
Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 183 –

Managing Big Data Using Fuzzy Sets by

Directed Graph Node Similarity

Marko Jocic*, Endre Pap**,***, Anikó Szakál**, Djordje Obradovic*,

Zora Konjovic***

*Faculty of Technical Sciences/Department of Computing and Automation, Trg

DositejaObradovića 6, 21000 Novi Sad, Serbia

**Óbuda University, Bécsi út 96/b, H-1034 Budapest, Hungary

***Singidunum University, Danielova 29, 11000 Belgrade, Serbia

m.jocic@uns.ac.rs, epap@singidunum.ac.rs,.aniko@uni-obuda.hu,

obrad@uns.ac.rs, zkonjovic@singidunum.ac.rs

Abstract: This paper proposes a novel algorithm for discovering similar nodes in very large

directed graphs, with millions of nodes with billions of connections, which is based on the

fuzzy set theory. The required input is a sample of representative nodes that are highly

affiliated with some feature. This approach is practically verified on Twitter social network

case study to discover influential Twitter users in the field of science.

Keywords: big data; directed graph; node similarity; Twitter

1 Introduction

The explosive growth of social media and massive participation in social

networks is reflected in the countless number of contributions that are constantly

posted and discussed on social sites such as Facebook, Twitter, Instagram,

Pinterest and others. One aspect of special interest is the popularity and status of

some members of these social networks measured by the level of attention they

receive in terms of followers [1]. The other aspect is the influence that these

individual’s wield, which is determined by the propagation of their content

through the network [2].

Despite an abundance of solutions providing influence measurement, there is still

a need for improvements that cope well with the vagueness and uncertainty

inherent to data describing influence, while keeping computational efficiency and

accuracy of the output results.

mailto:m.jocic@uns.ac.rs

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 184 –

In this paper we propose a novel algorithm aimed at discovering similar nodes, in

very large directed graphs, that is both efficient and accurate with respect to real-

world problems. The algorithm is based on the fuzzy set theory, and its practical

application could be, among others, finding influential people in a network.

The paper is organized in the following way. Following this introductory section,

the second section presents related works, while the third describes the proposed

algorithm. Fourth section brings the Twitter social network case study discovering

influential Twitter users in the field of science by which the algorithm is verified.

The fifth section gives conclusions and directions for further research on this

subject.

2 Related Works

This section presents some popular tools for determining the influence of social

media users, and scientific papers using graphs as a model for social networks as

well as for determining social network user similarities.

The tool Socialbakers [3] tracks, analyses, and benchmarks over 8 million social

profiles across all the major social platforms including Facebook, Twitter,

YouTube, LinkedIn, Instagram, Google+ and VK. They have statistics that are

free of charge and available to everyone with daily updates and historical data up

to 3 months. Simply Measured [4] is the leading social media analytics platform,

providing complete measurement and reporting for serious marketers in all major

social platforms including Facebook, Twitter, Google+, Instagram, YouTube,

Vine, LinkedIn, and Tumblr. This service delivers profile analytics and audience

insights including influence and sentiment analysis. It is available only in paid

version, and only samples of data are shown for free. Trackur [5], which is also a

paid service, allows full monitoring of all mainstream social media including

Twitter, Facebook and Google+, but also news, blogs, reviews and forums. This

service delivers executive insights including influence scoring. All results are

delivered almost in real-time, as many sources are updated every 30 minutes.

Klout [6] uses Twitter, Facebook, LinkedIn, Wikipedia, Instagram, Bing,

Google+, Tumblr, Foursquare, YouTube, Blogger, WordPress, Last.fm, Yammer

and Flickr data to create Klout user profiles that are assigned a "Klout Score"

ranging from 1 to 100. Higher score corresponds to a higher ranking of the breadth

and strength of one's online social influence. Klout is free for influencers, but paid

for business users. What is common to all these services is that they are mostly

paid, and only just outline algorithms and methods used to infer influence of a

certain individual.

Graphs have been used a lot in order to describe social networks and analyze

them. A myriad of techniques and approaches to social network analysis, data

mining, graph mining and representation of social networks as graph structures

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 185 –

can be found in [7]. There are also papers about determining important network

characteristics [8], [9] and graph properties [10] that have a potential for practical

implementations in various domains including social networks. Similarity

measures between objects are of central importance for various data analysis

techniques including the special case of similarity measures related to graphs. A

number of measures for such purpose have been proposed, especially for

calculation of similarity of graphs nodes [11], [12], [13], [14], [15], [16], [20].

These methods have been successfully applied in several domains like ranking of

query results [11], synonym extraction [13], database structure matching [17],

construction of phylogenetic trees [12], analysis of social networks [18], [19],

recommending trustworthy agents in a trust network [20], etc. There is a vast

number of researches that try to determine the measure of influence in various

social media and social networks [2], [21], [22]. This leads to many measures of

influences, where some of these are correlated and some are not.

What is important for realistic modeling of influence in social media/networks is

to capture the temporal dynamics (new influential users appearing over time, some

users losing their influence over time), and the fact that attributes determining the

measure of influence may be subjective, with values which are often imprecise or

even vague. These imprecise data, in the context of social networks, and more

specifically relations between users, their interests and influence can be modeled

by fuzzy graphs [23], [24].

This encouraged the authors of this paper to adopt a fuzzy-like approach to the

problem in order to model imprecise knowledge about influence within a social

network.

3 Construction of the Algorithm

In this section we present the proposed algorithm (the basic one, and the one with

reduced computational complexity) preceeded by preliminaries aimed mainly at

introducing basic notions, and the notation that is used throughout the paper.

3.1 Preliminaries

We denote a directed graph by G , i.e. ordered pair G = (N, E), where N is a set

of all nodes in the graph, and E is a set of all edges in the graph. Edge e = (a, b)

is an ordered pair of two nodes and is directed from node a to node b, where a is

the source node, and b is the terminating node. Another notion is that b is a direct

successor of a, and a is said to be a direct predecessor of b. We denote by |N| the

cardinality of a graph (the total number of nodes), and by |E| a graph size (the

total number of edges/ connections between nodes). For each node in a directed

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 186 –

graph, there is an in-degree – the number of edges coming “into” certain node, and

out-degree – the number of edges coming “out” of certain node. A degree is the

sum of in-degree and out-degree. Individual elements of all sets will be denoted

with lowercase letters corresponding to the name of the set, along with subscript

index, e.g., set N has elements ni, i ∈ [1, |N|], i ∈ ℕ, where i represents an index

of i-th element in set N. All direct predecessors of some node a are noted as the set

DP(a). This means that the in-degree of node a can be represented as the

cardinality of DP(a). Obviously, DP(a) ⊂ N. Also, individual elements of DP(a)

will be denoted by dpi(a), i.e.,

𝐷𝑃(𝑎) = {𝑧|(𝑧, 𝑎) ∈ 𝐸 ∧ 𝑧, 𝑎 ∈ 𝑁} (1)

𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑎) = |𝐷𝑃(𝑎)| (2)

All direct successors of some node 𝑎 are noted as a set 𝐷𝑆(𝑎). This means that the

out-degree of node 𝑎 can be represented as a cardinality of 𝐷𝑆(𝑎). Also, 𝐷𝑆(𝑎) ⊂
𝑁. Individual elements of 𝐷𝑆(𝑎) will be denoted 𝑑𝑠𝑖(𝑎), i.e.,

𝐷𝑆(𝑎) = {𝑧|(𝑎, 𝑧) ∈ 𝐸 ∧ 𝑧, 𝑎 ∈ 𝑁} (3)

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑎) = |𝐷𝑆(𝑎)| (4)

Following the fuzzy set theory [25], there is a fuzzy set described by its

membership function 𝜇𝑅, which here corresponds to the affiliation with some

feature. Every node 𝑎 in graph 𝐺 has a value in this membership function 𝜇𝑅(𝑎),

𝜇𝑅(𝑎) ∈ [0,1] ∧ 𝜇𝑅(𝑎) ∈ ℝ, 𝑎 ∈ 𝑁 (5)

Here, a value of 0 means that no affiliation with certain feature exists, a value of 1

means utter affiliation with certain feature, and the values between 0 and 1 render

partial association with a certain feature - the higher the value, the greater the

affiliation. It can also be said that two nodes with similar values of the

membership function for a particular feature, also exhibit some similarity between

each other regarding that feature.

It is important to note that this directed graph G is large in a sense that it has a

huge number of nodes and an even larger number of directed connections, where

the number of nodes is at least a million and the number of connections is on the

order of several billion. This introduces difficulties from the computational

resources point of view. The proposed algorithm is designed to work with a (parts

of) large directed graphs, where average 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒 of nodes exceeds the average

𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒 of nodes by several orders of magnitude.

3.2 Basic Algorithm

The algorithm starts by selecting representative nodes in a graph that have high

association with some desired feature. These nodes should be selected by expert or

experts in the particular domain in which this feature is exposed. This set of

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 187 –

representative nodes will be denoted as 𝑅, 𝑅 ⊂ 𝑁, where each node in 𝑅 will be

denoted 𝑟𝑖 , 𝑖 ∈ [1, |𝑅|]. Based on expert’s knowledge, every selected node 𝑟𝑖 is

assigned its membership function value 𝜇𝑅(𝑟𝑖), which depicts its affiliation with

the desired feature. Now, the procedure should be able to find nodes in a graph

that are similar to the selected nodes – similar in their membership function values

𝜇𝑅. The creation of this representative set and assigning membership function

values can be regarded more formally as obtaining of a training set for a

supervised machine learning algorithm. After selecting representative nodes, for

each of these nodes, the algorithm obtains all its direct predecessors. The result is

a union (set) of all direct predecessors for all representative nodes; this set will be

denoted as 𝐷𝑃𝑅, and its elements will be denoted as 𝑑𝑝𝑟𝑖 , i.e.,

𝐷𝑃𝑅 = ⋃ 𝐷𝑃(𝑟𝑖)
|𝑅|
𝑖=1 (6)

Many of the representative nodes have some common direct predecessors, which

imply that many of these predecessors in 𝐷𝑃𝑅 will have common direct

successors among the representative nodes in R. As these direct successors in R

are subset of all direct successors, a new set is introduced, 𝐷𝑆𝑅 (𝑎) = 𝐷𝑆(𝑎) ∩ 𝑅.

This intersection 𝐷𝑆𝑅 (𝑎) results in only those direct successors of certain node

𝑎 that are in representative set 𝑅, too. Now, for each of these nodes in a set DPR a

value 𝑣 is calculated by summing membership function values of nodes in 𝑅

which are direct successors to a certain node:

∀𝑑𝑝𝑟𝑖 ∈ 𝐷𝑃𝑅 => 𝑣(𝑑𝑝𝑟𝑖) = ∑ 𝜇𝑅𝑑𝑠𝑟∈𝐷𝑆𝑅(𝑑𝑝𝑟𝑖) (𝑑𝑠𝑟) (7)

The calculated values are refined by taking in an account the out-degree for each

node in 𝐷𝑃𝑅. More precisely, the calculated value 𝑣 of a node in 𝐷𝑃𝑅 is divided

with its out-degree, resulting in a new value 𝑣𝑟:

𝑣𝑟(𝑑𝑝𝑟𝑖) =
𝑣(𝑑𝑝𝑟𝑖)

|𝐷𝑆(𝑑𝑝𝑟𝑖)|
 (8)

When all nodes in 𝐷𝑃𝑅 have had their values 𝑣𝑟 calculated, the algorithm can

proceed to the next step. For each of the nodes in 𝐷𝑃𝑅, all its direct successors are

obtained, i.e. the nodes that it is directly connected to. The result of this is a union

(set) of all direct successors for all nodes in 𝐷𝑃𝑅. This set will be denoted as 𝐷𝑆𝑈,

and its elements will be denoted as 𝑑𝑠𝑢𝑖 , i.e.

𝐷𝑆𝑈 = ⋃ 𝐷𝑆(𝑑𝑝𝑟𝑖)
|𝐷𝑃𝑅|
𝑖=1 (9)

It can be noted here that 𝐷𝑆𝑈 is a superset of 𝑅, 𝐷𝑆𝑈 ⊃ 𝑅, because it will

certainly contain all the representative nodes, but also other nodes that weren’t

marked as representative by the expert. After obtaining 𝐷𝑆𝑈, for each node in

𝐷𝑆𝑈, a value 𝑠 is calculated by summing all of the already calculated values 𝑣𝑟 of

its direct predecessors in 𝐷𝑃𝑅. This summed value can be explained as a

similarity measure between certain node in 𝐷𝑆𝑈 and nodes in 𝑅, i.e.,

∀𝑑𝑠𝑢𝑖 ∈ 𝐷𝑆𝑈 => 𝑠(𝑑𝑠𝑢𝑖) = ∑ 𝑣𝑟𝑑𝑝∈𝐷𝑃(𝑑𝑠𝑢𝑖) (𝑑𝑝) (10)

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 188 –

One final step must be taken in order to complete the calculation. If one takes two

arbitrary nodes from 𝐷𝑆𝑈, where both of these have the same calculated value, but

have different in-degree (number of all direct predecessors), how can that be

interpreted? The node with smaller in-degree should expose more similarity with

representative nodes in 𝑅 than the node with larger in-degree. The explanation lies

in absolute representation of this similarity, as it is just merely a sum, while some

relative representation might contain more information. Thus, each of the

calculated values is recalculated by dividing it with the node’s in-degree, resulting

in value 𝑠𝑟, i.e.,

𝑠𝑟(𝑑𝑠𝑢𝑖) =
𝑠(𝑑𝑠𝑢𝑖)

|𝐷𝑃(𝑑𝑠𝑢𝑖)|
 (11)

First, the value sr is calculated for all of the representative nodes, in order to

examine if calculated similarity values correspond to the originally assigned

values by the expert. Here, it was noticed that the calculated values are actually

smaller than the assigned values, which is a consequence of representative set

being smaller than average in-degree of nodes in the representative set. In some

cases, the calculated values are just two times smaller, but in larger graphs with

lots of connections, this ratio might be a much larger value. In order to correct the

calculation, new value is introduced - a correction coefficient 𝑐. This coefficient is

actually a mean ratio between the assigned value and the calculated value, i.e.,

𝑐 =
∑ 𝜇𝑅(𝑟) 𝑠𝑟(𝑟)⁄𝑟∈𝑅

|𝑅|
 (12)

The final measure of similarity denoted by 𝑠𝑟𝑓(𝑎), or the value of membership

function is then calculated by multiplying the calculated value 𝑠𝑟 with the

correction coefficient c, i.e., 𝑠𝑟𝑓(𝑎) = 𝑐 ∗ 𝑠𝑟(𝑎). The resulting value 𝑠𝑟𝑓 is

basically membership function value for each node in 𝐷𝑆𝑈, where nodes that have

the smallest values of this number shouldn’t manifest similarity with the feature

exposed among nodes in 𝑅, and vice versa. The calculated similarity measure is

actually a value of membership function that represents affiliation with the nodes

in the representative set 𝜇𝑅(𝑎) = 𝑠𝑟𝑓(𝑎). Now the expert can select the nodes

from 𝐷𝑆𝑈 with the highest calculated similarity and examine if the desired feature

is present, as it was in representative set 𝑅.

The above described algorithm is more concisely represented by Pseudo-code 1.

Pseudo-code 1:

Basic algorithm

choose set of representative nodes

foreach node r in R:

assign membership function value for r

init DPR = empty set

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 189 –

foreach node r in R: (equation 6)

DP = fetch_direct_predecessors(r)

 DPR = find_union(DP, DPR)

foreach node dpr in DPR: (equations 7 and 8)

 DS = fetch_direct_successors(dpr)

DSR = intersection(DS, R)

init v = 0

foreach node dsr in DSR:

 v = v + membership(dsr, R)

vr(dpr) = v / size(DS)

 init DSU = empty set

foreach node dpr in DPR: (equation 9)

 DS = fetch_direct_successors(dpr)

 DSU = find_union(DS, DSU)

Pseudo-code 1:

Basic algorithm (continuation)

foreach node dsu in DSU: (equations 10 and 11)

DP = fetch_direct_predecessors(r)

init s = 0

foreach node dp in DP:

 s = s + vr(dp)

sr(dsu) = s / size(DP)

init c = 0

foreach node r in R: (equation 12)

 c = c + sr(r)

c = c / size(R)

foreach node dsu in DSU:

 srf(dsu) = c * sr(dsu)

3.3 Algorithm with Reduced Computational Complexity

Computational complexity is an important issue of any implementation that

intends to reach performance satisfying real-life demands. The algorithm that is

described in previous subsection is not exception to this. This means that

performance indicators on quality characteristics like precision should be balanced

with performance indicators like resource’s consumptions.

There are few things that one needs to consider while determining computational

complexity of the proposed algorithm.

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 190 –

 First, the running time of a union operation in equation (6) depends on sum of

in-degree values for each node in representative set, thus the running time of

this part is 𝑂(∑ 𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑟∈𝑅 𝑟)) = 𝑂(|𝐷𝑃𝑅|).

 Second, running time of calculating values 𝑣(𝑑𝑝𝑟𝑖), 𝑣𝑟(𝑑𝑝𝑟𝑖) from equations

(7) and (8), respectively, depends on a number of nodes in 𝐷𝑃𝑅 set, 𝑛𝐷𝑃𝑅 =
|𝐷𝑃𝑅|, and number of nodes in 𝐷𝑆𝑅 set, 𝑛𝐷𝑆𝑅 = |𝐷𝑆𝑅|, which results in

running time for this part of 𝑂(𝑛𝐷𝑃𝑅 ∗ 𝑛𝐷𝑆𝑅). But since 𝐷𝑆𝑅 ⊂ 𝑅 =>
|𝐷𝑆𝑅| < |𝑅|, and |𝑅| ≪ |𝐷𝑆𝑅|, running time can be approximated as

𝑂(𝑛𝐷𝑃𝑅) = 𝑂(|𝐷𝑃𝑅|)

 Third, the running time of the union operation in equation (9) depends on the

sum of out-degree values for each node in 𝐷𝑃𝑅 set, which makes running

time of this part 𝑂(∑ 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑑𝑝𝑟∈𝐷𝑃𝑅 𝑑𝑝𝑟)). Again, since this algorithm

works with parts of graphs which usually have in-degree values with at least

two orders of magnitude larger than out-degree values, running time for this

part can be approximated as 𝑂(|𝐷𝑃𝑅|) as well.

 Fourth, running time of calculating values s(dsui), sr(dsui) from equations

(10) and (11), respectively, depends on total number of nodes in DSU set, and

total number of direct predecessors for each node in DSU set. But, because

this part of the algorithm iterates through direct predecessors that are already

in the DPR set, one can say that running time of this part is also O(|DPR|).

Finally, by summing all these running times, we get 𝑂(4 ∗ |𝐷𝑃𝑅|) = 𝑂(|𝐷𝑃𝑅|),

which leads to the conclusion that computational complexity of the entire

algorithm depends mostly on the number of taken direct predecessors of nodes in

the representative set.

Since the defined (part of) large directed graph G typically has nodes with high in-

degree values, this makes the whole approach computationally expensive. This

indicates that, in order to reduce the running time, one could try to take smaller

portion of these direct predecessors, i.e. set 𝑆𝐷𝑃𝑅 ⊂ 𝐷𝑃𝑅, which contains

randomly sampled elements of 𝐷𝑃𝑅. Here the cardinality of 𝑆𝐷𝑃𝑅 is defined as

|𝑆𝐷𝑃𝑅| = 𝜌 ∗ |𝐷𝑃𝑅|, 𝜌 ∈ [0,1], and parameter 𝜌 denotes the portion of randomly

sampled elements.

By adopting this approach in the paper we created an algorithm modification,

which is presented by the Pseudo-code 2 where the bolded content is for

modifications.

Pseudo-code 2:

Algorithm modification for reduction of computational complexity

choose set of representative nodes

foreach node r in R:

assign membership function value for r

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 191 –

init DPR = empty set

foreach node r in R:

DP = fetch_direct_predecessors(r)

 DPR = find_union(DP, DPR)

SDPR = random_sample(DPR, rho)

foreach node dpr in SDPR:

DS = fetch_direct_successors(dpr)

 DSR = intersection(DS, R)

init v = 0

foreach node dsr in DSR:

 v = v + membership(dsr, R)

vr(dpr) = v / size(DS)

init DSU = empty set

Pseudo-code 2:

Algorithm modification for reduction of computational complexity (continuation)

foreach node dpr in SDPR:

 DS = fetch_direct_successors(dpr)

 DSU = find_union(DS, DSU)

foreach node dsu in DSU:

DP = fetch_direct_predecessors(r)

init s = 0

foreach node dp in DP:

 s = s + vr(dp)

sr(dsu) = s / size(DP)

init c = 0

foreach node r in R:

 c = c + sr(r)

c = c / size(R)

foreach node dsu in DSU:

 srf(dsu) = c * sr(dsu)

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 192 –

4 Twitter Case Study

In this section we present a case study aimed at demonstrating the algorithm, and

to show that the proposed modification of the basic algorithm performs better in

terms of resources consumption, retaining, at the same time, acceptable precision.

Since the proposed algorithm was verified on the Twitter social network, in the

first subsection of this section some notions are given about this social network

and its data. The second subsection presents application of our algorithm to

Twitter.

4.1 Twitter and Its Data

Twitter is one of the biggest social networks with more than 300 million active

users per month, which makes it second largest social network, after Facebook.

Twitter users follow others or are followed. Unlike on most online social

networking sites, such as Facebook or MySpace, the relationship of following and

being followed requires no reciprocation. A user can follow any other user, and

the user being followed doesn’t need to follow back. Being a follower on Twitter

means that the user receives all the messages (called tweets) from those the user

follows. Common practice of responding to a tweet has evolved into well-defined

markup culture: RT stands for retweet, ’@’ followed by a user identifier addresses

the user, and ’#’ followed by a word represents a hashtag. This well-defined

markup vocabulary combined with a strict limit of 140 characters per posting

conveniences users with brevity in expression. The retweet mechanism empowers

users to spread information of their choice beyond the reach of the original tweet’s

followers [26].

Twitter, and social networks in general, can easily be represented as a graph,

where Twitter is an example of a directed graph.

Twitter REST API provides programmatic access to read and write Twitter data

[27]. The REST API identifies Twitter applications and users using OAuth;

responses are available in JSON. In order to perform the proposed algorithm, one

should be able to obtain: profiles of certain Twitter users (profile contains basic

information, as well as the number of followers and number of following),

followers of certain user, and users that certain user is following. All of these data

are obtained via Twitter REST API. The base URI for all Twitter REST API calls

is https://api.twitter.com/1.1.

It is also important to mention that the calls to REST API are rate limited – all

methods allow only a limited number of calls within a 15 minute window. Rate

limiting is primarily considered on a per-user basis, or more accurately, per access

token in your control. If a method allows for 15 requests per rate limit window,

then it allows you to make 15 requests per window per leveraged access token

[28]. This rate limiting raises practical difficulties when trying to download big

https://api.twitter.com/1.1

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 193 –

amounts of data from Twitter because it simply takes a lot of time – one should

carefully orchestrate calls to the REST API within these 15 minutes windows in

order to make the most use of Twitter REST API and its data.

For fetching Twitter users’ profiles, HTTP request GET

https://api.twitter.com/1.1/users/lookup is called, which returns fully-hydrated user

objects for up to 100 users per request, as specified by comma-separated values

passed to the user_id and/or screen_name parameters. Rate limit for this endpoint

is 180 calls per 15 minute window.

In order to obtain followers of a certain Twitter user, an HTTP request GET

https://api.twitter.com/1.1/followers/ids is called, which returns a cursored

collection of user IDs for every user following the specified user. Results are

given in groups of 5,000 user IDs and multiple “pages” of results can be navigated

through using the next_cursor value in subsequent requests. Rate limit for this

endpoint is 15 calls per 15 minute window.

4.2 Discovering Similar Influential Users on Twitter

The proposed algorithm was used to discover similar influential users in Twitter

social network.

The process starts with selecting a group of representative users. In this

experiment a group of 163 Twitter users was selected, based on their influence in

the category of science. Influential science users engage their followers with news

and interactive tweeting in many spheres of science. For each of these users, an

expert assigns a membership function value, which determines how much certain

user belongs to this representative group.

Some users of this representative group of Twitter users influential in science

domain are shown in the Table 1.

Table 1

A sample of influential Twitter users in science

Name Twitter screen name Membership function value

NASA @nasa 0.9

Scientific American @sciam 0.85

New Scientist @newscientist 0.85

WIRED Science @wiredscience 0.7

Neil deGrasse Tyson @neiltyson 0.8

CERN @cern 0.9

National Geographic @natgeo 0.7

Curiosity Rover @marscuriosity 0.8

Phil Plait @badastronomer 0.85

Richard Dawkins @richarddawkins 0.7

https://api.twitter.com/1.1/followers/ids

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 194 –

After selecting a group of representative users, all their followers must be

downloaded from the Twitter REST API. This is the most resource (time and

storage) consuming part of the whole process, as most of these users have more

than 1 million followers, while some of them have even more than 10 million

followers. This implies that for most users, in order to get all of their followers,

the Twitter REST API must be called at least 200 times (200 x 5K followers = 1M

followers). Bearing in mind that for fetching followers only 15 requests per 15

minute window is allowed by the Twitter REST API, the estimated needed time to

download 1 million followers with one Twitter access token is 3 hours and 20

minutes. Also, each request returns 5,000 IDs of followers, where ID is a 64-bit

number. This results in need of at least 8B x 1M followers = 8,000,000 B ~ 7,5MB

of storage for single user’s followers, and that is only for users with 1 million

followers.

Note that needed resources (time and storage) increase linearly with number of

users’ followers. However, this still imposes technical and practical difficulties on

huge graphs with a large number of connections, like the Twitter social network. It

is also important to note that lots of these followers are not unique for certain

representative user. It is very likely that two Twitter users that promote science

and that have more than 1 million followers will have some (or many) common

followers. This implies that many of these followers will follow more than just

one user from the representative group.

After downloading all the representative users’ followers, for each of these

followers a relative value is calculated that describes his/her “interest” in this

representative group of users, in this case specifically – in science. The way this is

done is trying to utilize relevant data (the number of users that promote science

followed by a certain user as well as representative users’ membership functions),

and, at the same time, neutralize what’s called aggressive following
1
 on Twitter.

In order to calculate this value, the total number of friends (users that a certain

user follows) has to be downloaded. This is done by obtaining the whole Twitter

profile via Twitter REST API for all followers, but storing just total number of

friends. After obtaining the total number of friends, a value that should give more

insight about certain user interests is calculated.

Following the calculation of followers’ interest in the representative group, by

examining the data it can be seen that many of the users with the highest

calculated value of interest really are engaged a lot in the Twitter scientific

community, which means they often tweet, retweet and favorite scientific articles,

facts, news, etc.

When all followers are downloaded and their values of interest are calculated, the

process proceeds with downloading all of the followers’ friends – users that

1
 Aggressive following is defined as indiscriminately following hundreds of accounts just to

garner attention.

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 195 –

followers follow. Unlike downloading followers, downloading friends is much

less resource consuming because according to Twitter, every account can follow

2,000 users in total. Once someone has followed 2,000 users, there are limits to

the number of additional users can follow. This number is different for each

account and is based on user’s ratio of followers to following; this ratio is not

published. Follow limits cannot be lifted by Twitter and everyone is subject to

these limits, even high profile and API accounts. That said, just one request to the

Twitter REST API should suffice in order to obtain certain user’s friends.

When the process of downloading followers’ friends is complete, for each of these

friends a value is calculated by summing all values of interest already calculated

for their followers. This new value could be interpreted as how much certain

user’s followers are interested in science, or more generally whatever feature the

representative group is affiliated to. We call this value absolute similarity.

Dividing this absolute similarity by the number of followers results in a kind of

“per follower influence”, which we call relative similarity.

Now, for each of the representative users, the calculated value of similarity can be

compared to the originally assigned value of membership function. What occurred

in our experiment was that the calculated values were much smaller than the

assigned values, with mean ratio between the assigned and the calculated value

𝑐 = 2.57. Therefore, the final similarity value is then calculated by multiplying

the previously calculated relative similarity by the correction coefficient c. This

final similarity is in regards to Twitter users in the representative group, or more

specifically influential Twitter users in the field of science.

Here the algorithm stops and the expert inspects the calculated data most probably

by looking at the users with the highest calculated value of influence.

Of course, Twitter users that were not in the representative group are especially

interesting for examination because they are new influential Twitter users not

known as such previously. In addition to discovering new users, the results might

show that certain Twitter users that were originally put in the representative group

are actually not that influential at all. This gives expert an opportunity to review

and revise the data (for example, newly discovered influential users can be added

to the representative group) and the algorithm can be re-run hopefully yielding

even more discovery.

The results of discovering similar influential Twitter users in science show that the

proposed algorithm indeed works as intended.

When provided with 163 representative influential Twitter users in the category of

science, a total of 72 new users were discovered with a similarity measure above

0.5.

Some discovered users are shown in Table 2.

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 196 –

Table 2

A sample of discovered influential Twitter users in science

Name
Twitter screen

name
Description Similarity

Robert Simpson @orbitingfrog Astronomer 0.84

Stuart Clark @drstuclark Astronomer, journalist 0.71

CaSE @sciencecampaign
The campaign for Science &

Engineering
0.73

Chemistry

World
@chemistryworld Chemistry magazine 0.6

Armed with

Science
@armedwscience

US Defense Depart. science

and technology blog
0.68

NASA’s Juno

Mission
@nasajuno NASA’s mission to Jupiter 0.78

ESA Science @esascience
European Space Agency

science blog
0.81

Table 3 shows a comparison of the calculated values of membership function of

the representative users with those assigned by the expert. Many of the calculated

values don’t deviate much from the assigned values. The root error of the mean

square error for all 163 representative users is 0.09.

Table 3

A comparison between assigned and calculated value of membership function of sampled

representative users

Name
Twitter screen

name

Assigned

value
Calculated value

NASA @nasa 0.9 0.82

Scientific American @sciam 0.85 0.71

New Scientist @newscientist 0.85 0.82

WIRED Science @wiredscience 0.7 0.77

Neil deGrasse Tyson @neiltyson 0.8 0.84

CERN @cern 0.9 0.79

National Geographic @natgeo 0.7 0.66

Curiosity Rover @marscuriosity 0.8 0.69

Phil Plait @badastronomer 0.85 0.69

Richard Dawkins @richarddawkins 0.7 0.83

4.3 Performance Improvement

The previous subsection has shown that it is possible to find similar Twitter users

by feeding the proposed algorithm with a representative group of Twitter users

assuming download of all her/his followers. This section attempts to find out how

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 197 –

many followers per Twitter user are enough to be downloaded, but still be able to

get results comparable with those when all followers were downloaded.

Let’s say that the entire process of discovering 72 users with a similarity measure

above 0.5 from 163 representative users in the previous experiment was performed

in some reference time T. One could expect that, by taking a smaller portion of all

followers, a smaller number of users with a similarity measure bigger than 0.5 will

be found. So, let’s say that the discovered 72 users with a similarity measure

bigger than 0.5 is the highest precision possible with the provided data, because all

followers are taken, and this number of 72 users is considered as a reference value

for precision, which will be denoted D. Hence, the precision when all followers

are taken is p = 1, when D = 72.

In order to test if the algorithm performs well even if fewer followers are taken, it

was run again by downloading 50%, 25% and 10% of all followers for each

representative Twitter user. This portion of followers taken is denoted as 𝜌,

where 𝜌 ∈ [0,1] ∧ 𝜌 ∈ ℝ. However, it is important to note that by taking only a

portion of followers, the calculated similarity measure is expected to be

proportionally smaller. Therefore the calculated similarity is multiplied by

corresponding multiplier, i.e.:

𝜇𝑅(𝑑𝑠𝑢𝑖) =
𝑠𝑟(𝑑𝑠𝑢𝑖)

𝜌
 (13)

Table 4 shows the number of discovered users with similarity measure above 0.5,

the precision relative to the highest precision possible, the time needed for the

whole process, precision to time ratio and the root mean square error (RMSE) for

the representative users.

Table 4

Algorithm performance improvement results comparison

Portion of

followers

taken (𝝆)

Discovered

users (D)

Precision

(p)

Time

(T)

p/T Correction

coefficient

(c)

RMSE

1 72 1 1 1 2.57 0.09

0.5 67 0.93 0.54 1.72 6.13 0.11

0.25 58 0.8 0.28 2.86 12.33 0.13

0.1 51 0.71 0.12 5.92 27.65 0.18

As expected, even by taking less followers, comparable results are obtained in

much less time. By taking 10 times less followers (10%), the algorithm discovered

71% of the users that were discovered by taking all followers, but consuming

almost 10 times fewer resources. The root mean square error was only doubled by

taking 10% of the followers.

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 198 –

The main advantage of running the algorithm by taking less number of followers

is, of course, the less use of resources, primarily time. This allows an expert to run

the process by taking just 10% of followers, thus saving almost 90% time, but

sacrificing only 30% precision. Also, the discovered users can be added to the

representative set and then the algorithm can run again iteratively, discovering

even more users.

Conclusions

This paper proposes a novel algorithm for finding similar nodes in directed graphs.

The algorithm needs to be provided with the representative set of nodes that

expose some feature which should be discovered among other nodes in graph. The

representative set of nodes is described by values of their membership function,

which corresponds to the affiliation of the node with the desired feature. The

calculated measure of similarity with the representative nodes correlates to the true

value of the membership function. The algorithm is verified on the Twitter social

network case study by discovering influential Twitter users in the field of science.

A set of 163 representative influential Twitter users is fed to the algorithm, which

results in discovery of new 72 influential users in science.

Also, a proposal is made aimed at improving the algorithm’s efficiency in terms of

time and storage complexity, which relies upon assumption that many of the

members in the representative group share many common followers (which

evidently holds for the presented case study). The preliminary results indicate that

by reducing the number of downloaded followers to only 10% of the original set

the algorithm yielded comparable results with a tolerable increase in error.

Bearing in mind that influence in social media is very dynamic and vague concept,

the algorithm can be refined by a series of measures: user popularity (number of

followers), user activity (number of tweets), followers engagement on user activity

(number of retweets, favorites), combination of user popularity and activity, etc.

Also, each of these measures change over time, and these changes could be

tracked in order to provide some valuable trend information. By taking some of

these measures into account to certain Twitter user’s influence, it is reasonable to

assume that the whole algorithm could yield better results.

References

[1] D. M. Romero, W. Galuba, S. Asur, and B. A. Huberman, “Influence and

Passivity in Social Media,” in Machine Learning and Knowledge Discovery

in Databases, Springer, 2011, pp. 18-33

[2] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi, “Measuring User

Influence in Twitter: The Million Follower Fallacy,” ICWSM, Vol. 10, pp.

10-17, 2010

[3] “Social Media Marketing, Statistics & Monitoring Tools,”

Socialbakers.com. [Online]. Available: http://www.socialbakers.com/.

[Accessed: 28-Dec-2014]

Acta Polytechnica Hungarica Vol. 14, No. 2, 2017

 – 199 –

[4] “Simply Measured | Easy Social Media Measurement & Analytics,” Simply

Measured. [Online]. Available: http://simplymeasured.com/. [Accessed: 28-

Dec-2014]

[5] “Social Media Monitoring Tools & Sentiment Analysis Software,” Trackur.

[Online]. Available: http://www.trackur.com/. [Accessed: 28-Dec-2014]

[6] “Klout | Be Known For What You Love,” Klout. [Online]. Available:

https://klout.com/home. [Accessed: 28-Dec-2014]

[7] D. F. Nettleton, “Data mining of social networks represented as graphs,”

Comput. Sci. Rev., Vol. 7, pp. 1-34, Feb. 2013

[8] A. Rusinowska, R. Berghammer, H. De Swart, M. Grabisch, "Social

Networks: Prestige, Centrality, and Influence (Invited paper)". de Swart.

RAMICS 2011, Springer, pp.22-39, 2011, Lecture Notes in Computer

Science (LNCS) 6663. <hal-00633859>

[9] V. Halasz, L. Hegedus, I. Hornyak, B. Nagy: Solving Application Oriented

Graph Theoretical Problems with DNA Computing. In Proceedings of

Seventh International Conference on Bio-Inspired Computing: Theories and

Applications (BIC-TA 2012), AISC 201 (Springer) 2012, pp. 75-85

[10] T. Réti, I. Felde “On Some Properties of Pseudo-Semiregular Graphs,” Acta

Polytechnica Hungarica, Vol. 13, No. 6, pp. 45-65, 2016

[11] J. Kleinberg, “Authoritative Sources in a Hyperlinked Environment,” J.

ACM JACM, Vol. 46, No. 5, pp. 604-632, 1999

[12] M. Heymans and A. K. Singh, “Deriving Phylogenetic Trees from the

Similarity Analysis of Metabolic Pathways,” Bioinforma. Oxf. Engl., Vol.

19 Suppl 1, pp. i138-146, 2003

[13] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren,

“A Measure of Similarity between Graph Vertices: Applications to

Synonym Extraction and Web Searching,” SIAM Rev., Vol. 46, No. 4, pp.

647-666, Jan. 2004

[14] L. A. Zager and G. C. Verghese, “Graph Similarity Scoring and Matching,”

Appl. Math. Lett., Vol. 21, No. 1, pp. 86-94, Jan. 2008

[15] M. Nikolic, “Measuring Similarity of Graph Nodes by Neighbor Matching,”

Intell. Data Anal., Vol. 16, No. 6, pp. 865-878, 2012

[16] L. Kovács, G. Szabó, “Conceptualization with Incremental Bron-Kerbosch

Algorithm in Big Data Architecture” Acta Polytechnica Hungarica, Vol. 13,

No 2. pp. 139-158, 2016

[17] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity Flooding: A

Versatile Graph Matching Algorithm and its Application to Schema

Matching,” in Data Engineering, 2002. Proceedings. 18
th

 International

Conference on, 2002, pp. 117-128

M. Jocic et al. Managing Big Data Using Fuzzy Sets by Directed Graph Node Similarity

 – 200 –

[18] E. A. Leicht, P. Holme, and M. E. Newman, “Vertex Similarity in

Networks,” Phys. Rev. E, Vol. 73, No. 2, p. 26120, 2006

[19] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Effects of

User Similarity in Social Media,” in Proceedings of the fifth ACM

international conference on Web search and data mining, 2012, pp. 703-712

[20] C.-W. Hang and M. P. Singh, “Trust-based Recommendation Based on

Graph Similarity,” in Proceedings of the 13
th

 International Workshop on

Trust in Agent Societies (TRUST). Toronto, Canada, 2010. [Online].

Available: https://www.csc2.ncsu.edu/faculty/mpsingh/papers/mas/aamas-

trust-10-graph.pdf

[21] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring Networks of

Diffusion and Influence,” ACM Trans. Knowl. Discov. Data, Vol. 5, No. 4,

pp. 1-37, Feb. 2012

[22] J. Leskovec, A. Singh, and J. Kleinberg, “Patterns of Influence in a

Recommendation Network,” in Advances in Knowledge Discovery and

Data Mining, Springer, 2006, pp. 380-389

[23] M. S. Sunitha and S. Mathew, “Fuzzy Graph Theory: a Survey,” Ann. Pure

Appl. Math., Vol. 4, No. 1, pp. 92-110, 2013

[24] J. Vascak, L. Madarasz, “Adaption of Fuzzy Cognitive Maps - a

Comparison Study” Acta Polytechnica Hungarica, Vol. 7, No. 3, pp. 109-

122, 2010

[25] L. A. Zadeh, “Fuzzy Sets,” Inf. Control, Vol. 8, pp. 338-353, 1965

[26] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a Social Network

or a News Media?,” in Proceedings of the 19
th

 International Conference on

World Wide Web, 2010, pp. 591-600

[27] “REST APIs,” Twitter Developers. [Online]. Available:

https://dev.twitter.com/rest/public. [Accessed: 26-Aug-2015]

[28] “API Rate Limits,” Twitter Developers. [Online]. Available:

https://dev.twitter.com/rest/public/rate-limiting. [Accessed: 26-Aug-2015]

