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Managing Capacity for Telecommunications
Networks Under Uncertainty

Yann d’Halluin, Peter A. Forsyth, and Kenneth R. Vetzal

Abstract—The existing telecommunications infrastructure in
most of the world is adequate to deliver voice and text applications,
but demand for broadband services such as streaming video and
large file transfer (e.g., movies) is accelerating. The explosion in
Internet use has created a huge demand for telecommunications
capacity. However, this demand is extremely volatile, making
network planning difficult. In this paper, modern financial option
pricing methods are applied to the problem of network investment
decision timing. In particular, we study the optimal decision
problem of building new network capacity in the presence of
stochastic demand for services. Adding new capacity requires a
capital investment, which must be balanced by uncertain future
revenues. We study the underlying risk factor in the bandwidth
market and then apply real options theory to the upgrade decision
problem. We notice that sometimes it is optimal to wait until the
maximum capacity of a line is nearly reached before upgrading
directly to the line with the highest known transmission rate (skip-
ping the intermediate lines). It appears that past upgrade practice
underestimates the conflicting effects of growth and volatility.
This explains the current overcapacity in available bandwidth.
To the best of our knowledge, this real options approach has not
been used previously in the area of network capacity planning.
Consequently, we believe that this methodology can offer insights
for network management.

Index Terms—Network planning, real options, uncertain
demand for capacity.

I. INTRODUCTION

I N THE PAST, bandwidth was traded infrequently, with deals
taking months to complete. Performance, which can be mon-

itored in terms of packet losses and/or response times (ping
times), was rarely considered. However, in May 1999, Enron
proposed the development of a global bandwidth commodity
market. The concept of a pooling point where bandwidth market
players could settle contracts in a matter of seconds was intro-
duced. Today, long-term contracts (e.g., indefeasible rights of
usage or IRUs) are being replaced by shorter term contracts,
and bandwidth is moving toward being effectively traded on de-
mand. With a forecasted notional size exceeding 1 trillion dol-
lars annually [1], the bandwidth market is expected to become
similar in size to large commodity markets.
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The bandwidth market is still in its infancy and high-quality
detailed market data do not exist yet. The volatility present in
the demand market for capacity requires the development of
risk management and investment decision systems. As in most
corporate investment decisions, timing is crucial in a competi-
tive market. The traditional approach of valuing an investment,
which consists of using the net present value (NPV) rule to de-
cide whether to invest, ignores the opportunity of waiting for
new information before committing to the investment. As an al-
ternative, the real options approach [2], [3] can be used to effec-
tively model investment flexibility.1 A number of publications
discuss the use of real options theory for optimal investment
timing (e.g., [2]–[4] and references therein), but researchers in
network planning and management do not appear to have used
these concepts [5], [6].

In this paper, we apply a real options framework to the
problem of the optimal timing investment into new capacity.
Given a set of lines with different characteristics, we aim to
find the percentage (in terms of the maximum transmission rate
of a line) at which it is optimal to upgrade. To the best of our
knowledge, this approach has not been used previously. Con-
sequently, we believe that this methodology can offer insights
for the telecommunications industry. The outline of this paper
is as follows. Section II describes the modeling framework;
Section III presents the mathematical model and introduces an
upgrade decision algorithm; Section IV presents the estimated
model parameters; and Section V contains different simulated
results. The conclusions are provided in Section VI.

II. BACKGROUND

In some cases, the fundamental factor driving profitability is
the amount which can be sold, as opposed to the price received
per unit. The owner of a fiber optic network faces this type of
situation. New wavelength services allow the user to purchase
limited capacity for days or even hours. Effectively, users pay
only for the bandwidth that they use. Consequently, the revenue
to the owner of the network is determined by the prevailing
price and the amount used (demand for capacity). A study of
the bandwidth market reveals some interesting facts. As will
be discussed later in Section V, the demand for bandwidth
is highly volatile. Our estimate of volatility is about 95%

1Note that the distinction between the real options approach and the NPV
approach is more one of degree than one of kind. The NPV approach, as tradi-
tionally applied, fails to sufficiently account for much of the optionality inherent
in corporate investments. The real options approach focuses on this optionality.
Provided that the values of all options are appropriately included in the analysis,
the NPV approach will give the same conclusions as the real options approach.
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TABLE I
PRICES FORDIFFERENTTRANSMISSIONRATES. PRICES ARE IN$/YEAR/DS-0

MILE. A DS-0 LINE HAS A MAXIMUM TRANSMISSIONRATE OF 64 kb/s

(see Appendix B). This can be compared with a volatility of
20%–40% for most major stock market indexes. In contrast, the
price per bit per second is falling exponentially (see Table I).
This phenomenon is in fact typical of computer components.
Relentless technological development decrease costs while
demand increases exponentially. An example of this effect can
be found in storage media. The price per megabyte of disk
drives has decreased exponentially. However, a disk manu-
facturing plant can be profitable as long as demand increases
rapidly enough to offset falling prices due to technological
improvements.

This situation is in contrast with traditional financial markets
where price, and not demand, is the dominating factor (in other
words, in financial markets it is almost always assumed that
demand curves are perfectly elastic). The current inefficiencies
in the bandwidth market can be explained by the fact that
deregulation is recent and consumers are paying for capacity
rather than paying for consumption. For example, most Internet
Service Providers (ISPs) have flat base fees for their clients,
but usage is very different across consumers. In an efficient
market, price should reflect the actual amount of bandwidth
used by a consumer. Already, some companies have started
to charge their customers based on usage (e.g., Wavelength
Service contracts). This is similar to telephone companies,
which charge long distance phone calls on a minute usage
basis, or electricity companies, which charge according to
consumption. Consequently, we believe that as the bandwidth
market becomes more efficient, contracts will be based on
bandwidth spot prices. However, during the current period of
transition, we do not believe that there is a liquid enough
spot market to value contracts and investments based on these
prices. Demand for capacity is, in our opinion, the largest
uncertainty in bandwidth investment. Consequently, investment
decisions should be valued based on demand. However, we
must emphasize that this situation will be only temporary, i.e.,
for the next few years at most. We expect that, as bandwidth
market inefficiencies disappear, price and demand may both
be determining risky factors. We note that a model for the
bandwidth market which includes both price and quantity
effects has been described in [7]. Nevertheless, we should
point out that demand may always be the main underlying
source of risk. To go back to our example of disk storage, the
price per megabyte has decreased fairly smoothly over the last
few years, while demand for storage media has been more
uncertain. Technology-based industries seem to be “demand
pushed,” i.e., technology keeps shifting the supply curve [2].
For example, at today’s level of demand for storage, most
users could not use a one terabyte disk drive, even if it was
very cheap.

III. M ATHEMATICAL MODEL

A. Background on Option Theory

Before proceeding further, let us review the basics of options.
A financial optiongives its holder the right, but not the obliga-
tion, to trade (buy or sell) at a future time for a specified price.
For example, an investor may own an option to purchase a par-
ticular stock for $50 on June 1. If the price of that stock on June
1 is higher than $50, e.g., $60, then the option has turned out to
be valuable since the investor can use it to purchase the stock for
$50 and then sell the stock immediately for a profit of $10. Con-
versely, if the stock price on June 1 is lower than $50, the option
becomes worthless: the investor would not use it to pay $50 to
own the stock when it could be purchased at a lower price on
a financial exchange. The field ofoption pricingis largely con-
cerned with determining the fair price to pay for options. Over
the past three decades, this has been a very active area of re-
search in finance (see [8] or [9] for an overview).

The related field ofreal optionsextends the basic ideas of
option pricing to corporate investment decisions. For example,
a network planning manager may buy an option on a bundle of
dark fiber lines. This gives the manager the right, but not the
obligation, to buy this bundle of lines in six months at a certain
price . Six months later, the manager will decide if it is still
necessary to buy the dark fiber lines. If so, the manager will
compare the exercise price of the optionto the current price

of the bundle. If , the option will be exercised to
buy the bundle of dark fiber lines for . On the other hand, if

the option will not be exercised. The bundle will simply
be purchased at the current price of.

Every option has some defining characteristics. Two key ones
which we need to consider for our application are:

• an expiry date (e.g., six months): the last date at which
the option can be exercised. Note that some options have
multiple possible exercise dates;

• astrike price ( ): the price at which one party has agreed
to pay the other party should the option be exercised. This
is also known as the exercise price.

In addition, in our real options setting we must define:

• an investment horizon: the time at which all equipment
is written off, and the value of any contracts/rights is con-
verted to cash.

An underlying random factor determines the value of an option
contract as an investment. In financial markets, this is usually
the price of the asset for which the option can be used. However,
in our case, we will consider usage to be the underlying factor
during the transition from regulated to deregulated markets. In
order to use this factor, we need to show how we can model the
demand for capacity over time.

B. Mathematical Model

Let represent the demand for capacity (measured in
megabits). The different possible paths followed by the demand
can be modeled as a stochastic process given by

(1)
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where is the drift rate or growth rate, is the volatility, and
is the increment of a Wiener process (readers unfamiliar

with these ideas should consult [8], [2], and [9] for a simple
introduction).

Based on hedging arguments (see [8], [9], and Appendix A),
a partial differential equation for the value of an investment

is found to be

(2)

where is the value of the investment in dollars ($),
is the revenue term in $/time,is the risk free interest rate, and

is the market price of risk. This latter variable is a function
of . It will hereafter be referred to as the “telecom market
price of risk.” Essentially, captures the tradeoffs between risk
and return for investments that are dependent on. A complete
derivation of the equation is given in Appendix A.

In the pricing of financial options, the price of the option at
the expiry date is known (as a function of the underlying stock
price), but the price of the option before expiry is unknown (and
that is what we would be attempting to determine). In our case,
we consider an investment horizon. Mathematically, we then
have

Although the methods discussed in this paper can be used with
arbitrary , for simplicity we will restrict attention to the
case where the value of all capital investment atis assumed
to be zero, i.e., . We will take this investment horizon
to be years. This may be somewhat pessimistic, but in the
rapidly changing field of telecommunications, this is perhaps an
appropriate length of time to consider.

Since the value of the investment is known at , the for-
ward equation (2) is transformed into a backward equation by
substituting (which evolves from the future invest-
ment horizon date back to the present date) to give

(3)

In the following, we describe the factors that need to be taken
into account when determining the optimal decision to upgrade
and their effects on our initial modeling equation (3).

C. Payment

We assume that the owner of the line receives continuous
payments. For line of maximum transmission rate (in
megabits), we have

(4)

where is the length of the line (in miles) and is the
spot price at time for bandwidth (in $/year/mile/megabit). The
payment received can be no larger than the maximum transmis-
sion rate of the line multiplied by the price and the length of the
line. We assume that the price is a known decreasing function of
time [1]. Note that this does not create an arbitrage opportunity

Fig. 1. We consider a set of linesQ with maximum transmission rateQ . We
solve a set of PDEs (7) for each upgrade possibility.

because unused bandwidth cannot be stored for later use. This
function is given by

where is the current spot price andis a decay parameter de-
termining the rate at which the spot price decreases. Note that
we require that the spot price be the same across the various
possible lines at any point so as to avoid arbitrage. For example,
if the spot price (in $/year/mile/megabit) of an OC-48 line was
less than that of an OC-12, we could buy capacity on an OC-48
line and then immediately sell it at the OC-12 spot price. Con-
sequently, (3) becomes

(5)

D. Maintenance Costs

Each line has a different maintenance cost that is constant
with time. The maintenance costs are paid at discrete time
intervals (i.e., monthly). Let and , respectively, denote
the times immediately before and after a maintenance payment.
Given a line with maximum transmission rate , we have

(6)

where is the maintenance cost of the line in $/year/mile,
is the length of the line in miles, and .

E. Upgrade Decision

Consider a set of lines with maximum transmission rate
. For example, could be an OC-12, an OC-48, and so

on (see Fig. 1). Let be the value of an investment in a line with
capacity . We must solve a set of partial differential equation
(PDEs) (3) for each upgrade possibility, i.e.,

(7)

A set of equations (7) must be solved for each possible line
capacity , where is the maximum number of
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Fig. 2. We consider a set of linesQ with maximum transmission rateQ . At
the notice date� , for each linej with maximum transmission rate higher
thanQ , we solve the PDE [(7)] of linei using the solution of linej at time
� , to obtainV (� ). We then compare each solutionV (� ) for
k = i; . . . ; n to determine the optimal choice.

types of line. This can be done easily using a general numerical
PDE solver [10], [11]. This numerical PDE approach involves
discretizing equation (7) using a finite volume method [12]. This
method has been extensively studied in [10] and [11]. As it is be-
yond the scope of this paper, we will not present the details of the
discretization scheme here. Interested readers should see [13]
and [12]. It is worth pointing out that the actual algorithm used
shares some characteristics with that used in [13] for pricing a
callable bond.

We assume that the upgrade decision is evaluated periodically
(i.e., on a quarterly basis). Times at which this evaluation takes
place are called notice dates. We use a dynamic programming
approach. Essentially, we solve the PDEs (7) backward in time
( increasing) and determine the optimal decision at each no-
tice date. Consider the lines ordered as where

(see Fig. 1). At each notice date , for each
line with maximum transmission rate higher than, we solve
the PDE (7) of line using the solution of line at time , to
obtain . We then compare each solution
for to determine the optimal choice (see Fig. 2).
More specifically, our algorithm is:

FOR DO
FOR DO
FOR all DO

END
END

END

where is the cost of upgrading from lineof max-
imum transmission rate to line of maximum transmission
rate . The upgrade costs are assumed to follow the same de-
creasing pattern as the spot price per year/mile/megabit. Thus
we will use the same decay factoras for the spot price, i.e.,

(8)

Fig. 3. Total daily network traffic into and out of the University of Waterloo
since July 7, 2000.

where is the initial upgrade cost from lineto in $. Note
that the algorithm above allows for the possibility that it may be
optimal to jump several levels of capacity when the demand for
capacity is very large or the cost is low.

When the decision to upgrade is made, there is a delay be-
fore the new equipment is available (usually three months) [14],
[15]. Meanwhile, the line to be upgraded still generates rev-
enue. There is no downtime period during which the stream of
revenues is interrupted.

IV. ESTIMATION OF THE PARAMETERS

Parameter values will obviously have a large impact on our
computed results. Parameter estimation is complicated by the
fact that the bandwidth market is still in its infancy and past
data is limited. This section describes how parameters were es-
timated for this paper in broad terms. More details are provided
in Appendices B–D.

To estimate the uncertainty parameter, we use data from the
University of Waterloo campus network [16]. Fig. 3 shows the
total daily network traffic into and out of the university since
July 7, 2000. An initial analysis of the data showed strong au-
tocorrelation of the time-series within each week. This is not
surprising, since we expect that there will be repetitive patterns
within each week. To filter out this effect, we average the net-
work traffic for the entire period for each day of the week sep-
arately and choose the day with the highest average total daily
traffic. We then use this same day each week to estimate the
effects from week to week. This smoothing is not unusual and
should not be considered as a source of inaccuracy. We find that

. As an aside, note that as is measured on a per year
basis, is in units of year . See Appendix B for more details
on the estimation of .

The growth rate is also obtained from University of Wa-
terloo data. The data set used here, however, differs from that
used to estimate . In particular, to estimate , we use sum-
mary traffic data for each academic term dating back to 1997.
Statistically, this should provide a better estimate of the long
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TABLE II
TRANSMISSIONRATE CONVERSION

TABLE III
ESTIMATED PARAMETERS

run growth trend (though it would not give a good estimate of
volatility, as the time between observations is too long). Our es-
timate of about per year is consistent with the results
reported in [17]. (See Appendix B for further details).

We use per year for the risk-free interest rate. The
telecom price of risk (in units of year is obtained by fitting
the price of dark fiber to the cost of an OC-12 investment (see
Appendix D for details). The prevailing price of dark fiber when
our estimate was made was $1500 per mile between New York
and Toronto. We find that %. As a rough check on this
estimate, note that the expected return on an investment in the
telecom sector should be about (this assumes that the
risk of a typical telecom investment is approximately the same
as that of investing in dark fiber). Using , ,
and implies an expected return of approximately 15%,
consistent with that commonly used in NPV calculations in the
industry [18].

In this study, we consider only the fiber optic lines contained
in Table II. At the time of writing, the spot price for an OC-12
was approximately 0.069 dollars/year/mile/voice capacity [15].
To obtain the lease price per year per megabit, we multiply the
OC-12 price by the voice circuit capacity of an OC-12 line and
divide by the OC-12 maximum capacity in megabits. We find
that the spot price /year/mile/megabit.

The decay factor is obtained from the observation that prices
are decreasing by about every six months. We find that

per year. These estimated parameters are summarized
in Table III.

The costs of upgrading and maintenance are critical to de-
termining when it is optimal to upgrade. We obtained the data
in Table IV from the hardware manager of the Mathematics
Faculty Computing Facility of the University of Waterloo [14].
These costs are based on the fact that upon upgrading only the
switching cards are changed, while the rest of the basic hard-
ware stays the same. We also made this assumption when esti-
mating the telecom market price of risk (see Appendix D). From
Table IV, we build the upgrade cost Table V.

TABLE IV
ESTIMATED UPGRADECOSTS FORBOTH SWITCHES IN $. THESEUPGRADE

COSTS AREBASED ON THEASSUMPTIONTHAT THE BASIC HARDWARE

INFRASTRUCTURE ISALREADY IN PLACE AND ONLY SWITCHING CARDS

HAVE TO BE CHANGED

TABLE V
UPGRADE COST TABLE CONSTRUCTEDFROM THE COST ESTIMATES

IN TABLE IV

TABLE VI
MAINTENANCE COSTS IN $/MILE/YEAR FOR DIFFERENT

TRANSMISSIONRATES

As a rule of thumb, maintenance costs are usually between
3% and 10% of the upgrade capital cost. To simplify matters,
we assume that maintenance costs do not include repeater costs.
Repeaters in fiber optic lines are used to clean noise from the
signal; this noise is intrinsic to the transportation of a signal over
a long distance. The details of the maintenance cost computation
are contained in Appendix C. The maintenance cost rates can be
found in Table VI.

V. SIMULATION RESULTS

In this section we conduct a sensitivity analysis of the
optimal decision to upgrade to the different model parameters.
Unless specified otherwise, we are solving for a five-year
investment, with continuous revenues, monthly maintenance
costs, and quarterly investment decisions. We consider the
Toronto/New York City pair which is 550 miles apart. We study
the optimal investment strategy for four different transmission
rates: OC-12, OC-48, OC-192, and OC-768.

A. Base Case

We begin by considering the issues raised by the optimal
decision scheme. Anecdotal evidence suggests that lines were
upgraded when usage reached about 50% of the maximum
transmission rate. In Table VII, we notice that the minimum
upgrade percentage found for an OC-12 and OC-48 is 101%
and 76%. The minimum percentage for an OC-192 line is
found to be 18%. This low percentage can be explained by the
fact that the maximum transmission rate considered in these
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TABLE VII
UPGRADEPERCENTAGE FORDIFFERENTTRANSMISSIONRATES. BASE CASE PARAMETERS. WE SOLVE FOR A FIVE-YEAR INVESTMENT HORIZON WITH � = 0:75,
� = 0:95, � = 0:1, AND r = 0:05. UPGRADEDECISIONS AREMADE QUARTERLY. ONLY THE UPGRADERESULTS FOR THEFIRST TWO YEARS AREREPORTED

TABLE VIII
UPGRADEPERCENTAGE FORDIFFERENTTRANSMISSIONRATES. EFFECTS OFGROWTH RATE AND VOLATILITY . WE SOLVE FOR A FIVE-YEAR INVESTMENT

HORIZON WITH � = 0:1 AND r = 0:05. UPGRADEDECISIONS AREMADE QUARTERLY. ONLY THE UPGRADERESULTS FOR THEFIRST TWO YEARS AREREPORTED

simulations is that of an OC-768 line. Thus, this percentage
is not truly representative of what would happen if we had
included lines with a higher transmission rate. Note that these
minimum percentages are all found at the start of the five-year
period: the upgrade percentages rise as time evolves over the
first two years. This is because it takes time to recover the costs
of upgrading and the higher costs maintenance associated with
a higher capacity line. With less time remaining in the five-year
horizon, there is less incentive to upgrade.

Furthermore, we see that for an OC-48 line it is better to
upgrade to the maximum transmission rate attainable (i.e.,
OC-768) rather than to upgrade to the intermediate OC-192
line. This appears to contradict the common conception that
upon upgrading we should go to the next available transmission
rate. This contradiction with practice comes from the high
degree of uncertainty in the demand for capacity. Intuitively,
this means that it is worthwhile waiting to see how demand
evolves and then upgrading to the maximum transmission
rate line we can build (e.g., OC-768) at that time. It can be
optimal to upgrade an OC-48 line to an OC-192 line, but in this
particular case it is optimal to wait until demand is at 76% of an
OC-48 transmission capacity and then to upgrade directly to an
OC-768. We emphasize that the results indicate that it is better
to wait until the maximum capacity of the line is reached and
then upgrade to the highest transmission rate possible, rather
than to upgrade incrementally at lower usages. This is due to
decreasing upgrade costs (with time) and the uncertainty due
to volatility in usage.

B. Uncertainty and Growth Rate Sensitivity Analysis

In this scenario, we try to reconcile the results given by our
simulations and past industry practice. By inspection, we try to
find the volatility and the growth rate that would make our model
results agree with industry practice.

The anecdotal rule that lines should be upgraded at 50% of
the maximum transmission rate appears to apply only for cases
of extremely high growth ( , ) or very low
volatility ( , ) when considering the invest-
ment decision for an OC-48 line (see Table VIII). These values
are not realistic given today’s market conditions. They are in-
dicative of either overoptimism about growth or underestima-
tion of volatility. This would suggest that past industry practice
would lead to overcapacity, consistent with today’s market.

C. Penalty Due to Network Congestion

Due to the uncertainty in demand, we have observed that it
may be optimal to wait until the maximum capacity for a line
is reached before upgrading. Essentially, this is because an in-
crease in usage may be a random event and may not be sus-
tained. However, there will be many times when the demand for
capacity exceeds the maximum capacity available. Up to now,
we have ignored any detrimental effects due to network conges-
tion. We remark that some European operators have contracts
where performance is guaranteed, i.e., slow packets are deliv-
ered free. As well, a congested network may drive customers
to other bandwidth suppliers. We will model these effects in a



D’HALLUIN et al.: MANAGING CAPACITY FOR TELECOMMUNICATIONS NETWORKS UNDER UNCERTAINTY 585

TABLE IX
UPGRADEPERCENTAGE FORDIFFERENTTRANSMISSIONRATES. EFFECTS OFNETWORK CONGESTION. WE SOLVE FOR A FIVE-YEAR INVESTMENT HORIZON WITH

� = 0:75, � = 0:95, � = 0:1, AND r = 0:05. UPGRADEDECISIONS AREMADE QUARTERLY. ONLY THE UPGRADERESULTS FOR THEFIRST TWO YEARS ARE

REPORTED. REVENUES ARESET TO ZERO IF THEDEMAND IS HIGHER THAN 120%OF THE LINE’S MAXIMUM TRANSMISSIONRATE

simple way. We assume that if the demand for capacity exceeds
the maximum transmission rate available by 20%, revenue is
reduced to zero. Again, we could view this as a penalty factor
introduced into contracts or as a penalty for producing customer
dissatisfaction. The new revenue term is given by [see (7)]

if

otherwise.

As expected, the upgrade decision arises much earlier. See the
results reported in Table IX.

VI. CONCLUSION

In this paper, we have considered only a limited number of
scenarios. However, our modeling framework allows us to con-
sider numerous possibilities. For example, we could solve for
longer investment horizons (e.g., more than five years) and in-
troduce new lines that will only be available in the future (e.g.,
four, five, and six years from now). Nevertheless, our study al-
lows us to draw some very interesting conclusions.

For our base case parameters, the only situation for which
the anecdotal rule of upgrading at a usage level of 50% of max-
imum capacity is optimal is for an OC-192 line. However, this is
an unusual case because there is only one line of higher capacity
to which it could be upgraded. For lines of lower capacity, e.g.,
an OC-48 line, we find that the 50% rule is only optimal if we
use apparently unrealistic parameters (either very high growth
or very low volatility). Past industry practice apparently reflects
either excessive optimism about growth rates or an underestima-
tion of volatility. This is a possible explanation for the current
overcapacity in bandwidth.

We also notice that in some cases it is optimal to skip the
intermediate lines and go directly to the line with the highest
transmission rate. This results with an upgrade decision at about
76% of the current transmission rate when there is the full five
years remaining. These results are in general agreement with the
conclusions (in a different context) of [4].

Finally, we remark that a certain number of numerical issues
arise in our application. Since it was outside the scope of this
paper, most of the numerical issues (e.g., oscillations, numerical
accuracy) were not discussed. However, for future work it may
be worth considering a detailed study of the convergence of the
solution and how it is affected by the discontinuities introduced

at each notice date. Moreover, we could extend our modeling
framework to handle discontinuous jumps in the demand for
capacity.

APPENDIX A
DERIVATION OF THE MATHEMATICAL MODEL

Let be the variable representing the demand for capacity.
Mathematically, the different paths followed by the demand can
be modeled by a stochastic process defined by

(9)

where is in megabits and is a Wiener process. Let
be the value of an investment dependent only onand time .
Using Itô’s lemma, the process followed by is

(10)

where represents revenue in $/year

(11)

and

(12)

Let us pick two investments and expiring at some future
time ( ). From (10), we have

Both and have the same factor of uncertainty . We
can thus construct a portfolio composed of and such
that the return of this portfolio is nonstochastic. Let be the
fraction of the amount invested in and be the fraction of
the amount invested in . Note that . The return
on the portfolio is given by

(13)
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Choosing and , we
have . Thus, we have

(14)

where the second equality comes from the fact that, asis
riskless, it must earn the risk free rate. It follows that

(15)

Define as the value of each side of (15), i.e.,

Dropping the subscripts, we have shown that ifis an invest-
ment dependent on and , such that

then

(16)

Substituting from (11) and from (12) into (16), we find

(17)

APPENDIX B
ESTIMATION OF GROWTH RATE AND VOLATILITY PARAMETERS

We begin by considering the growth rate. We base our es-
timate on summary traffic data for each academic term (three
per year) from 1997 to the present. We use this data so as to ob-
tain an estimate of long-term growth in network traffic. In par-
ticular, we use the following procedure. Given measurements

at times , we estimate by
least squares:

...
...

where is the number of observations and
for . We find that per year.

Our estimate of volatility is based on daily traffic data from
mid-2000 until January 2002. In Fig. 3, the time series shows
strong autocorrelation within each week. To filter out this effect,
we average the network traffic for the entire period for each day
of the week separately, and the day with the highest average total
daily traffic (Thursday) is chosen. This same day is used each
week to estimate week to week effects (see Fig. 4).

Fig. 4. Total daily network traffic into and out of the University of Waterloo
since July 7, 2000. The stars indicate the weekly highest traffic days
(Thursdays).

An inspection of Fig. 4 reveals several suspicious large
drops in traffic, some for extended periods of time. Basing
our volatility estimate on this data would produce a very high
value. Some of the short-term declines are simply due to
holidays. As these are known events for low network traffic, we
should not take them into account when estimating volatility.
Consequently, we smooth them out using linear interpolation.
As the University of Waterloo has an extended break period in
August, we remove this period entirely from the sample. There
is also an extended drop around May 2001, which we delete
from the sample. One might think that this is due to the start
of the summer term, but Waterloo is a co-operative university
with three full academic terms per year (the summer term
running from May to the first part of August), so the effect of
summer on network traffic is probably lower than at most other
academic institutions. The final data sample used to estimate
volatility is presented in Fig. 5.

Prior to computing the volatility, we first remove the growth
trend from the data. We then conduct the Ljung-Box Q test
[19] as a check that our smoothed and detrended data contains
pure white noise. Each part of the time series (see Fig. 5) is
studied independently. We can conclude from the p-values
reported in Table X that there is no serial correlation in our data.

The volatility is finally estimated under the assumption that
relative changes in network traffic are lognormally distributed,
as implied by (1). We find that (as noted above in
Section IV, this is in units of year ).

APPENDIX C
UPGRADE AND MAINTENANCE COSTS

As noted in Section IV, data on upgrade costs were obtained
from [14] (see Table IV). These were used to construct Table V.

As a rule of thumb, annual maintenance costs are usually be-
tween 3% and 10% of the upgrade capital cost. As mentioned
earlier in the paper, maintenance costs do not include repeater
costs. We assume that repeaters are situated every 100 miles.
The maintenance cost for an OC-12 is computed as follows: we



D’HALLUIN et al.: MANAGING CAPACITY FOR TELECOMMUNICATIONS NETWORKS UNDER UNCERTAINTY 587

Fig. 5. Total daily network traffic into and out of the University of Waterloo
since July 7, 2000. The data has been smoothed using linear interpolation around
short term drops due to factors such as holidays. Extended declines in traffic in
August 2000, May 2001, and August 2001 have been deleted.

TABLE X
LJUNG-BOX TEST FORSERIAL CORRELATION. THE NUMBERS REPORTED

ARE P-VALUES. THERE IS NOEVIDENCE OF SERIAL CORRELATION AT

CONVENTIONAL STATISTICAL SIGNIFICANCE LEVELS. THE PARTS OF

THE DATA (PRIOR TO DETRENDING) ARE SHOWN IN FIG. 5

take the upgrade cost from an OC-3 to an OC-12 (see Table IV)
and divide it by 100 miles (fiber optic distance without any re-
peaters). We then take 6% of the resulting number. We thus have
the following for an OC-12:

month mile

year mile

Analogous calculations were made for the other lines in order
to construct Table VI.

APPENDIX D
TELECOM MARKET PRICE OFRISK ESTIMATION

The price of dark fiber is estimated to vary between $1000
and $1500 per mile [15]. The cost of the initial circuit equipment
investment is estimated to be$500 000 [14] for both ends
of the line. As a rough estimate, and consistent with [17], we
assume that we are using 50% of the available bandwidth.
Thus, assuming that the average capacity of a line is equivalent
to an OC-48 line (maximum transmission rate: 2488 Mb/s),
we estimate that the level of demand is at Mb/s.

Although virtually all of the discussion in the paper relates to
the timing of the upgrade decision, note that this is only one of

the outputs of our model. The total value of the investmentis
also determined in our computations. To calculate the telecom
market price of risk, we calibrate the investment value given by
our model (at Mb/s) to the investment cost in the
market. The investment cost is obtained by multiplying the dark
fiber price by the distance in miles between two city pairs and
adding the initial investment. In our simulations, we considered
the Toronto/New York City pair (550 miles apart). We obtain the
telecom market price of risk by fitting the investment value
given by our model to 550 $1000 $500 000 $1 050 000.
We find that .

We choose to estimateby calibrating our model to observed
market prices. This approach is standard in financial applications
such as the pricing of bond derivatives [8]. This approach
makes no assumption about market equilibrium. Alternatively,
economic general equilibrium theory shows that the market
price of risk is determined by the covariance between demand
for network bandwidth and changes in aggregate wealth in
the economy. As this covariance is difficult to estimate, we
prefer the calibration approach as described above.
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