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Radiology images are generally disconnected from the
metadata describing their contents, such as imaging
observations (“semantic” metadata), which are usu-
ally described in text reports that are not directly
linked to the images. We developed a system, the
Biomedical Image Metadata Manager (BIMM) to (1)
address the problem of managing biomedical image
metadata and (2) facilitate the retrieval of similar
images using semantic feature metadata. Our
approach allows radiologists, researchers, and stu-
dents to take advantage of the vast and growing
repositories of medical image data by explicitly linking
images to their associated metadata in a relational
database that is globally accessible through a Web
application. BIMM receives input in the form of
standard-based metadata files using Web service and
parses and stores the metadata in a relational data-
base allowing efficient data query and maintenance
capabilities. Upon querying BIMM for images, 2D
regions of interest (ROIs) stored as metadata are
automatically rendered onto preview images included
in search results. The system’s “match observations”
function retrieves images with similar ROIs based on
specific semantic features describing imaging obser-
vation characteristics (IOCs). We demonstrate that the
system, using IOCs alone, can accurately retrieve
images with diagnoses matching the query images,
and we evaluate its performance on a set of anno-
tated liver lesion images. BIMM has several potential
applications, e.g., computer-aided detection and diag-
nosis, content-based image retrieval, automating med-
ical analysis protocols, and gathering population
statistics like disease prevalences. The system pro-
vides a framework for decision support systems,
potentially improving their diagnostic accuracy and
selection of appropriate therapies.
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INTRODUCTION

Purpose

E xplosive growth in the number of biomedical
images obtained in radiology requires new

techniques to manage the information collected by
radiologists.1 “Image metadata” refers to informa-
tion about an image, e.g., the modality from which
it was derived, the acquisition parameters, the
timing of imaging, regions of interest (ROI) it
contains, anatomy, radiology observations, and
annotations created by radiologists. These meta-
data provide crucial descriptive information that
potentially could be used to search for images.
Picture archiving and communication systems
(PACS) can address the image data management
problem,2 but PACS generally lack any facilities
for managing or querying images based on image
metadata that is recorded during interpretation. Our
work addresses both (1) the needs of managing
image metadata and (2) using image metadata in
applications. We are developing a system that
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interfaces with a PACS and uses emerging
standards for managing image metadata and
enables their use by radiologists, students, and
researchers. This tool could improve radiologist
interpretations by enabling online decision support
and might facilitate biomedical researchers to
access image information.
The annotations that radiologists create on

images are particularly important image metadata
since they are used to identify and delineate lesion
borders, to quantify features of ROI in lesions, and
to note visual observations of those lesions.
However, these annotations are not directly acces-
sible for future analyses because they are typically
captured as image graphics. Imaging observation
characteristics made by radiologists may also be
recorded in radiology reports, but there is usually
no reference to the specific image pixels that
correspond to the observation, and problems
with synonymy, negation, and completeness
hinder machine processing and search.3 As a
result, it is currently not possible to retrieve
images based on their features in a clinical
environment, e.g., one cannot query the PACS
to retrieve all “hypervascular” lesions. In order
to achieve such functionality, methods are
needed to make medical image metadata acces-
sible for search, which, in turn, could enable
newly annotated images to be queried against
the database of existing images and the results
ordered by decreasing similarity to support
diagnostic decisions. In fact, previous work has
shown that querying a database of medical image
metadata and retrieving similar images can improve
diagnosis.4–9 However, these systems were specifi-
cally designed to answer research questions about
decision support and are not easily integrated into a
PACS-based environment.
The primary goal of this study was to develop

and evaluate methods to manage semantic annota-
tion metadata and to create an application enabling
users to search for and retrieve images according
to particular image metadata. A secondary goal
was to develop a demonstration application that
uses image metadata for decision support in liver
CT by retrieving similar images based on the
image metadata related to radiologist observations.
We implemented a Web-based application that
enables radiologists and researchers to search for
images in flexible ways, by anatomy, findings, or
other semantic metadata. Our application also

allows one to use an annotated image as a query
to find similar images.

MATERIALS AND METHODS

Our system, the Biomedical Image Metadata
Manager (BIMM), is driven by a Web application
(http://bimm.stanford.edu) that makes image meta-
data searchable and linked to the images, enabling
query of image databases and retrieval of similar
images based on image metadata. Examples of
image metadata are the quantitative and qualitative
information in images and the content normally
stored in free text reports. We followed a spiral
model of system design, iteratively gathering
requirements, identifying tasks, building proto-
types, and acquiring feedback. In the next sub-
section, we describe the system’s design and
architecture. Then, we cover four main use cases
covered in the following subsections: sending
metadata to BIMM, viewing summary tables, text
image search, and similar image retrieval.

System Design and Architecture

Figure 1 depicts the system architecture and its
interactions with client applications. Components
of the Web application are enclosed in the dotted
box. The Web application was developed using
Ruby on Rails [http://rubyonrails.org] and MySQL
and hosted on a computer using the Linux
operating system running the LiteSpeed Web-
server [http://www.litespeedtech.com/]. Its archi-
tecture follows the model, view, controller pattern
used by the Ruby on Rails framework. The
models, views, and controllers integrate the func-
tions of the associated sequence query language
database, the Web browser, a PACS, and the Web
services. Black arrows represent sending metadata
to the system and gray arrows depict metadata
retrieval using a Web browser. Solid gray arrows
show the user’s Web browser requesting the
system to select a particular view. The view
interacts with the appropriate models representing
the different types of information stored and
dynamically generate a Web page backed by the
database. Hollow gray arrows show sending the
appropriate metadata from the database to the user
in the form of a Web page generated by the chosen
view. Light gray arrows similarly describe how the
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Web page automatically retrieves appropriate
images from the PACS using a Web service.
These processes are described in more detail in
the following subsections.

Sending Metadata to BIMM

Inputs to BIMM are encoded using the Annota-
tion and Image Markup (AIM) standard,10–12 which
was recently developed for description and storage
of image metadata. We used the physician annota-
tion device (iPAD),13 an OsiriX14 plug-in for
structuring reports to be consistent with an ontol-
ogy, capturing ROIs, and generating AIM files,
collected metadata from radiologists for each image
used in our study (not to be confused with the more
recently introduced Apple Inc. tablet device). iPAD
provides output of image annotations in the AIM
standardized format, which is advantageous
because the image content is explicit and machine
accessible. iPAD controls the terminology specified
by an ontology or lexicon; for our study, we used
the RadLex15 controlled terminology. iPAD col-
lects information about image anatomy, imaging

observations and their characteristics, and quantita-
tive assessments in AIM-computable format. iPAD
sends the AIM annotations to BIMM using a
representational state transfer-style Web service
(see black arrows in Fig. 1).
This controller parses and stores the information

from the AIM file in the database. When a user
communicates to the system using a Web browser
using a uniform resource locator, a hypertext
transfer protocol (HTTP) request is sent to a
controller which selects the appropriate view to
display to the user through the Web browser.
Depending on which view is selected by its uniform
resource locator, the appropriate metadata are
retrieved from the database and sent to the client.
Digital ximaging and communications in medicine
(DICOM) images are sent to the Web browser from
the PACS using a DICOM Part 18, Web Access to
DICOM Persistent Objects service.16 LibXML was
used to parse the AIM data [http://xmlsoft.org/]; the
parsing and capturing code was written in Ruby
using the LibXML-Ruby helper [http://libxml.
rubyforge.org].

Data Summary View

BIMM provides a summary view of the data-
base’s contents, listing groups of annotations
organized according to patient, study, series, or
image, as selected by the user. Figure 2 shows the
patient summary view, which contains two tables;
a summary table (top) that contains data describing
all of the patients that have had annotations
uploaded to the system and a detailed table
(bottom) with statistics describing the types of
annotations made for each patient. Filtering
options, shown in the blue panel at the top of the
figure, allow users to select subsets of the database
for viewing and downloading.

Image Search

Users can query BIMM for images using text
entered into a Web browser. The BIMM search
page (http://bimm.stanford.edu/search) allows
users to enter queries, select a search category
(e.g., anatomic entities), and browse or download
the search results.
Storing image metadata in a relational database

compliant with the AIM schema allows users to
search for any image metadata in stored in the
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Fig 1. BIMM system architecture and interactions. Black
arrows represent the process of sending metadata to the
system. Initially, an ontology specifies a lexicon, e.g., the
RadLex set of terms and sends it to iPAD, which captures the
radiologist’s image annotation. iPAD sends these metadata
using the AIM format to the appropriate controller using a Web
service. The controller interacts with the models to store the
metadata in an SQL relational database. Gray arrows represent
the process of retrieving metadata and images from the system.
Solid gray arrows indicate requests sent from the client applica-
tion, e.g., a Web browser. The browser sends an HTTP request
to a controller that selects the appropriate view, which
generates a Web page and sends it to the user. Hollow gray
arrows indicate metadata sent by the system to the user’s Web
browser in the form of a Web page. The solid light gray arrow
shows the request for image data from the PACS by the Web
browser via the WADO protocol. Hollow light gray arrows show
the DICOM images from the PACS being sent to the user.
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AIM files, such as anatomy, imaging observations
(IOs), imaging observation characteristics (IOCs),
and diagnoses. The image search page allows users
to enter search terms which are used to query the
BIMM database (Fig. 3). DICOM images stored in
the PACS corresponding to the metadata are linked
via the DICOM unique identifier (UID) contained
in the image metadata and may therefore be
retrieved. The image metadata also contains the
coordinates of ROIs drawn in the image, which
BIMM uses to render the ROI on the images that
are displayed with the search results (Fig. 3).
Two types of search boxes are available: “text

search” and “imaging observations/characteristics
only” search. The “text search” box finds results
matching the query string anywhere in the AIM
image metadata. The four “imaging observations/
characteristics” boxes allow users to search image
metadata using controlled terms (e.g., from
RadLex), joined by the logical AND operation.
Combining both types of queries together joins the
results using the AND operation.
Image search results are sorted by upload date

from the most recent; by default, only the anatomic

locations and IOs with their characteristics are
shown to users (Fig. 3). However, selecting the
“show metadata” checkbox displays all of the
metadata associated with each image.

Retrieving Similar Images

The BIMM application implements a “match
observations” feature enabling users to search for
images containing similarly described lesions to
one selected in the database. This function is
implemented by searching BIMM for images
having the most IOCs in common with the query
image. The user chooses a query image and selects
which IOCs are desired for retrieving similar
images, i.e., similar images must contain all of
the selected IOCs. Then, the user clicks the match
observations link. Figure 4 provides some sample
results of using this feature. From left to right, the
query is shown first, followed by the three most
similar images according to matching IOCs.
The images returned are ranked according to

the scoring function, i.e., the number of match-
ing IOCs, with images having all observations

Fig 2. Representative summary table page (http://bimm.stanford.edu/patients). The user can generate custom datasets and views
using the filtering options available within the blue banner. Customized datasets are downloadable, using buttons and checkboxes within
the gray bar below the blue banner, in several formats. Selecting multiple options applies all filters in combination to generate custom
datasets. Applying multiple options provides a cumulative effect on the resulting table.
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matching the selected image appearing before
those having fewer matching observations. In
accordance with the AIM schema, for each IO,
e.g., “mass,” associated with an annotated
image, there can be one or more associated
IOCs, e.g., “smooth margins.”
For our evaluation, we considered only the IOCs

associated with the “mass” IO and define the
similarity between two images in terms of the
number of associated IOCs they share. Mathemati-
cally, we compute the pairwise image similarity
score by using the function

sðci; cjÞ � jci \ cjj

where Ci and Cj are the sets of IOCs corresponding
to “mass” in the ith and jth images, respectively,
and |·| denotes the counting measure. For example,
if a lesion has three IOCs associated with “mass,”
then perfectly matching images would have a score
of 3, while less accurate matches may have scores
of 2, 1, or 0 matching IOCs; if some images have
few IOCs, they cannot yield a higher score than
images with more IOCs. Since the retrieval results
were analyzed on a per-lesion basis, scaling the
function to normalize its value has no effect on our
evaluation, so it was avoided to maintain the
function’s commutativity and to unambiguously

show the number of IOCs that are matching from
score values.

Image Database Evaluation

Under IRB approval for retrospective analysis of
de-identified data, we obtained 74 DICOM images
from 34 patients, containing a total of 79 liver
lesions. We selected lesions of each type that
radiologists would consider typical examples, as
follows: cysts were nonenhancing, water density,
circumscribed lesions. Hemangiomas showed typ-
ical features of discontinuous, nodular peripheral
enhancement with fill-in on delayed images.
Metastases were hypodense, of soft tissue density,
enhanced homogeneously with contrast, and had
less well-defined margins than cysts. These three
types of lesions are common and span a range of
image appearances. In addition to these lesion
types, we added five other types to our initial
database (Table 1). In Table 1, rows are sorted by
the number of lesions (L) that are present for each
type. Scans were acquired during the time period
February 2007 to August 2008 and used the
following range of scan parameters: 120 kVp,
140–400 mAs, and 2.5–5 mm slice thickness.
Using OsiriX, a radiologist manually defined each

lesion ROI coordinates and used iPAD to record

Fig 3. Sample image search page. Results for a “focal nodular hyperplasia” text query with “imaging observations/characteristics”
selected. This query returned 13 images from our database; only the first four, sorted by upload date, are shown. AIM UIDs, unique identifiers
defined by the AIM schema and automatically generated by iPAD, are listed above each image.
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semantic descriptors for the image (from 161
possible choices). Lesion ROIs were 2D polygons
manually defined in OsiriX. The annotations were
uploaded to BIMM using the AIM standard.

Performance Evaluation

To evaluate the ability of the matching algo-
rithm to find similar images, we tested the
sensitivity and specificity of retrieving images of
the same diagnosis in our database of N=79
lesions belonging to eight different types (see
Table 1 for details). There were a total of 72
unique IOCs present among the 79 annotations we
studied; the minimum number, maximum number,
mean number, and standard deviation of the
number of IOCs per annotation were 8, 16, 10.6,
and 1.8, respectively. We performed a leave-one-
out test on the algorithm by querying each lesion
against the remaining lesions in the database and
assessed the sensitivity and specificity for retriev-
ing images having the same diagnosis as the query

image. The sensitivity and specificity of the top K
retrieval results, with K ¼ 1; . . . ;N � 1; were
computed by using a Ruby script to automate the
procedure, without using a Web browser to
manually perform each query an collect the results.
For a fixed value of K, the sensitivity (true-positive
rate) was calculated by the number of identical
diagnoses, i.e., true positives in the K query results
divided by the total number of images in the

Table 1. The Types of Diagnoses and the Number of Lesions (L)
of Each Type

Diagnosis Type L

Cyst 25
Metastasis 24
Hemangioma 14
Hepatocellular carcinoma 6
Focal nodular hyperplasia 5
Abscess 3
Laceration 1
Fat deposition 1

Fig 4. Example of similar image retrieval results. User entered a query, metastasis, and clicked “match observations” on one of the text
search results. Similar images are retrieved in order of match score, indicated above each image. The matching IOCs that contributed to the
computed score are checked. The first image shows the query image, followed by the three most similar images retrieved.
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database with the same diagnosis as the query
image. The specificity (the true negative rate) is
calculated by the number of non-identical diag-
noses in the K query results divided by the total
number of non-identical diagnoses in the database.
Two of the lesions in the database were repre-
sented only as a single image (“fat deposition” and
“laceration”); these were excluded from the eval-
uation since there would be no other examples of
these lesions in the database during the leave-one-
out testing. The performance of the remaining N−
2 cases were analyzed using mean receiving
operator characteristic (ROC) curves. Individual
ROC curves for each lesion were defined by the
values of the sensitivity and specificity computed
for each value of K. We used piecewise linear
interpolation to define 11-point curves to compute
the mean values at each of the 11 sensitivity
coordinates. The area under the ROC curve

indicates the potential effectiveness within the
framework of a decision support system, with the
maximum area of 1 being optimal.

RESULTS

We manually verified that the information
stored in the database matched the information
from the AIM files for all cases studied by
inspecting the metadata elements individually for
each case for semantic features and by visually
observing the ROI rendered from the 2D spatial
coordinates. We manually validated that the
“match observations” function correctly imple-
mented the scoring function correctly when con-
structing similar image retrieval results by
counting the number of matching IOCs and
comparing this to the reported score. All of the

Fig 5. a–d 11-Point ROC curves. Plots show the sensitivities and specificities for retrieving images having the same diagnosis as a
query image using a similarity score based on the number of matching IOCs. Points with error bars represent average sensitivity/
specificity ±SD using each image of the specified lesion type, i.e., a cyst, b metastasis, c hemangioma, and d all 77 lesions (see Table 1
for lesion types), as the query image. Gray points indicate best and worst cases over all queries of the specified type.
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verification and validation procedures were com-
pleted successfully.
The results of our evaluation using our scoring

function are shown in Figure 5. Each 11-point
curve represents the effect of varied numbers of
similar images retrieved on the sensitivity and
specificity of the retrieval results. Average values
over the samples of liver lesions are shown in
black, error bars and best/worst cases are shown in
solid gray lines and open squares, respectively.
Panels a through c show the results for the three
diagnoses containing more than ten samples; panel d
shows the results for all types of lesions combined.
The areas under the mean ROC curves are shown
parenthetically; these represent the overall effective-
ness of the algorithm for classifying lesions by
diagnosis based on their IOCs.
All queries yielded ROC curves above the

diagonal (dashed line), indicating that the retrieval
results favor lesions with similar diagnoses. For all
types of lesions i with a sample size Ni910, i.e.,
cysts, metastases, and hemangiomas, the observed
mean ROC curve area was greater than 0.8 (Fig. 5
panels a–c). We also combined the 11-point ROC
curves for all queries emcompassing six different
lesion image types (cyst, metastasis, hemangioma,
hepatocellular carcinoma, focal nodular hyperpla-
sia, and abscess). This mean ROC curve’s area
was 0.927, suggesting that the method is highly
accurate, overall. However, note that while mean
performance was very high, some query lesions
produced poor results, as shown by the worst case
indications on Figure 5. This is likely caused by
poor or incomplete annotation in particular cases
and could be improved with more stringent
annotation requirements.

DISCUSSION

Managing biomedical image metadata is crucial to
enabling researchers and clinicians to use the infor-
mation in images for investigation and medical care.
While an institution’s PACS or, for that matter, a
collection of PACS on the internet could potentially
be used for decision support by retrieving images
containing lesions with a given diagnosis, or having
similar appearance to those being reviewed by the
radiologist, current PACS implementations do not
allow query for images containing particular types of
lesions or diagnoses. Our work is relevant in

addressing these needs. The query functionality of
BIMMmight be useful in cases when a radiologist is
not confident regarding the diagnosis and could
enable a researcher who wishes to develop image-
processing algorithms to access particular images
using the summary BIMM pages. In addition,
research groups from geographically separated loca-
tions can combine their data using the globally
accessible BIMM application. Searchable databases
of image metadata could also be important for
radiology research and education by enabling radiol-
ogists to find patient cohorts with particular image
features.
There are several image databases available,

and more under development. Most focus on
warehousing images, and generally contain little
associated image metadata. For example, the
National Biomedical Imaging Archive [NCBI.
https://cabig.nci.nih.gov/tools/NCIA] is a public
database of biomedical images, but the only image
metadata which this resource manages (other than
occasionally supplementary data stored in separate
files) is derived from the DICOM header. ARRS
GoldMiner17 contains images from journal articles
and their associated captions, but no other image
metadata is available; image search is based only
on terms in the associated (unstructured) captions.
BIMM is unique in that it can manage a diversity
of image metadata, as specified in the AIM
standard.
Some existing systems address the problem of

utilizing biomedical image metadata for several
applications. The Yale Image Finder uses data
mining to extract textual metadata that are present
in the images themselves.18 ALPHA is a system
prototype implementing scalable semantic retrieval
and semantic knowledge extraction and represen-
tation using ontologies, allowing semantic and
content-based queries as well as ontologic reason-
ing to facilitate query disambiguation and expan-
sion.19 IML, an image markup language, provides
a standard for describing image metadata and
annotations and allows queries by an image
client.20 The MedImGrid system allows semantic
and content-based querying using a scalable grid
architecture.5 The BIMM system is distinct from
the prior work in that it interfaces with a PACS, it
supports the use of controlled terminology, it uses
a standard for sharing image metadata, it uses
metadata describing image features to retrieve
similar images based on these features, it provides

746 KORENBLUM ET AL.

https://cabig.nci.nih.gov/tools/NCIA


Web services for communicating with client
applications, and it allows sharing of de-identified
images and their annotations using a globally
accessible Web interface.
In addition to searching image metadata, BIMM

also provides image similarity search capabilities,
identifying and ranking similar images using a
scoring function based on semantic features asso-
ciated with images. As shown in Figure 5, our
approach achieved high sensitivity and specificity
for lesion diagnosis when using the IOCs of a
query image to retrieve similar images. Our prelimi-
nary results appear promising, and they reveal some
interesting features about variability in the accuracy
of the method depending on the diagnosis. The
results were best for hemangiomas and cysts, and not
as good for metastases. The features describing
hemangiomas and cysts tend to be specific and
non-overlapping, whereas the features of metastases
can overlap that of other lesions.
One limitation of our approach is that it requires

human annotation, currently performed using the
iPAD application. At the same time, this is a key
attribute of our system, as the human perceptual
data captured in BIMM is uniquely informative.
While it might be challenging to introduce the
current implementation of the iPAD interface into
the routine radiology workflow, improvements in
the user interface could make this practical in the
future. Incorporating voice recognition reporting
and controlled terminologies such as RadLex and
improving the user interface could streamline
structured data collection from images. Another
limitation is that our dataset of 79 liver lesions is
not very large, contains multiple lesions from the
same patients, and contains a limited set of
diagnoses; larger databases with more varied image
types and diagnoses may be more challenging. We
are currently building a larger image database to
further validate our results. An alternative to Web-
based exchange of image metadata is a distributed,
large-scale “grid” of computers from multiple
administrative domains, e.g., the National Cancer
Institute’s caGrid project.21 It provides a set of
services, toolkits for building and deploying of new
services, and application programming interfaces for
developing client applications.
There are improvements that we could make in

our algorithm for finding similar images. Instead of
simple frequency of matching IOCs, we could use
machine-learning or other optimization algorithms to

obtain an optimized set of weights for our scoring
function to weight the contributions of each match-
ing IOC in the total score. Such optimization would
require a larger set of training data, which we will be
pursuing as we expand our database of case material.
We plan to optimize our scoring function in the
future to maximize the system’s similar image
retrieval performance. In addition, our current
approach uses semantic features for finding similar
images; pixel features are also informative (e.g.,
texture and lesion boundary22). We will incorporate
pixel features into BIMM in the future to improve
similar image retrieval results.

CONCLUSIONS

We developed a searchable image metadata
repository and methods for retrieving similar
images using semantic features from their annota-
tions. Preliminary results of the effectiveness of
our image retrieval approach appear promising,
and future work will focus on increasing the size
of our dataset and adding and improving the
imaging features included. As our reference dataset
grows, we will obtain more clinically relevant
evaluation results than those obtained from our
single type of images (liver CT), compared to
searching an entire PACS database containing
multiple modalities and lesion types.
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