
Managing and Mining Large Graphs:
Systems and Implementations

Bin Shao
Microsoft Research Asia

Beijing, China

binshao@microsoft.com

Haixun Wang
Microsoft Research Asia

Beijing, China

haixunw@microsoft.com

Yanghua Xiao
∗

Fudan University
Shanghai, China

shawyh@fudan.edu.cn

ABSTRACT

We are facing challenges at all levels ranging from infras-
tructures to programming models for managing and mining
large graphs. A lot of algorithms on graphs are ad-hoc in the
sense that each of them assumes that the underlying graph
data can be organized in a certain way that maximizes the
performance of the algorithm. In other words, there is no
standard graph systems based on which graph algorithms
are developed and optimized. In response to this situation, a
lot of graph systems have been proposed recently. In this tu-
torial, we discuss several representative systems. Still, we fo-
cus on providing perspectives from a variety of standpoints
on the goals and the means for developing a general pur-
pose graph system. We highlight the challenges posed by
the graph data, the constraints of architectural design, the
different types of application needs, and the power of differ-
ent programming models that support such needs.

This tutorial is complementary to the related tutorial “Man-
aging and Mining Large Graphs: Patterns and Algorithms”.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed Databases

General Terms

Design, Performance

Keywords

Distributed Graph System, Memory Cloud, NoSQL, Graph
Database

1. INTRODUCTION
Large graphs appear in a wide range of computational do-

mains. For example, the World Wide Web contains over 50

∗The work was done at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

billion web pages and one trillion unique URLs [5]. The friend-
ship network of Facebook consists of 800 million nodes and
more than 100 billion links [3]. LinkedData has 31 billion
RDF triples and 504 million RDF links [4]. The de Brujin
graph [19], wherein each node represents a DNA sequence

of k base pairs, may contain up to 4
k nodes where k is at

least 20.
We are facing challenges at all levels ranging from infras-

tructures to programming models for managing and mining
large graphs. Recently, research on this topic has seen an
explosive growth [6]. However, a lot of graph algorithms
are ad-hoc in the sense that each of them assumes that the
underlying graph data can be organized in a certain way
that maximizes the performance of the algorithm. In other
words, there is no standard or de facto standard graph sys-
tems based on which algorithms on graphs are developed
and optimized. The situation is even more urgent for ex-
tremely large graphs with billions of nodes and edges: First,
converting billion node graphs from one format to the other
for different algorithms is extremely costly or totally infeasi-
ble; Second, many graph algorithms (e.g., subgraph match-
ing algorithms or reachability queries that rely on super-linear
graph indices) are not applicable to billion node graphs.

In response to this situation, a lot of graph systems have
been proposed recently. In the tutorial, we discuss and com-
pare several representative systems in detail. Still, the major
focus of this tutorial is not about introducing a wide range
of graph systems to our audience. Rather, we endeavor to
offer perspectives from a variety of standpoints on the goals
and the means for developing a general purpose graph sys-
tem. We highlight specific challenges posed by the graph
data, the hardware constraints for architectural design, the
different types of application needs, and the power of differ-
ent programming models that support such needs.

2. TUTORIAL OUTLINE

2.1 Data Space
Before we discuss the pros and cons of different designs

of graph systems, it is important to understand the data for
which the systems are designed. We describe data from three
aspects: volume (how big is the data), variety (how complex
is the data), and velocity (how fast is the data coming in).
Here, we use Figure 1 to show the data space characterized
by data volume and data variety (we will investigate all of
the three aspects in the tutorial).

From Figure 1 (which is reproduced from [10]), it is clear
that there is a huge problem space. RDBMSs, which have ma-

589

of Nodes # of Edges Size of Graph Topology
of Machines

Online/Offline Offline Sampling
US Road Graph 23.9× 10

6
58× 10

6 808 MB 1 1 1
Facebook Social Graph 800× 10

6
104× 10

9 787 GB 25 3 1-25
Web Graph 20.1× 10

9
160.3× 10

9 1494 GB 47 15 10-47

Table 1: Graph sizes and number of machines needed to deploy on Microsoft’s Trinity (each machine has 32G RAM)

Scale to complexity

S
ca

le
 t

o
 s

iz
e

Disk-based Key-value Store

Column Store

Document Store

Graph DB

Typical RDBMS

SQL Comfort Zone

In-memory Key-value Store

Figure 1: Data Space

tured after more than 40 years of continuous improvements,
only handle data of relatively small size and low complexity.
It is unlikely that a single system can cover the entire data
space. For example, for data of extremely large volume but
very low complexity, Map/Reduce systems and key/value
stores may be appropriate solutions. In contrast, graph sys-
tems handle data of much smaller size but much higher com-
plexity.

The high complexity of the data (i.e., many relationships
exist among the data) means applications require flexible data
accesses. One distinguishing characteristics of graphs is that
graph accesses have no locality: As we explore a graph, we
invoke random, instead of sequential data accesses, no mat-
ter how the graph is stored. In other words, any non-trivial
graph query will have poor performance if the locality issue
is not properly addressed. For example, although relational
models or key/value stores can be used to manage graph
data, they do not provide efficient query support, because
random accesses are achieved through join operations.

2.2 Architecture Design
To a large extent, the size and the complexity of the graph

data determines the architecture of a graph system. Figure 2
(which is reproduced from [16]) shows under what condi-
tions the total cost of ownership will be the lowest. As we
mentioned, graph exploration requires random accesses. This
is equivalent to having a high rate of queries in different parts
of the data. It will be desirable if the graph is in memory,
which provides fast random access support.

As Table 1 indicates, it is entirely feasible to host web-scale
graphs in the memory of a few dozens of machines, because
even for billion-node graphs, the size of the graph topology is
still much less than 10 TB (the topology of the current Face-
book friendship graph takes about 1.5 TB memory space).
Furthermore, Figure 2 shows that the dividing line between
RAM and Flash Memory is moving up as RAM technology

1.0 10 100 10000.1

0.1

1.0

10

100

1000

10000

Query Rate (Millions/sec)

D
a

ta
se

t
S

iz
e

 (
T

B
)

Trinity

Billion Scale

Graph

Hard disk

Flash Memory

RAM

Figure 2: The territory of memory-based systems

advances, which means memory-based systems are a suit-
able choice for large graphs.

Still, it is unlikely that we can store the topology of a web-
scale, billion-node graph in the memory of a single commod-
ity off-the-shelf machine. Thus, a lot of design issues will
arise in building in-memory graph systems on a COTS clus-
ter. The tutorial will discuss these topics in detail.

2.3 Applications Needs
Generally speaking, in graph processing, application needs

can be classified into two large categories: online query pro-
cessing, which requires low latency computing, and offline
graph analytics, which requires high throughput computing.
For example, deciding instantly whether there is a path be-
tween two given persons in a social network belongs to the
first category while computing pagerank for the WWW be-
longs to the second.

As we will analyze in the tutorial, these two kinds of tasks
have different data access patterns, which lead to challenges
and opportunities for optimization. Still, many sophisticated
applications have both needs. For example, although com-
munity analysis on social networks or link analysis on click
graphs are mainly analytical tasks, it is important that the
system also supports interactive user activities such as graph
browsing and querying, as these activities may provide ac-
tionable insights for tuning and testing large analytical jobs.
On the other hand, online query processing, for example, ap-
proximate shortest distances, etc., often relies on indices or
sketches derived from the data, and building such indices or
data sketches is analytical jobs.

Unfortunately, existing graph systems, such as Neo4j [1]
and Pregel [14], are designed for one type of the needs. Then,
a natural question is whether it is possible and what it takes
to build a system that can support both needs. In this tuto-
rial, we will investigate this problem by looking into several

590

Native Online Memory Distributed
graphs query based parallel

processing exploration processing
Neo4j [1] Yes Yes No No
HyperGraphDB [11] No Yes No No
FlockDB [2] No Yes No Yes
MapReduce [9] No No No Yes
PEGASUS [12] No No No Yes
Google’s Pregel [14] No No No Yes
Microsoft’s Trinity [15] Yes Yes Yes Yes

Table 2: Some representative graph systems

application areas, including basic graph operations such as
subgraph matching [17, 7], knowledgebases [18], social net-
works, etc.

2.4 Computation Model
Recently, a variety of computing models have been sug-

gested for graph analytics. For instance, a few systems rep-
resent graphs by their adjacency matrices, and model graph
operations as matrix operations [12]. Another common ap-
proach is to support graph analytics in the Map/Reduce frame-
work. Pregel [14] supports offline vertex-based computation
under the BSP model. More recently, Trinity [15] extends the
vertex-based computation model into two more finery model
by i) restricting message passing among neighboring nodes,
and ii) restricting message passing among nodes on a single
machine.

In the tutorial, we will introduce and compare these com-
putation models by focusing on their expressive power, and
ease of use. We will also discuss their generality – that is,
whether the computation model is friendly to all kinds of ap-
plication needs. For example, it is difficult to provide online
query processing in the Map/Reduce framework.

2.5 Cost of Ownership
There is one more important factor about graph systems,

which is the cost of ownership. Table 1 shows three repre-
sentative real life graphs. Clearly, the real size is not big at all
– the topology of the Facebook friendship graph and even the
entire topology of the WWW can fit in a single hard drive of
modern standard. However, MapReduce and Pregel require
hundreds or thousands of machines in order to process such
graphs. This means not many organizations (including uni-
versities, companies, and government agencies) can afford to
deploy such systems.

Thus, the cost of ownership becomes an important factor
in evaluating a graph system. Currently, Trinity can perform
efficient graph analytics on web-scale, billion-node graphs
using as few as 20-30 commodity machines. Furthermore,
a large variety of computations, such as density estimation,
connected components discovery, etc., can be performed lo-
cally even on a single machine. This is shown in Table 1,
where the right three columns show the number of commod-
ity machines needed to process the graphs in online, offline,
and approximate computation mode.

2.6 Representative Systems
In the tutorial, we try to provide perspectives on the goals

and the means of developing a graph system by analyzing

the existing representative systems. Table 2 lists several im-
portant systems although the tutorial also covers many sys-
tems we mention in Section 3. Currently, there are two rep-
resentative graph systems for the two types of application
needs we described in Section 1.3. Neo4j [1] focuses on sup-
porting online transaction processing (OLTP) on graph data.
Neo4j is like a regular database system, only with a more ex-
pressive and powerful data model. However, Neo4j is not
distributed: It does not handle graphs that are partitioned
over multiple machines. This limits the size of the graphs
Neo4j can handle efficiently. This is so because data access on
graphs has no locality [13], in other words, exploration on
graphs incurs mostly random data access. For large graphs
that cannot be stored in memory, disk random access be-
comes the performance bottleneck. Furthermore, a single
machine also does not have enough computation power com-
pared with a distributed, parallel system. Thus, it is difficult
for systems such as Neo4j to handle web-scale graphs.

On the other end of the spectrum is MapReduce [9] and
Pregel [14]. Both are high latency, high throughput platforms.
MapReduce is for simple data, while Pregel is for graphs.
Unlike Neo4j, MapReduce and Pregel do not support on-
line query processing, instead, they are optimized for ana-
lytics on large data partitioned over hundreds of machines.
MapReduce computations on graphs depend heavily on in-
terprocessor bandwidth, as graph structures are sent over the
network iteration after iteration. Pregel mitigates this prob-
lem by passing computation results instead of graph struc-
tures between processors. In Pregel, analytics on the graphs
are expressed using a vertex based computation mechanism
under the Bulk Synchronous Processing (BSP) model. Al-
though some well known graph algorithms, including Pager-
ank, shortest path discovery, etc, can be implemented through
vertex based computing with ease, there are many sophis-
ticated graph computations, including for example, multi-
level graph partitioning, cannot be expressed in a succinct
and elegant way.

Besides Neo4j and Pregel, dozens of graph systems have
been proposed in the last few years. Table 2 compares a few
of them. The tutorial will discuss these systems in more de-
tail. We focus on 4 important questions. First, does the graph
exist in its native form, or does it follow other models, in-
cluding RDBMS or key/value stores? When a graph is in
its native form, graph algorithms can be expressed in stan-
dard, natural ways [8]. If not, we need a complete rethinking
of the problem in order to develop analogous implementa-
tions in the new model, e.g., MapReduce. Second, does the
system support in memory graph exploration? Because data

591

access on graphs has no locality, and random access on disks
leads to performance bottlenecks, keeping graphs memory
resident is important for efficient query processing. Third,
does the system support low latency query processing on
graphs? Although several existing systems in Table 2 are
capable of providing OLTP support, few of them can han-
dle billion-node graphs. One of the reason is that indices for
graph processing usually have super-linear complexity, and
building such indices for billion-node graphs is infeasible.
Finally, does the system support high throughput offline an-
alytics? Systems such as MapReduce and Pregel are capable
of supporting computations such as Pagerank on extremely
large graphs. However, not all graph computations can be
implemented in MapReduce or in Pregel’s vertex-based com-
putation model in succinct and elegant ways.

3. REFERENCES
[1] http://neo4j.org/.

[2] https://github.com/twitter/flockdb.

[3] http://www.facebook.com/press/info.php?

statistics.

[4] http://www.w3.org/.

[5] http://www.worldwidewebsize.com/.

[6] C. C. Aggarwal and H. Wang, editors. Managing and
Mining Graph Data, volume 40 of Advances in Database
Systems. Springer, 2010.

[7] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast
graph pattern matching. In Proceedings of the 2008 IEEE
24th International Conference on Data Engineering, ICDE
’08, pages 913–922, Washington, DC, USA, 2008. IEEE
Computer Society.

[8] J. Cohen. Graph twiddling in a mapreduce world.
Computing in Science & Engineering, pages 29–41, 2009.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[10] E. Eifrem. A nosql overview and the benefits of graph
databases. Nosql East 2009.

[11] B. Iordanov. Hypergraphdb: a generalized graph
database. In Proceedings of the 2010 international
conference on Web-age information management, WAIM
’10, pages 25–36, Berlin, Heidelberg, 2010.
Springer-Verlag.

[12] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus:
A peta-scale graph mining system implementation and
observations. In Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, ICDM ’09,
pages 229–238, Washington, DC, USA, 2009. IEEE
Computer Society.

[13] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W.
Berry. Challenges in parallel graph processing. Parallel
Processing Letters, 17(1):5–20, 2007.

[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In Proceedings of the
2010 international conference on Management of data,
SIGMOD ’10, 2010.

[15] B. Shao, H. Wang, and Y. Li. The Trinity graph engine.
Technical Report 161291, Microsoft Research, 2012.

[16] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman. The case for ramclouds:
scalable high-performance storage entirely in dram.
SIGOPS Oper. Syst. Rev., 43:92–105, January 2010.

[17] Z. Sun, H. Wang, B. Shao, H. Wang, and J. Li. Efficient
subgraph matching on billion node graphs. In PVLDB,
2012.

[18] W. Wu, H. Li, H. Wang, and K. Zhu. Probase: A
probabilistic taxonomy for text understanding. In
Proceedings of the 2012 international conference on
Management of data, SIGMOD ’12, 2012.

[19] D. R. Zerbino and E. Birney. Velvet: algorithms for de
novo short read assembly using de bruijn graphs.
Genome Research, 18(5):821–9, 2008.

592

