63] prompted
the research community to leverage them for the integration
of data and information. Finally, since the advent of linked
data a few years ago, it has become an important technology
for semantic and ontologies research and development. We
can easily understand linked data as being a part of the
greater Big Data landscape, as many of the challenges are the
same. �e linking component of linked data, however, puts
an additional focus on the integration and con�ation of data
across multiple sources.

4.1. Semantics. �e semantic web is a collaborative move-
ment, which promoted standard for the annotation and
integration of data. By encouraging the inclusion of semantic
content in data accessible through the Internet, the aim is
to convert the current web, dominated by unstructured and
semistructured documents, into a web of data. It involves
publishing information in languages speci
cally designed
for data: Resource Description Framework (RDF), Web
Ontology Language (OWL), SPARQL (which is a protocol
and query language for semantic web data sources), and
Extensible Markup Language (XML) [64].

RDF represents data using subject-predicate-object
triples, also known as “statements.” �is triple representation
connects data in a �exible piece-by-piece and link-by-link
fashion that forms a directed labelled graph.�e components
of each RDF statement can be identi
ed using Uniform
Resource Identi
ers (URIs). Alternatively, they can be
referenced via links to RDF Schemas (RDFS), Web Ontology
Language (OWL), or to other (nonschema) RDF documents.
In particular, OWL is a family of knowledge representation
languages for authoring ontologies or knowledge bases.
�e languages are characterised by formal semantics and
RDF/XML-based serializations for the semantic web. In
the 
eld of biomedicine, a notable example is the Open
Biomedical Ontologies (OBO) project, which is an e�ort
to create controlled vocabularies for shared use across
di�erent biological and medical domains. OBO belongs to
the resources of the U.S. National Center for Biomedical
Ontology (NCBO), where it will form a central element of
the NCBO’s BioPortal. �e interrogation of these resources
can be performed using SPARQL, which is an RDF query
language similar to SQL, for the interrogations of databases,
able to retrieve and manipulate data stored in RDF format.
For example, BioGateway [65] organizes the SwissProt
database, along with Gene Ontology Annotations (GOA),
into an integrated RDF database that can be accessed through
a SPARQL query endpoint, allowing searches for proteins
based on a combination of GO and SwissProt data.
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�e support for RDF in high-throughput bioinformatics
applications is still small, although researchers can already
download the UniProtKB and its taxonomy information
using this format or they can get ontologies in OWL for-
mat, such as GO [66]. �e biggest impact RDF and OWL
can have in bioinformatics, though, is to help integrate all
data formats and standardise existing ontologies. If unique
identi
ers are converted to URI references, ontologies can
be expressed in OWL, and data can be annotated via these
RDF-based resources. �e integration between them is a
matter of merging and aligning the ontologies (in case of
OWL using the “rdf:sameAs” statement). A�er the data
has been integrated we can use the plus that comes with
RDF for reasoning: context embeddedness. Organizations
in the life sciences are currently using RDF for drug target
assessment [67, 68], and for the aggregation of genomic data
[69]. In addition, semantic web technologies are being used
to develop well-de
ned and rich biomedical ontologies for
assisting data annotation and search [70, 71], the integration
of rules to specify and implement bioinformatics work�ows
[72], and the automation for discovering and composing
bioinformatics web services [73].

4.2. Ontologies. An ontology layer is o�en an invaluable
solution to support data integration [74], particularly because
it enables the mapping of relations among data stored in a
database. Belonging to the 
eld of knowledge representation,
an ontology is a collection of terms within a particular
domain organised in a hierarchical structure that allows
searching at various levels of speci
city. Ontologies provide
a formal representation of a set of concepts through the
description of individuals, which are the basic objects, classes,
that are the categories which objects belong to, attributes,
which are the features the objects can present, and relations,
that are the ways objects can be related to one another. Due
to this “tree” (or, in some cases, “graph”) representation,
ontologies allow the link of terms from the same domain,
even if they belong to di�erent sources in data integration
contexts, and the e	cient matching of apparently diverse and
distant entities. �e latter aspect can not only improve data
integration, but even simplify the information searching.

In the biomedical context a common problem concerns,
for example, the generality of the term cancer [75]. A direct
query on that term will retrieve just the speci
c word in all
the occurrences found into the screened resource. Employing
a specialised ontology (i.e., the human disease ontology—
DOID) [76] the output will be richer, including terms such as
sarcoma and carcinoma that will not be retrieved otherwise.
Ontology-based data integration involves the use of ontolo-
gies to e�ectively combine data or information frommultiple
heterogeneous sources [63]. �e e�ectiveness of ontology-
based data integration is closely tied to the consistency and
expressivity of the ontology used in the integration process.
Many resources exist that have ontology support: SNPranker
[77], G2SBC [78], NSD [79], TMARepDB [80], Surface [81],
and Cell cycle DB [82].

A useful instrument for ontology exploration has been
developed by the European Bioinformatics Institute (EBI),

which allows easily visualising and browsing ontologies in
the OBO format: the open source Ontology Lookup Service
(OLS) [83]. �e system provides a user-friendly web-based
single point to look into the ontologies for a single speci
c
term that can be queried using a useful autocompletion
search engine. Otherwise it is possible to browse the complete
ontology tree using an Ajax library, querying the system
through a standard SOAP web service described by a WSDL
descriptor.

�e following ontologies are commonly used for annota-
tion and integration of data in the biomedical and bioinfor-
matics.

(i) Gene ontology (GO) [84], which is themost exploited
multilevel ontology in the biomolecular domain.
It collects genome and proteome related informa-
tion in a graph-based hierarchical structure suitable
for annotating and characterising genes and pro-
teins with respect to the molecular function (i.e.,
GO:0070402: NADPH binding) and biological pro-
cess they are involved in (i.e., GO:0055114: oxidation
reduction), and the spatial localisation they present
within a cell (i.e., GO:0043226: organelle).

(ii) KEGG ontology (KOnt), which provides a pathway
based annotation of the genes in all organisms. No
OBO version of this ontology was found, since it has
been generated directly starting from data available in
the related resource [85].

(iii) Brenda Tissue Ontology (BTO) [86], to support the
description of human tissues.

(iv) Cell Ontology (CL) [87], to provide an exhaustive
organisation about cell types.

(v) Disease ontology (DOID) [76], which focus on the
classi
cation of breast cancer pathology compared to
the other human diseases.

(vi) Protein Ontology (PRO) [88], which describes the
protein evolutionary classes to delineate the multiple
protein forms of a gene locus.

(vii) Medical Subject Headings thesaurus (MESH) [89],
which is a hierarchical controlled vocabulary able to
index biomedical and health-related information.

(viii) Protein structure classi
cation (CATH) [90], which is
a structured vocabulary used for the classi
cation of
protein structures.

4.3. Linked Data. Linked data describes a method for pub-
lishing structured data so that they can be interlinked,
making clearer the possible interdependencies. �is technol-
ogy is built upon the semantic web technologies previously
described (in particular it uses HTTP, RDF, and URIs), but
rather than using them to serve web pages for human readers,
it extends them to share information in a way that can be read
automatically by IT systems.

�e linked data paradigm is one approach to cope with
Big Data as it advances the hypertext principle from a web of
documents to a web of rich data.�e idea is that a�er making
data available on theweb (in an open format andwith an open
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license) and structuring them in a machine-readable fashion
(e.g., Excel instead of image scan of a table), researchers must
work to annotate this information with open standards from
W3C (RDF and SPARQL), so that people can link their own
data to other people’s data to provide context information.

In the 
eld of bioinformatics, a 
rst attempt to publish
linked data has been performed by the Bio2RDF project
[91]. �e project’s goal is to create a network of coherently
linked data across the biological databases. As part of the
Bio2RDF project, an integrated bioinformatics warehouse on
the semantic web has been built. Bio2RDF has created a RDF
warehouse that serves over 70 million triples describing the
human and mouse genomes [92].

A very important step towards the use of linked data
in the computational biology 
eld has been done by the
abovementioned EBI [93], which developed an infrastructure
to access its information by exploiting this paradigm. In
detail, the EBI RDF platform allows explicit links to be
made between datasets using shared semantics from standard
ontologies and vocabularies, facilitating a greater degree of
data integration. SPARQL provides a standard query lan-
guage for querying RDF data. Data that have been annotated
using ontologies, such asDOIDand theGO, can be integrated
with other community datasets, providing the semantics
support to perform rich queries. Publishing such datasets as
RDF, along with their ontologies, provides both the syntactic
and semantic integration of data, long promised by semantic
web technologies. As the trend toward publishing life science
data in RDF increases, we anticipate a rise in the number of
applications consuming such data. �is is evident in e�orts
such as the Open PHACTS platform [94] and the AtlasRDF-
R package [95]. �e 
nal aim is that EBI RDF platform can
enable such applications to be built by releasing production
quality services with semantically described RDF, enabling
real biomedical use cases to be addressed.

5. Data Access and Security

Besides improving the search capabilities via ontologies,
metadata, and linked data for accessing data e	ciently, the
usability aspect is also a fundamental topic for Big Data.
Scientists want to focus on their speci
c research while
creating and analysing data without the need to know all the
low-level burdens related to the underlying datamanagement
infrastructures. �is demand can be addressed by science
gateways that are single points of entry to applications
and data across organizational boundaries. Data security is
another aspect that must be addressed when providing access
to Big Data, in particular while working in the healthcare
sector.

5.1. Science Gateways. �e overall goal of science gateways
is to hide the complex underlying infrastructure and to o�er
intuitive user interfaces for job, data, and work�ow manage-
ment. In the last decade diversemature frameworks, libraries,
and APIs have been evolved, which allow the enhanced
development of science gateways. While distributed job and
work�ow management are widely supported in frameworks

like EnginFrame [96], implemented on top of the standards-
based portal framework Liferay [97] or the proprietary
work�ow-enabled science gateway Galaxy [98–100], the data
management is o�en not completely satisfactory. Also con-
tent management systems such as Drupal [101] and Joomla
[102] or the high-level framework Django [103] still lack the
support of sophisticated data management features for data
on a large scale.

VectorBase [104], for example, is a mature science gate-
way for invertebrate vectors of human pathogens developed
in Drupal o�ering large sets of data and tools for further
analysis. While this science gateway is widely used with a
user community of over 100,000 users, the data management
is directly dependent on the underlying 
le system, without
additional data management features tailored to Big Data.
�e sophisticated metadata management in VectorBase has
been developed by the VectorBase team from scratch since
Drupal lacks metadata management capabilities.

�e requirement for processing Big Data in a science
gateway is re�ected in a few current developments in the
context of standardized APIs and frameworks. Agave [105]
provides powerfulAPI for developing intuitive user interfaces
for distributed job management, which has been extended
in a 
rst prototype with metadata management capabilities,
and allows the integration with distributed 
le systems.
Globus Transfer [106] forms a data bridge, which supports
the storage protocol GridFTP [107]. It o�ers a web-based
user interface and community features similar to DropBox
[108]. �e users are enabled to easily share data and manage
it in distributed environments. �e Biomedical Research
Informatics Network (BIRN) [109], for example, is a national
initiative to advance biomedical research via data sharing and
collaborations and the corresponding infrastructure applies
Globus Transfer for moving large datasets. Data Avenue
[110] follows an analogous concept as Globus Transfer and
provides a web-based user interface as well. Additionally, it
will be integrated in the work�ow-enabled science gateway
WS-PGRADE [111], which is the �exible user interface of
gUSE. �e extension by Data Avenue enhances the data
management in the science gateway framework signi
cantly
so that not only jobs and work�ows can be distributed to
diverse grid, cloud, cluster, and collaborative infrastructures,
but also distributed data can be e	ciently managed via
storage protocols likeHTTP(s), Secure FTP (SFTP),GridFTP,
Storage Resource Management (SRM) [112], Amazon Simple
Storage Service (S3) [113], and integrated Rule-Oriented Data
System (iRODS) [114].

An example of a science gateway in the bioinformatics

led is MoSGrid (molecular simulation grid) [115] that sup-
ports the molecular simulation community with an intuitive
user interface in the areas of quantum chemistry, molecular
dynamics, and docking screening. It has been developed
on the top of WS-PGRADE/gUSE and features metadata
management with search capabilities via Lucene [116] and
distributed datamanagement via the object-based distributed

le system XtreemFS [117]. While these capabilities have
been developed before Data Avenue was available in WS-
PGRADE, the layered architecture of the MoSGrid science
gateways has been designed to allow the integration of further
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data management systems and thus can be extended for Data
Avenue.

5.2. Security. Whatever technology is used, the distributed
data management for biomedical applications with com-
munity options for sharing data requires especially secure
authentication and secure measures to assure strict access
policies and the integrity of data [118]. Medical bioinformat-
ics, in fact, is o�en concerned with sensitive and expensive
data such as projects contributing to computer-aided drug
design or in environments like hospitals. �e distribution
of data increases the complexity and involves data transfer
throughmany network devices.�us, data loss or corruption
can occur.

GSI (Grid Security Infrastructure) [119] has been
designed for the authentication via X.509 certi
cates and
assures the secure access to data. iRODS and XtreemFS,
for example, support GSI for authentication. Both use
enhanced replication mechanisms to warrant the integrity
of data including the prevention of loss. Amazon S3 follows
a username and password approach while owner of an
instance can grant access to the data via ACLs (access
control lists). �e corresponding Amazon web services also
replicate the data over diverse instances and examine MD5
checksums to check whether the data transfer was fully
successful and the transferred 
les unchanged. �e security
mechanisms in Data Avenue as well as in Globus Transfer
are based on GSI. Globus Transfer applies Globus Nexus
[105] as security platform, which is capable of creating a
full identity management with authentication and group
mechanisms. Globus Nexus can serve as security service
layer for distributed data management systems and can
connect to diverse storages like Amazon S3.

6. Perspectives and Open Problems

Data is considered the Fourth Paradigm in science [120],
besides experimental, theoretical, and computational sci-
ences. �is is becoming particularly true in computational
biology, where, for example, the approach “sequence 
rst,
think later” is rapidly overcoming the hypothesis-driven
approach. In this context, BigData integration is really critical
for bioinformatics that is “the glue that holds biomedical
research together.”

�ere are many open issues for Big Data management
and analysis, in particular in the computational biology and
healthcare 
elds. Some characteristics and open issues of
these challenges have been discussed in this paper, such
as architectural aspects and the capability of being �exible
enough to collect and analyse di�erent kind of information.
It is critical to face the variety of the information that
should be managed by such infrastructures, which should be
organized in scheme-less contexts, combining both relaxed
consistency and a huge capacity to digest data. �erefore,
a critical point is that relational databases are not suitable
for Big Data problems. �ey lack horizontal scalability, need
hard consistency, and become very complex when there is
the need to represent structured relationships. Nonrelational

databases (NoSQL) are the interesting alternative to data
storage because they combine the scalability and �exibility.

From the computational point of view, the novel idea is
that jobs are directly responsible of managing input data,
through suitable procedures for partitioning, organizing, and
merging intermediate results. Novel algorithm will contain
large parts of not functional code, but essential for exploiting
housekeeping tasks. Due to the practical impossibility of
moving all the data across geographical dispersed sites, there
is the need of computational infrastructure able to combine
large storage facilities and HPC. Virtualization can be the key
in this challenge, since it can be exploited to achieve storage
facilities able to leverage in-memory key/value databases to
accelerate data-intensive tasks.

�e most important initiatives for the usage of Big Data
techniques in medical bioinformatics are related to scienti
c
research e�orts, as described in the paper. Nevertheless, some
commercial initiatives are available to cope with the huge
quantity of data produced nowadays in the 
eld of molecular
biology exploiting high-throughput omics technologies for
real-life problems. �ese solutions are designed to sup-
port researchers working in computational biology mainly
using Cloud infrastructures. Examples are Era7 Bioinformat-
ics [121], DNAnexus [122], Seven Bridge Genomics [123],
EagleGenomics [124], and MaverixBio [125]. Noteworthy,
also large providers of molecular biology instrumentations,
such as Illumina [126], and huge service providers, such
as BGI [127], have Cloud-based services to support their
customers.

Hospitals are also considering to hiringBigData solutions
in order to provide “support services for researchers who
need assistance with managing and analyzing large medical
data sets” [128]. In particular, McKinsey & Company stated
already inApril 2013 that BigDatawill be able to revolutionize
pharmaceutical research and development within clinical
environments, by targeting the diverse user roles physicians,
consumers, insurers, and regulators [129]. In 2014 they
predicted that Big Data could lead to a reduction of research
and development costs for the pharmaceutical industry by
approximately 35% (about $40 billion) [130]. Drugmakers,
healthcare providers, and health analysis companies are
collaborating on this topic; for example, drugmaker Glax-
oSmithKline PLC and the health analysis company SAS
Institute Inc. work on a private Cloud for pharmaceutical
industry sharing securely anonymized data [130]. Open data
especially can be exploited by patient communities such as
PatientsLikeMe.com [131] containing invaluable information
for further data mining.

It is therefore clear that in the Big Data 
eld there is much
to do in terms ofmaking these technologies e	cient and easy-
to-use, especially considering that even small and medium-
size laboratories are going to use them in a close future.
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