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This article surveys a new generation of analytical tools for capacity plan-
ning and management, especially in high-tech industries such as semi-
conductors, electronics and bio-techs. The objectives of the article are to
(1) identify fundamental theory driving current research in capacity man-
agement, (2) review emerging models in operations research, game theory,
and economics that address strategic, tactical and operational decision
models for high-tech capacity management, and (3) take an in-depth look
at capacity-optimization models developed in the specific context of semi-
conductor manufacturing. The goal of this survey is to go beyond typical
production-planning and capacity-management literature and to exam-
ine research that can potentially broaden capacity-planning research. For
instance, we explore the role of option theory and real options in modeling
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capacity decisions. We not only examine capacity-planning problems from
the perspective of a particular firm, but also the interaction of capacity
investment among supply chain partners. Not only are these issues in-
creasingly important in the fast-changing high-tech environment, they
draw on new tools from different disciplines and pose significant intellec-
tual challenges. We also examine papers that represent the multifaceted
nature of high-tech capacity planning, integrating capacity decisions
with issues related to contracting, coordination, sourcing, and capacity
configurations.

BACKGROUND AND INTRODUCTION

In high-tech industries such as semiconductor, consumer electronics,
telecommunications and pharmaceutical, a firm’s ability to manage ca-
pacity is arguably the most critical factor for its long-term success. Even
in a stable economy, the demand for high-tech products is volatile and
difficult to forecast; the rapid rate of technology innovation causes short
product lifecycles, low production yield and, oftentimes, long production
lead time, all of which hamper the firm’s ability to respond to market
changes. Uncertain economic times exacerbate these challenges. Whereas
in an environment of sustained demand growth, firms might build inven-
tory or hold excess capacity to buffer against demand variability, most are
reluctant, or unable, to assume such financial risks in a downside market.
Nevertheless, high-tech companies recognize that in order to sustain their
customer base and to seize revenue opportunities, they must be able to
manage successive technological innovations effectively, e.g., introducing
high-margin innovative products at the right moment while maximizing the
return-on-investment for older, more mature products. To do so, firms must
structure capacities in their supply chain so that over time it is possible to
respond to demand surge from new product introduction and market up-
side, and to absorb short-term decline due to technological migration and
market downside.

The role of capacity management is even more important in industries
in which capital equipment cost is high. For example, in the semiconductor
industry, manufacturers are faced with astronomical capacity costs, long
capacity lead times, high obsolescence rates and high demand volatility. A
new semiconductor fab costs $1–4 billion to build, and the price for a single
machine may be as high as $4–5 million. Moreover, the rapid technology
innovation leads to short product lifecycles and thus to higher obsoles-
cence rates and increased equipment usage costs. To make the situation
worse, the demand variability during a particular quarter may peak above
80% of the average sales and, according to the Semiconductor Industry
Association, the equipment procurement lead times are usually as long as
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6–12 months. This means that the demand beyond the capacity lead times
is highly uncertain. The above environment drives semiconductor man-
ufacturers to adopt exceedingly conservative capacity expansion policies
(Erkoc & Wu, 2004). However, in a fast-growing global market, the conser-
vative capacity-expansion policy leads to severe shortfalls in service levels.
In a recent survey of managers by the Fabless Semiconductor Association
(FSA), the respondents emphasize significant concerns about whether the
manufacturers (foundries) will be able to supply wafers to meet demand.
The most common reason cited in the survey for missing forecasts is the
lack of adequate capacity from the foundries rather than internal issues,
such as the lack of a specific technology or process (Ridsdale, 2000).

A similar phenomenon is also observed in the biotech industry. Many
bio-drugs on the market require such high volumes of manufacturing ca-
pacity that capacity is always in shortage. Recent surveys reveal that 50%
of the contractors in this sector believe that the general capacity shortage
is unlikely to improve soon; this is due to the current business practice that
puts most of the capacity expansion risk on the manufacturer’s shoulders
(Fox et al., 2001). A typical manufacturing facility in the biotech sector
costs between $200 million and $400 million to build, a significant risk
to bear, especially when a drug has yet to receive regulatory approval. To
address these challenges, many drug manufacturers have begun to work
with their pharmaceutical and biotechnology customers to forge long-term
commitments and co-investment plans. An emerging trend in the industry
is that major drug developers begin to co-invest facilities and equipment
with their manufacturing partners in exchange for guaranteed (capacity)
slots.

In this article, we review literature relevant to high-tech capacity plan-
ning and management. Using the competitive operational environment of
the high-tech industry as the backdrop, we examine the impact of capacity
from strategic as well as tactical and operational perspectives. The papers
we review are not limited to applications in the context of high-tech in-
dustries but they are, in our opinion, representative of critical research
ingredients in this area.

KEY RESEARCH ISSUES FOR CAPACITY PLANNING

We consider research issues for capacity planning from the strategic, tacti-
cal and operational levels. At the strategic level, capacity planning involves
not only the firm’s own capacity investment, but also its supply chain part-
ners’ investments. The capacity investment of one firm in the supply chain
could have enormous impact on the performances of all upstream and down-
stream firms; thus, strategic interactions between two or more players need
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to be taken into account. In addition to monolithic models that employ tools
such as expected utility theory and dynamic programming, the literature
increasingly considers settings that model independent multiple decision
makers in the context of supply chain management. Research in this area
utilizes game theoretic models focusing on issues such as contracting, co-
ordination and risk-sharing mechanisms.

At the tactical level, capacity planning focuses on capacity expansion
tactics as related to the operational aspects of the firm. A comprehensive
survey of the OM literature on the size, type, and timing of capacity invest-
ments is given by van Mieghem (2003). In this paper, we focus our exam-
ination of tactical capacity expansion literature on three key aspects. First,
we review OM literature that incorporates characteristics of the high-tech
industry in the traditional production, inventory and demand management
models. Second, we review the growing literature on real options as related
to high-tech capacity planning. In recent years, real options have become
quite popular as a means for modeling capacity investment risks based on
endogenous and exogenous factors. Third, we survey papers that examine
risk sharing and vertical integration between suppliers and buyers through
capacity reservation contracts.

At the operational level, capacity planning typically refers to decision
support models developed for a specific operational environment. There is a
significant literature for operational capacity planning in the semiconductor
industry, which will be our main focus. We classify operational models in
semiconductor manufacturing according to the level of detail that they
capture and the length of the planning horizon that they consider.

STRATEGIC AND TACTICAL MODELS: GAME THEORETIC
AND ECONOMIC ANALYSIS

Capacity Planning with Production, Inventory and Demand
Management Perspectives

Demand uncertainty and the short product lifecycles of high-tech products
are two key factors that influence capacity expansion models. High-tech
manufacturers avoid carrying inventory due to high obsolescence rates.
In fact, high-tech products are often treated as perishable goods. Inven-
tory models developed in this context typically use news vendor or news
vendor networks settings with single-period and stochastic demand. These
models consider capacity investment by a single or multiple independent
decision makers in a stationary environment; once capacity is built it stays
unchanged during the planning horizon. The profit to the firm is modeled as
a function of the capacity level, K , and the state of the world (e.g., realized
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demand), ξ . Extensions to news vendor models study multi-period settings
with capacity investment adjustments over time. In this setting, capacity
at time t − 1, Kt−1, is adjusted to Kt at time t at some cost. If the invest-
ment is (fully or partially) reversible, then contraction (i.e., Kt < Kt−1) is
possible. Otherwise, with irreversible investment the firm either expands
or maintains its current capacity across periods.

Newsvendor-Style Models
This literature employs aggregate planning for the acquisition and alloca-
tion of resources to satisfy customer demand over a specific time period.
The short product lifecycles in high-tech make such approach quite appro-
priate. A few papers in this category investigate capacity expansion and
investment strategies jointly with inventory management and/or outsourc-
ing policies. Bradley and Arntzen (1999), observe that firms achieve better
financial results by optimizing their capacity and production/inventory de-
cisions simultaneously. They demonstrate their result using a case study
performed at an electronics firm. With the increasing pace of technologi-
cal innovation and the increasing cost of manufacturing equipment, many
OEMs are reluctant to respond to economic cycles by adjusting their own
in-house capacity. Consequently, capacity outsourcing has become an in-
tegral part of capacity investment decisions (Mason et al., 2002). Atamturk
and Hochbaum (2001), propose a four-way tradeoff among capacity, pro-
duction, subcontracting, and inventory levels over a finite horizon. Kouvelis
and Milner (2002) consider two-stage supply chains and analyze the im-
pact of supply/demand uncertainty on capacity and outsourcing decisions.
They conclude that greater supply uncertainty encourages vertical inte-
gration, because the OEMs have incentives to make investments in their
suppliers to ensure reliable and continuous supply. In contrast, outsourcing
becomes more attractive as uncertainty in demand increases.

Pindyck (1993) shows that demand uncertainty can discourage firms
from capacity expansion when there is perfect competition; while
Kulatilaka and Perotti (1998) show that higher uncertainty may increase
the firm’s incentive to invest when there is imperfect competition. Van
Mieghem (1999) studies the trade off among capacity investment, produc-
tion and subcontracting in a two-stage, two-player, two-market setting. He
models the interactions of a manufacturer’s and a subcontractor’s deci-
sions. He observes that the manufacturer subcontracts more (invests less
on his own capacity) as the demand uncertainty increases, which induces
the the subcontractor to invests more. Under a similar setting, Tan (2004)
investigates capacity investment and pricing decisions for a manufacturer
and a subcontractor with guaranteed availability. Van Mieghem and Dada
(1999) examine the interplay among capacity, inventory and pricing de-
cisions. The authors study the impact of the timing on these decisions
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and on the firm’s profitability; they examine different market settings such
as monopoly, oligopoly and perfect competition Other news vendor–like
game theoretical models study sizing (Bernstein & DeCroix, 2004), tim-
ing (Ferguson, DeCroix, & Zipkin, 2002), and allocation (Karabuk & Wu,
2003; Mallik & Harker, 2004) of capacity under competitive settings.

Most of the above papers consider a single product and resource type.
In reality, however, different products may share the same resource, and
different types of resources may be needed to process a particular prod-
uct. A line of literature considers the presence of multiple resources where
decisions must be made for the configuration and selection of optimal re-
source types. This results in a network design problem. Few researchers
tackle the capacity expansion problem with multiple products and multiple
resources; however, there is growing interests in models that consider more
general product/resource settings. In an early paper, Dixit (1997) discusses
optimal investment policies in a two-resource setting. Harrison and van
Mieghem (1999) propose a product-mix linear programming model and
use its optimal shadow prices to extend the classical news vendor model to
a so-called multidimensional news vendor solution with multiple resources
and multiple product types, which leads to the well-known critical fractile
solution. The critical fractile values balance overage costs with underage
costs and are computed using shadow prices. Using the multidimensional
news vendor approach, Van Mieghem (1998) studies a two-product setting
in which the firm has the option to invest in two product-dedicated resources
or one flexible resource that can process both products. The paper exam-
ines the impact of price, cost, demand uncertainty and demand correlations
on the investment decisions. Later, van Mieghem and Rudi (2002) extend
these models to news vendor networks that incorporate multiple products,
multiple resources and multiple storage points. They observe that when
demand is normally distributed, the optimal expected investment value is
an increasing function of the demand vector and a decreasing function of
any variance term. Bish and Wang (2004) also use news vendor networks
to investigate investment policies for product-flexible versus dedicated re-
sources in a two-product setting with correlated demand.

Multi-Period Models with Capacity Adjustments
Multi-period or dynamic capacity expansion models determine policies
that specify the timing and scope of capacity adjustment so as to maximize
the expected net present value of the firm’s investment. These models seek
answers for when and how much capacity to build in a dynamically chang-
ing environment. Capacity decisions are strongly influenced by the length
of the planning horizon and the associated rate of depreciation, as well as
by the cost of investment and the demand uncertainties during the aggre-
gated planning period. Most papers in this area utilize stochastic dynamic
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programming models. Van Mieghem (2003) points out that there are three
main challenges in capacity cost modeling: indivisibility, irreversibility and
nonconvexity. Indivisibility implies lumpy capacity expansions, which are
common in high-tech applications. Due to rapid technological innovation,
almost all capacity investment in high-tech manufacturing is irreversible
(in the sense that capacity expansion cannot be undone without signifi-
cant cost). Irreversibility contributes to nonlinearity in capacity expansion
decisions since it might prevent firms from making downward capacity
adjustments to demand changes from one period to another, leading to ‘no
action’ policies in some periods. Moreover, one may not be able to assume
convex capacity costs due to fixed-cost, economies-of-scale, etc., adding
another layer of complexity to the problem.

Research on dynamic capacity models with stochastic demand goes back
to the seminal work of Manne (1961), in which he models demand growth
using Brownian motion with positive drift for a single-resource system.
The resulting regenerative process leads to uniform capacity increments
that take place whenever the demand backlog goes beyond a threshold
value. The timing of the expansion is modeled by the ‘hitting time’ of the
Brownian motion. The author shows that by appropriately choosing the dis-
count rate based on demand variance, a deterministic equivalent model can
be built to solve the stochastic problem. In Eberly and van Mieghem (1997),
the authors propose a more general continuous-time model that considers n
resources and non-stationary demand. Interestingly, they show that optimal
investment strategies follow a control limit policy, i.e., an ISD or invest/stay
put/disinvest policy. At a given time, the ISD policy partitions the state space
into various regions in an n-dimensional space based on current capacity
and the state of the world. Each region and its boundaries specify the opti-
mal investment policy for each resource that can be expanded, contracted
or left in place. The authors are able to provide closed-form solutions when
the uncertainty is modeled using a geometric Brownian motion. Assuming
i.i.d. demand, a similar paper (Harrison & van Mieghem, 1999) applies the
newsvendor networks approach to the above setting. For a similar problem
with a single product setting, Narongwanich, Duenyas, and Birge (2002)
consider the effect of indivisible capacity. They consider a manufacturing
firm that introduces new (generations of) products in stochastic time in-
tervals. The paper examines investment policies in dedicated systems that
are reconfigurable for future capacity needs. They show that the optimal
investment policy remains ISD, provided that all resources have identical
adjustment sizes. In the case of non-identical adjustment sizes, the optimal
policies are still ISD-like but require perturbations due to the ‘lumpiness’
of the capacity.

In many semiconductor fabs, the capacity level could have a substantial
effect on the wafer processing costs. Consequently, there may be a strong
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dependency between production and capacity; this dependency needs to
be taken into consideration in capacity planning problems. A simple cost
model capturing this dependency is presented by Iwata and Wood (2002).
Due to scale economies and short product lifecycles, when incorporating
production costs as a function of capacity, capacity costs are non-convex.
A few papers in semiconductor manufacturing tackle this phenomenon. An
example is Dixit (1995), in which the author ties the production function
to the capacity in a convex-concave fashion. Production first exhibits in-
creasing return to scale followed by decreasing return to scale as a function
of capacity, which leads to optimal investments that are lumpy. A similar
approach is used by Murto, Nasakkala, and Keppo (2004) for an oligopoly
market with competition. The authors investigate the tradeoff between the
value of flexibility and economies of scale under competition by modeling
the capacity investment using a Nash-game setting.

Under a single resource, multi-agent setting, Armony and Plambeck
(2003) consider a manufacturer that sells through two distributors. They use
a queuing model to study the influence of double orders and cancellations
on the manufacturer’s capacity investment. At each distribution center,
customers arrive according to a Poisson process demanding one unit at
each time. If the end-item is out of stock at the distributor, in addition
to the backorder the customer may order from another distributor with
a probability, resulting in a double order. Moreover, the customer may
cancel all outstanding orders after an exponentially distributed waiting
time. They show that in this setting the manufacturer may overestimate the
demand and the cancellation rates, and thus may over-invest in capacity. As
such, the authors argue that the economic down-turn may not be the only
factor to blame for the sizable write-offs witnessed in the semiconductor
industry in recent years. Double orders placed by end customers through
different distributors often leave semiconductor manufacturers with excess
capacity as well. A caveat is that when the capacity cost is high and the
manufacturer is unaware of double orders, she may still under-invest in
capacity.

Taylor and Plambeck (2003) consider ‘relational contracts’ between a
high-tech firm and a supplier. The firm periodically introduces innovative
products, and the supplier needs to invest in capacity to produce components
for the product. Relational (incomplete) contracts are needed when capacity
investment must take place before the new product is fully defined. In other
words, relational contracts specify informal agreements between parties
about how they will behave. In this setting, the high-tech firm may promise
to purchase at a price that reflects the cost of the capacity so that the
supplier has incentive to increase capacity investment. Essentially, the value
of future business relationships provides incentives for the firm to comply
with the previously agreed price. Their analysis indicates that when capacity
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is expensive and demand is uncertain, the firm’s preferred strategy is to
commit to a specified unit-price only, but not to any quantity.

As mentioned earlier, most high-tech products have short product life-
cycles that can be characterized by a single modal bell-shaped curve that
represents the progression from initial ramp-up, to maturity, and then de-
cline. The demands for these products can be viewed as a stochastically in-
creasing function followed by a stochastically decreasing one, or a regime-
switching model. The main challenge in these models is to capture the
tradeoff between the capacity costs and the expected revenue from the
product’s demand over its life cycle. A few researchers consider regime-
switching explicitly in their modeling (c.f., Angelus & Porteus, 2002; An-
gelus, Porteus, & Wood, 2000; Cakanyildirim & Roundy, 2002; Ho, Savin,
& Terwiesh, 2002; Bollen, 1999). Angelus and Porteus (2002) study si-
multaneous capacity and production planning problem for a short lifecycle
product where capacity can be reduced as well as expanded at exogenous
costs. They first consider the case in which inventory carryover is not al-
lowed, and thus demand in a given period must be satisfied by production,
which is bounded by available capacity. They assume no lead-time for the
capacity and no backlogs for the lost sales. They show that the optimal ca-
pacity plan can be reduced to a one-dimensional ISD policy that the authors
refer to as the target interval policy. The target interval policy specifies a
lower and upper capacity target. If the current capacity is below the lower
target, capacity is increased to this target level. If the current capacity is
above the upper target, capacity is disinvested and decreased to this target
level. No action is taken if the capacity is in between. When there is no in-
ventory carryover, the optimal capacity levels can be scheduled in advance,
as they do not depend on the demand realizations. However, the same is
not true when inventory carryover is allowed since optimal capacity at a
given period depends on the current inventory level, which is a function
of demand realizations in previous periods. In this case, it is shown that
capacity and inventory are economic substitutes. They conclude that it is
optimal to change the service level provided to customers across periods.
Specifically, the optimal policy provides the lowest service level during the
peak period and the highest service level when capacity is adjusted.

In a similar setting, Angelus, Porteus, and Wood (2000) consider only
capacity additions, but capacity costs demonstrate economies of scale and
non-negative lead-time. They show that an expansion policy that is anal-
ogous to the well known (s, S) inventory policy is optimal. Capacity is
expanded to S if and only if the current level is below s. Cakanyildirim
and Roundy (2002) expand the above setting to a multi-resource produc-
tion process with lumpy capacity expansion/contraction. They propose a
polynomial-time algorithm that applies bottleneck policies (BP) to op-
timally plan for capacity adjustments over time. Under BP it is always
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optimal to buy machines that are the same type as the bottleneck and to
retire machines in the reverse order. Their algorithm determines the optimal
clusters of machines to be installed and retired simultaneously and the tim-
ing of the adjustments. The authors illustrate their algorithm using real-life
data provided by the SEMATECH databases. The timing of capacity ex-
pansion in this context is also studied by Huh and Roundy (2002) and Ryan
(2004); however, they consider only stochastically growing demand. The
former paper extends the model proposed by Cakanyildirim and Roundy
(2002) to multi-product settings, whereas the latter incorporates lead-times
for capacity expansion.

In product lifecycle models, the standard assumption is that lifecycle
demand forecasts are given and independent from supply decisions; the
impact of past sales on future demand is often ignored. To fill this gap, Ho,
Savin, and Terwiesh (2002) incorporate capacity decision into the analysis
of demand and sales dynamics in a supply-constrained, new-product dif-
fusion model. The authors incorporate lifecycle demand into an optimal-
control framework by modeling independently the innovation dynamics
and the interaction dynamics; the latter refers to the interaction between
customers (early adopters) who have purchased the product and poten-
tial customers who are not yet ready to adopt the product. The proposed
model analyzes how much the firm should invest in capacity and when
it should launch the new product in a Bass-like diffusion environment.
The results suggest that it is often optimal for a firm to delay the prod-
uct launch until after capacity is built; this allows the firm to pre-produce
and build up initial inventories before entering the market. However, this
is only true provided that the product diffusion does not occur before the
product launch. As in the model proposed by Angelus and Porteus (2002),
the initial inventory serves as a substitute for capacity. This strategy is par-
ticularly relevant for high-tech firms where physical capacity expansion is
prohibitively expensive.

Bollen (1999) employs an option valuation framework to incorporate
the stochastic lifecycle of a product into the firm’s capacity investment
and production planning problem, which is reviewed in the following
subsection.

Capacity Investment through Option Valuation

Capacity investment in high-tech industry typically involves substantial
cash exposures, volatile market demand and changing supply (technologi-
cal) specifications. In this environment, the return on investment is highly
uncertain; thus, the variability in returns is at least as important as the ex-
pected return. Moreover, most investment expenditures are irreversible and
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are considered sunk costs for the firm once invested. In general, capacity
investment implicates considerable risk for high-tech firms. The traditional
approach of maximizing net present value (NPV) when analyzing capacity
investment is not sufficient to capture the managerial flexibility that exists
throughout the capacity planning process (see Feinstein, 2002). A more
accurate model should consider not only the purchasing and installation
costs, but also the value of the options one could invest elsewhere (Dixit &
Pindyck, 1994). Option theory provides a powerful tool to value risky in-
vestments through risk-neutral discounting and to incorporate risk without
explicitly defined utility functions. Since the seminal paper by Black and
Scholes (1973), option pricing has become a popular topic in finance. The
enormous attention in literature on options is summarized in the compre-
hensive survey by Broadie and Detemple (2004). Although option theory
has been primarily studied in finance, the potential benefits of real options
have been recognized by researchers in operations management and engi-
neering economics in recent years (see Miller & Park, 2002 for a recent
survey). Real options theory is particularly relevant to capacity planning
because it focuses on the combined importance of uncertainty and
managerial decisions and it offers a dynamic view of firm’s investment
and operational decisions. Birge (2000) asserts that since operational deci-
sions have the goal of maximizing value, the framework of real options can
be used to evaluate decisions under risk. Making the connection between
the effect of capacity on the firm and the pricing of a call option, he shows
that risks can be incorporated into planning models through capacity ad-
justments. He proposes a model that integrates financial risk attitudes into
a linear capacity investment problem.

In general, options theory has broad appeal to a variety of application
areas in capacity and production planning. Examples include options to
expand, options to defer production (Pindyck, 1988), options to aban-
don a project (Majd & Myers, 1990), options to wait or temporarily shut
down production (McDonald & Siegel, 1985), and options to switch (van
Mieghem, 1998). Johnson and Billington (2003) report that in recent years,
high-tech companies are making use of real options to determine their in-
vestment and operating strategies, more specifically, the timing and choice
of capacity adjustments. There is a growing espousal of real options models
for high-tech capacity planning in the operations management literature. A
broad description and discussion of real options can be found in Trigeorgis
(1996) and Amran and Kulatilaka (1999).

Each unit of capacity provides the firm options to produce a certain
quantity of the product throughout its lifecycle; such options are referred
to as the operating options. The investment in capacity is the premium for
the option, while the production cost corresponds to the exercise price. On
the other hand, the firm usually has options to add more capacity, known as



136 S. D. Wu et al.

growth options. In general, options are early investments associated with
firms’ ability to expand in the future; the investment may be the acquisition
of land (or access to) facility, technology, know-how or other resources.
Following the legacy of option pricing, a majority of papers in this area
employ geometric Brownian motion to model demand changes; as such,
demands in future time periods can be modeled by a lognormal distribution.
Under such a setting, Pindyck (1988) studies a capacity planning problem
with irreversible investment. In this model, the value of the firm is deter-
mined by the present value of the expected flow of net gains generated by
available capacity (i.e., the value of the operating options) plus the present
value of additional profits that can be generated should the firm add more
capacity in the future less the present value of the cost of capacity (i.e., the
value of the growth options). Both valuations are functions of the current
capacity level and the demand shift parameter. Pindyck (1988) shows that
the firm’s capacity choice is optimal when the present value of the expected
cash flow from each marginal unit of capacity is equal to the total cost of
that unit. The total cost is the procurement cost plus the opportunity cost
of exercising the option to buy the unit. He models the demand at time t by
Qt = θt − β Pt , where θt and Pt are the stochastic demand parameter and
the price at time t , respectively. This particular way of modeling demand
and price is quite common in this literature. The underlying assumption is
that price adjusts instantly to balance supply and demand. Under this set-
ting, the author concludes that uncertainty in demand increases the value of
the firm’s operating and growth options. Equivalently, the value of the unit
capacity and the opportunity cost, both grows with uncertainty. However,
since the increase in the latter is higher, the firm will end up holding less
capacity when the uncertainty in future demand increases.

A notable case study that adopts Pindyck’s approach in the context
of semiconductor manufacturing is presented by Benavides, Duley, and
Johnson (1999). The authors study the determination of the optimal scale,
type and timing of IC manufacturing capacity expansion for a fab. Two
distinct types of capacity, fixed and expandable, with different sizes are
considered for a product whose demand changes stochastically over time.
The analysis indicates that, under uncertainty, sequentially deployable fabs
are economically more viable since they provide a growth option to the firm
in addition to the operating option, which allows much of the fab’s required
capital investment to be delayed. The presented model considers only the
growth phase of the demand for the product.

Pindyck (1993) observes similar results concerning the effect of un-
certainty on investment incentives; this research further considers firms
in complete competition environments. In contrast to these results, Dangl
(1999) observes that optimal capacity investment increases significantly
with uncertainty if the firm has to fix capacity size at the time of installation
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for the entire life time of the facility. In such settings, the capacity is un-
expandable once installed; as such, the author shows that it is optimal to
delay the investment until high demand ranges even when uncertainty in
demand is small.

In a different setting, Abel et al. (1996) investigates how options to ex-
pand capacity and options to disinvest affect the investment policies under
uncertainty in a two-period model. They model these options as call and
put (American) options respectively and examine their values and charac-
terizations. In contrast to Pindyck (1993), their setting allows for partial
irreversibility and thus put options to sell capital. In general, call (growth)
options diminish the firm’s incentive to invest since they add to the firm’s
value and are killed by investment. On the other hand, put (disinvestment)
options increases the incentive to invest because it provides irreversibility.
Consequently, the authors observe that an increase in uncertainty has an am-
biguous impact on the investment incentives because it increases the value
of both options. Similarly, Kulatilaka and Perotti (1998) conclude that for a
setting in which the firm needs to make a decision on irreversible investment
under imperfect competition, the impact of uncertainty on the value of the
strategic growth options is context specific.

As pointed out earlier, high-tech products typically have a short life-
cycle. Therefore a straightforward adoption of Black-Scholes formula in
modeling capacity expansion may lead to inaccurate conclusions since the
drift can change direction (Bowman & Moskowitz, 2001). Bollen (1999)
recognizes the fact that simple stochastic processes may not accurately rep-
resent capacity investment in many important manufacturing sectors, such
as the semiconductors and the pharmaceuticals, because they are character-
ized by well defined product lifecycles with bell-shaped growth patterns.
He proposes a generalization of the real options valuation that explicitly in-
corporates stochastic product lifecycle into the firm’s capacity investment
and production planning problem. The product lifecycle is represented us-
ing a regime-switching process in which the planning horizon starts with
a growth regime (increasing demand) and then switches stochastically to
a decay regime (decreasing demand). He considers both the fixed (irre-
versible) capacity and the flexible (reversible) capacity. In the former case,
the capacity must be fixed at the beginning of the project and cannot be
adjusted throughout the lifecycle. The firm chooses the capacity investment
that maximizes the project’s NPV, given optimal production policies across
periods, the cost of investment, the demand shift parameter and the discount
factor. At the beginning of each period when it is possible to expand and
contract capacity, the firm chooses the current capacity level based on the
tradeoff between the cost of adjusting the capacity and the change in ex-
pected future profits. To model the stochastic demand in the two-regime
context, the author employs the Wiener process; however, he considers
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different drift values for the demand parameter in the growth and decay
regimes. While the drift is assumed to be positive in the growth regime,
negative drift is used to model the decay regime. In a given period, the
probability of switching from growth to decay is defined by a cumulative
normal distribution function of the time elapsed since the beginning of the
project. The author examines the sensitivity of the project and option values
to demand uncertainty and the project lifecycle through a numerical analy-
sis. He shows that by ignoring the product lifecycle, traditional approaches
may undervalue the contraction option, by underestimating the probability
that the demand may fall at some point in the future, and may overvalue
the expansion option, by implicitly assuming that demand is expected to
grow indefinitely.

Most capital investment decisions are made in multiple stages of the
product lifecycle including R&D, product introduction and physical ex-
pansion. At each stage, one must decide whether to exercise the previously
acquired option. This decision depends primarily on the valuation of the
downstream options that will be created over the course of the product
lifecycle. For example, in moving from the R&D stage into the product
introduction stage, options on R&D investments must be exercised (made).
This leads to the option of expanding product introduction, followed by
the creation and exercise of subsequent physical expansion options. There-
fore, a modeling approach that incorporates sequential investment deci-
sions throughout the product lifecycle should employ compound options.
The valuation of compound options is interdependent, i.e., exercising an
upstream option generates a downstream real option. Therefore, the model-
ing of compound options requires the consideration for multiple sources of
uncertainty. Herath and Park (2002) develop a compound real option val-
uation model assuming four sequential investment opportunities, namely,
R&D investment, product introduction, the first expansion phase and the
second expansion phase. In order to value compound options under mul-
tiple uncorrelated sources of uncertainty, the authors employ an extended
version of the binomial lattice framework. Using Monte Carlo simulation
they compare their approach with the traditional NPV method. The pro-
posed model is novel in that it combines R&D investment decisions with
physical capacity decisions in a real options framework. One of the main
distinguishing characteristics of the high-tech industry is that R&D costs
are mostly comparable to capacity costs even though they significantly
affect the firm’s overall value (Hicks, 1996).

Risk Sharing through Capacity Reservation

Traditional approaches in capacity investment assume that all the invest-
ment risks are absorbed by the firm who owns (builds) the capacity.
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However, in high-tech supply chains, in which capacity is capital inten-
sive, products have short lifecycles and demand uncertainty is high, on one
hand the component manufacturers (the suppliers) often adopt an exceed-
ingly conservative capacity expansion policy; this reduces their downside
risk at the expense of upside potentials. Consequently, their downstream
buyers (e.g., OEM manufacturers) may not have adequate supplies to fill
the market orders. On the other hand, the buyers will avoid making firm
commitments to the suppliers on their future purchases due to high uncer-
tainty. However, to ensure higher availability, the buyers might be willing
to share risk by sharing partial liability for the capacity as long as it is eco-
nomically justified. To achieve this, risk-sharing mechanisms that create
proper economic incentives must be developed. There is a growing litera-
ture about supply chain coordinating contracts that describe mechanisms
that align the incentives of supply chain partners via risk/profit sharing. An
excellent review of coordinating contracts is provided by Cachon (2003).

Capacity reservation contracts are an increasingly popular way to model
the allocation of risks across suppliers and buyers in high-tech supply
chains. Similar to the research surveyed earlier, work on these contracts
regards capacity as an option to be exercised in the future to produce needed
goods. In fact, they are known as option contracts. Typical settings consist
of one supplier and one buyer interacting with each other in two phases. In
the first phase, a reservation contract specifying a reservation fee (option
price), r , an execution fee, e, and a reservation quantity, Q, is agreed
upon by both parties. At this stage, the demand is unknown and usually
represented by a probability distribution function. While the reservation
fee is immediately payable, the exercise fee is due when the option is
exercised (after demand uncertainty is resolved). Based on the reservation
fee, the buyer chooses Q, which is matched by the supplier’s capacity.
In the second phase, the buyer decides on the exercise amount and pays
the exercise fee after observing the realized demand. By appropriately
choosing the contract parameters, both parties can improve their expected
profit. Capacity reservation contracts are applications of call option models
since each reserved capacity gives the buyer the right to purchase in the
future. On the other hand, capacity coordination can be also achieved by
buy-back contracts which correspond to put options in finance. The buyer
pays for the capacity in full upfront, but she has the right to return the unsold
products to the supplier for a price that is usually below the wholesale price.
It should be noted that the pricing of options in this context is different
than the pricing of financial options and those discussed in the previous
section where the prices are based on no-arbitrage and Black and Scholes
principles. Instead, in capacity reservation contracts, the trading parties
determine their actions and valuations in accordance with their incentives
and strategic interactions.
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The strategic interactions between the supplier and the buyer are usu-
ally modeled using a game-theoretic approach based on Stackelberg games.
Stackelberg games, also known as leader-follower games, are used to model
the competitive behaviors of independent players when they act in se-
quence. Typically, one of the players (the leader) acts first, and the other
(the follower) reacts. In capacity reservation contracts either the supplier or
the buyer can be a leader depending on each one’s respective market power.
For example, in a supply chain with a powerful OEM as the buyer and a
contract manufacturer as the supplier, it is more realistic to model the buyer
as the leader. As another example, the OEM could be the supplier produc-
ing a custom designed telecommunication IC device for another OEM and
thus has enough power to act first. Depending on who is leading the chan-
nel, the terms for reservation can be determined either by the supplier or
the buyer. Other types of games can be also incorporated into the model.
For example, Nash games can be used to model simultaneous actions of
multiple buyers (suppliers) competing for the supplier’s capacity (buyer’s
orders). For readers unfamiliar with game-theory, Fudenberg and Tirole
(1991) and Allprantis and Ckakrabarti (2000) provide useful backgrounds.
In what follows, we review papers that study capacity reservation contracts
using the above described framework as their basic settings. We refer the
reader to Kleindorfer and Wu (2003) and Spialer (2003) for further reading
on this subject.

Research on capacity reservation contracts can be categorized into two
groups based on how they motivate the buyer’s incentives for reserving
capacity. Capacity reservations are motivated by either 1) reducing po-
tential cost through early commitments, or 2) ensuring availability during
demand upsides. Quite a few papers that fall in the first group show that
cost reduction through capacity reservation can be realized through ad-
vanced contracting and early commitments. This line of research typically
considers multiple ordering opportunities in which the buyer has the op-
tion of committing to an order quantity in advance and then purchasing
additional quantities at a higher cost (e.g., spot market price) after demand
information is updated. Related papers include Brown and Lee (1998),
Serel, Dada, and Moskowitz (2001), Bonser and Wu (2001), Wu, Klein-
dorfer, and Zhang (2002), Spinler, Huchzermeier, and Kleindorfer (2002)
and Wu and Kleindorfer (2003). Brown and Lee (1998) study capacity
reservations in the context of semiconductor manufacturing; in particular,
they discuss ‘pay-to-delay’ capacity reservation contracts. The buyer pro-
vides an initial forecast and a contract consisting of both firm commitments
and capacity options. The main incentive for the buyer is to minimize pro-
curement cost by committing earlier and taking advantage of discounts
offered by the supplier. It is typically assumed that the supplier always has
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sufficient capacity to offer. The authors focus their analysis on the buyer’s
perspective and derive optimal policies for the buyer only. Serel and Dada
(2001) extend the capacity reservation problem to a multi-period setting
with stationary demand. In their model, the buyer contracts a certain num-
ber of products from the supplier for each period by paying a reduced rate.
As such the supplier guarantees the delivery of the buyer’s order up to the
contracted amount. Bonser and Wu (2001) propose a similar multi-period
setting, in which future supplies are secured by a long-term contract and
spot market purchases. To minimize procurement costs, the buyer must ful-
fill long-term contract commitments to avoid an ‘underlife’ penalty while
at the same time taking advantage of spot price fluctuations.

Wu, Kleindorfer, and Zhang (2002) consider a supplier-lead channel in
which both the supplier and the buyer have access to spot markets to sell
or to buy unstorable goods. However, uncertainty in future spot market
prices creates incentives for both parties to embark on a long-term capac-
ity reservation contract in which the supplier acts first and determines her
reservation cost and her exercise fee by anticipating how the buyer will
react. Next, the buyer chooses the reservation amount. In this model the
only source of uncertainty is the spot market price. The buyer will not de-
cide how many of her options to exercise until she observes the realized
spot market price. Spinler et al. (2002) extend this framework by incor-
porating uncertainty into the buyer’s future demand and the seller’s future
marginal costs. They show that under option contracts both parties are bet-
ter off compared to other market schemes. In this environment, the buyer’s
demand for options depends on the correlation between buyer demand
and spot price. Motivated by emerging B2B exchanges, Wu and Kleindor-
fer (2003) extend the model in Wu, Kleindorfer, and Zhang (2002), they
examine the situation where suppliers compete to provide capacity for a
single buyer. They investigate the optimal portfolios of contracting and spot
market transactions for the buyer and the suppliers, and determine the mar-
ket equilibrium pricing strategies. Interestingly, the authors observe that
competition in options markets improves overall efficiency in contrast to
forward contracts.

The second group of papers investigates capacity reservation contracts
that are motivated by ensuring availability during market upsides. Papers
in this category include Cachon and Lariviere (2001), Jin and Wu (2001),
Barnes-Schuster, Bassok, and Anupindi (2002), Burnetas and Ritchken
(2003), Tomlin (2003), Ozer and Wei (2003), Cheng et al. (2003) and Erkoc
and Wu (2004) Cachon and Lariviere (2001) and Tomlin (2003) focus
on buyer-lead models and investigate forced and voluntary compliance
regimes. The former paper examines capacity contracting in the context of
supplier-buyer forecast coordination. The buyer provides an initial forecast
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and a contract consisting of firm commitments and capacity options. After
the supplier builds capacity, the buyer places an order based on the up-to-
date forecast. They show that although supply-chain coordination can be
achieved through option contracts in the full information case, it is only
possible when compliance is forced. They conclude that in the absence
of forced compliance, higher supplier capacity cannot be induced. Tomlin
(2003) enhances this approach by introducing an intermediate compliance
regime which he refers to as partial compliance. He shows that under
nonlinear price-only contracts, options do increase the supplier’s capacity.
However, full coordination is not necessarily achieved. On the other hand,
Erkoc and Wu (2002) show that in a supplier-lead channel the supplier will
always have incentive to signal the buyer that she will be fully compliant
by offering a noncompliance penalty scheme that won’t be disputed by
the buyer. Thus, they prove that coordination can still be achieved under
voluntary compliance regime in a supplier-leading channel.

Barnes-Schuster, Bassok, and Anupindi (2002) study a general case in
which the buyer both places firm orders and also purchases options under
a two-period setting with correlated demands. The buyer faces uncertain
demand in both periods. She places firm commitments for both periods
and an optional quantity for the second period. The buyer has the option
of carrying inventory from the first period to the second. She utilizes her
first-period demand to update the forecast for the second period’s demand
and then exercises her options based on the updated information at the
beginning of the second period. The authors examine optimal ordering
policies and their implications on supply chain coordination.

Jin and Wu (2001) study capacity coordination under exogenous whole-
sale price by utilizing take-or-pay contracts set by the supplier in a high-tech
manufacturing supply chain. In their setting, a per unit penalty for unused
capacity is charged to the buyer only if the utilized portion of the reserved
capacity falls below a certain threshold. The contract specifies both the
penalty and the threshold. The assumption of exogenous wholesale price
is a realistic one in high-tech industry where long before the negotiation
on capacity reservation, the buyer (mostly an OEM) would have entered
an agreement with the supplier to jointly develop the technology (known
as the “design-win” phase). At this time, the supplier would assess the
expected demand based on limited market information, and negotiate the
(wholesale) pricing. A direct adjustment on the wholesale price is gener-
ally avoided due to buyer resistance. However, corrections through side
payments or fees are usually possible and more practical. While under the
endogenous wholesale price case, capacity reservation with options can
always provide win-win solutions for both the supplier and the buyer, en-
tering such an agreement is not necessarily a viable strategy for the trading
parties under exogenous prices. In such an environment, the supplier would
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expand her capacity based on her assessment on the demand with or without
reservation. Knowing this, the buyer would only make reservation when
she fears that the supplier’s capacity choice is not sufficient to fulfill her
revenue potentials.

In this context, Erkoc and Wu (2002) investigate the supplier’s and the
buyer’s incentives to (or not to) enter into a reservation contract in the first
place. In their model, the buyer pays a reservation fee for each unit of reser-
vation. The reservation fee is later deducted from the wholesale price for
each utilized capacity unit. When the capacity is costly, the authors observe
that capacity reservation contracts become more appealing to both players
as uncertainty increases. They propose partial deduction and cost sharing
contracts that can achieve coordination when the wholesale price is exoge-
nous and examine the impact of the capacity cost structure (i.e., linear vs.
nonlinear) on the supplier’s contract selection decision. The authors extend
this model to a multiple competing buyer setting in Erkoc and Wu (2004).
In this setting, in addition to interaction between the supplier and the buyers
(vertical competition), the competition between buyers (horizontal compe-
tition) is also incorporated into the capacity reservation model. For a given
capacity reservation fee, the buyers from independent markets competi-
tively reserve the supplier’s capacity. The model is novel in that when there
are multiple buyers a buyer with upturn in demand can end up utilizing
(exercising) capacity (option) reserved by another buyer with downturn in
demand. Interestingly, the authors observe that in contrast to single-buyer
models, in a multi-buyer model the supplier may have incentives to create
capacity beyond her total reservation amount anticipating that the buyers
will need more than their reservations. Typically, this happens when buyers
have low profit margins and cannot afford to reserve sufficiently. In order to
achieve coordination, uplifting contracts are proposed. Uplifting contracts
stipulate that the buyers share not only the downside risk with the supplier
but also their upside gains. To get a share of a buyer’s upside gain, the
supplier charges the buyer extra to exercise (utilize) any option (capacity
unit) that was not previously purchased (reserved) by her but was rather
reserved by another buyer with demand downturn.

In a setting somewhat similar to Erkoc and Wu (2002), Cheng et al.
(2003) study option contracts assuming exogenous wholesale prices. Their
model examines capacity procurement contracts that include a combination
of firm and partial commitments. While the exogenous wholesale price is
applied to firm commitments, partial commitments are modeled by call
options in which both the prices and execution fees are determined by the
supplier. Before demand is realized the buyer determines the committed
order quantity and the number of options to be purchased. Similar to Erkoc
and Wu (2002), Cheng et al. (2003) observe that options will be appealing
for the buyer only if the reservation (option) fee is below a certain threshold
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value. The authors also develop a put option model in which by purchasing
a pull option the buyer acquires the right to return a surplus unit to the
supplier after demand is realized. They show that call and put options
can be reduced to one another and cannot coordinate the channel unless the
salvage revenues are equal for both players. To ensure channel coordination
they propose a profit-sharing contract.

Burnetas and Ritchken (2003) compare call and put options in a supply
chain in which the end-customer demand curve is downward sloping in
sale price set by the buyer. From put-call parity, they also show that for
a put option there exists a call option that leads to an identical outcome
for the trading parties. This result implies that if the supplier offers both
call and put options, the supplier’s wholesale prices and the buyer’s selling
prices will be unchanged from what they would have been if only call
options were offered. A combination of call and put options is employed
by Erkoc and Wu (2002) to coordinate the channel when the uncertainty
on demand is only partially resolved when the buyer must exercise her
capacity reservations. This situation arises when, like the capacity lead-
time, the production lead-time is also substantial, even though the product
lifecycle may be relatively short, creating tremendous pressure for the buyer
(e.g., an OEM manufacturer) to place her order early. Thus, it is often
the case that some level of uncertainty still remains when a firm order is
placed. The authors show that coordination can be achieved if a call option
(reservation) is combined with a put option (buy-back) in a compound way.
In this arrangement, exercising the call option yields a put option for the
buyer in that she has the right to return excess orders to the supplier after
all demand uncertainty is resolved.

The majority of the literature on capacity reservation contracts assumes
perfect information in that all parties in the supply chain have full infor-
mation regarding cost structures and demand distributions. Like Cachon
and Lariviere (2001), an exception is the model studied by Ozer and Wei
(2003), in which the authors assume that in a supplier leading supply
chain, the buyer has private information on end-customer demand. In
contrast to Cachon and Lariviere (2001), they treat the private information
as a continuous random variable. Ozer and Wei (2003) conclude that
although truthful information revelation is achievable under the capacity
reservation contracts, they do not guarantee channel coordination. They
extend the results of Erkoc and Wu (2002) by illustrating that the capacity
reservation contract becomes more favorable when the capacity cost is
high under information asymmetry as well. They show that coordination
can be achieved under information asymmetry by combining an advance
purchase contract with an appropriate buy-back agreement. The advance
purchase contract provides the buyer with the option of making firm orders
in return for a discounted rate.
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OPERATIONAL MODELS: OPTIMIZATION
AND DECISION SUPPORT

We now consider operational models in high-tech manufacturing; the lit-
erature focuses on optimization and decision support models, which we
categorize according to the level of detail they capture and the length of the
planning horizon they consider. We will focus our attention on semicon-
ductor manufacturing because most existing work in this area concentrates
on that industry.

Benavides, Duley, and Johnson (1999) consider several fab installations
of different sizes that can achieve the same through-put levels measured in
wafer starts per month. They compare multiple fabs of smaller capacity,
a single fab of larger capacity and one or more fabs of expandable capac-
ity, all of which provide the same total wafer output level. The tradeoffs
are that smaller and multiple plants do not achieve economies of scale as
good as a single larger plant of the same total capacity; however, building
small plants reduces the risk of underutilization. However, long installation
times for an individual plant (up to 18 months) may cause lost business
opportunities. The decisions are when and how much capacity to install
under demand uncertainty, which is modeled as a continuous time Brow-
nian motion. The objective is to identity the configuration that maximizes
the total expected profits, which is found by applying a stochastic control
approach. This study shows that, in general, it is more costly to install a fab
before demand is realized than to install it late. In that regard, large-capacity
expandable fabs provide a good compromise by delaying the capacity in-
crements and also achieving economies of scale better than low-capacity
fabs.

Christie and Wu (2002) consider capacity planning across multiple fabs.
Microelectronics technologies are aggregated and distinguished by their
capacity consumption rate. Individual fab capacity is modeled as a single
resource whose level is a random variable and measured in wafer output per
period. This approach takes into account yield variability at an aggregate
level. Uncertainty in demand for technologies and uncertainty in capacity
levels are reconciled in the form of discrete scenarios in a multi-period,
multistage, stochastic programming model. The objective is to minimize
the expected mismatch between planned and actual capacity allocation as
defined in the scenarios. The authors illustrate various methodologies for
preparing demand scenarios as input to their optimization model.

Karabuk and Wu (2003) build on the previous work by expanding their
model to include capacity expansion decisions and aiming to minimize
the sum of capacity expansion and expected fab reconfiguration costs. An
efficient solution approach, inspired by the decentralized decision-making
environment is developed. The proposed approach captures the tradeoff
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between the extent of the information shared between participating decision
makers and the quality of capacity planning decisions. It also quantifies the
value of information sharing.

Another line of research tries to determine whether there is enough tool
capacity to satisfy the anticipated demand through medium term planning
horizon and if so, when and in what numbers are additional tools required?
These are very important decisions because tools cost up to several million
dollars each and have long delivery lead times (6 to 12 months).

Further group research in these tactical planning problems under three
categories differentiated by the level of detail the models capture and their
respective solution approaches: mathematical programming, queuing net-
works and simulation and other heuristics. Mathematical programming
approaches distinguish processes only by production rate which are oth-
erwise treated as generic. Yield and cycle time variability is modeled as a
constant yield factor and as such congestion effects are not modeled. The
planning period is up to two years which reflects the delivery lead time
for newly acquired tools. Some studies also incorporate the assignment of
operations to tool groups that are capable of doing multiple operations at
different rates into their optimization models. These are also referred to as
routing decisions.

The batch processing nature of semiconductor manufacturing lends it-
self well to modeling with queuing networks. This approach can compute
the cycle time and throughput without running computationally expensive
simulation models. Although this approach has been applied extensively
in performance evaluation of manufacturing systems (and semiconductor
manufacturing as well), we restrict our scope to studies that use this ap-
proach within a scheme to make tool capacity planning decisions. In such
studies, a queueing network model guides the search for a minimum cost
tool configuration that achieves a desired performance level for a wafer
fab. One restrictive assumption of this approach in the literature observed
so far is that the manufacturing flow, the assignment of operations to tools
and the routing of batches is assumed to be predetermined.

Detailed simulation models are also required to test the solutions ob-
tained by optimization methods or by heuristics. However, the substantial
computational requirements of these models often prohibit their use for
evaluating more than a handful of alternative configurations. These and
some ad hoc approaches for capacity planning at tactical levels (such as
spreadsheet applications) fall into the last category that we consider.

Mathematical Programming Models
There are a few researchers who study the problem with a deterministic
model. Bermon and Hood (1999) develop a linear programming (LP) based
decision support system for tactical planning at an IBM wafer fab which
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they refer to as the CAPS system. The decision problem is to find the most
profitable product mix for a given tool set and an expected demand profile.
Production volumes are allowed to vary within a lower and an upper bound
which are parameters at the planners disposal. The modeling challenges
dealt with are (1) how to represent operation assignment preferences among
parallel tool sets with different operation times and (2) how to represent
capacity availability as a function of product mix with an LP model, with-
out using integer variables. Although demand is very volatile and changes
frequently, it is left to the planners to account for with the help of a software
tool that implements the LP model. An important simplifying assumption
is that there is no inventory or back-order between two consecutive plan-
ning periods. Catay, Erenguc, and Vakharia (2003) develop a deterministic
integer model that relaxes this assumption. Their model minimizes the to-
tal cost of inventory, tool acquisition and tool operating costs such that the
expected demand is satisfied. They develop a Lagrangian relaxation based
heuristic which is empirically shown to produce solutions with a small
duality gap.

However, demand volatility and long manufacturing lead times in the
semiconductor industry make it important to integrate demand uncertainty
into any decision model. Hence, most studies use a stochastic programming
approach where the demand distribution is included as a set of discrete sce-
narios in the model. Swaminathan (2000) studies tool procurement problem
in a single period under the simplifying assumption that operation-to-tool
assignments are already known (rather than optimized by the model). Al-
though the underlying model is simplified, the study illustrates the benefits
of incorporating demand scenarios versus optimizing with respect to ex-
pected demand only. Later, Swaminathan (2002) generalizes his earlier
work by extending it to a multi-period setting and including operation-
to-tool assignments as decision variables. Heuristic solution methods are
developed and their performance is investigated. The study reinforces the
benefits of the demand scenario approach and applies the solution methods
to an industry data set.

Barahona et al. (2003) build on their earlier work on the CAPS system
and extend it to a two-stage mixed integer stochastic programming model.
Their model finds the quantity and timing of tool acquisitions over a dis-
crete time planning horizon and under a budget constraint. The objective
is to minimize the expected unsatisfied demand. Even with a simplifying
assumption that results in a two-stage stochastic programming model (as
opposed to a multi-stage model over the planning horizon), the very large
size of the resulting model when applied to an instance observed at IBM
(2,500 integer variables, 230,000 continuous variables and 140,000 con-
straints) prohibits an exact solution approach. Cuts that strengthen the LP
relaxation are developed and applied to several heuristic solution methods
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that are based on relaxing integrality constraints on a rolling horizon basis.
Hood, Bermon, and Barahona (2003) highlight the previous reference from
a business perspective. They elaborate on the business implications of and
requirements for implementing the stochastic programming model. Several
approaches for generating discrete demand scenarios are discussed within
the scope of relevant business processes.

Zhang et al. (2004) focus on the large number of demand scenarios that
are required to capture uncertainty accurately, since this aspect is one of
the main reasons for the large size of the resulting model. Their model
is developed under the simplifying assumptions that there is no inventory
and there are no backorders between periods and that the allocation of
products to tools follow simple rules rather than explicitly being optimized
by the model. The multi-variate nature of the demand distribution (for
all products combined) complicates the model considerably. The authors
approach the problem using a novel representation of the joint demand
distribution with a collection of demand rays, rather than discrete demand
points. The resulting formulation is reduced to a minimum cut network
model which is solved relatively easily. Their approach, although it requires
simplifying assumptions, finds solutions to problems of realistic size.

Although demand volatility is the main source of uncertainty in semicon-
ductor tool capacity planning, yield variability, especially for new technolo-
gies, is an important consideration too. Karabuk and Wu (2002) incorporate
both demand and yield uncertainty into a stochastic programming model
via discrete scenarios. A scenario is defined as a combination of a vector
of yield realization factor applied to expected wafer starts and a demand
vector through the planning horizon. The resulting large-scale model is
decomposed with respect to manufacturing and a marketing problem and
a price-based coordinated solution is facilitated by mathematical decom-
position. Two coordination schemes based on augmented Lagrangian are
developed and their properties are studied.

Queuing Networks and Stochastic Processes
Chen et al. (1988) are among the first to use a queuing network model
to study the performance of a wafer fab as an alternative to a detailed
simulation study. The advantage of a queueing model is that it provides
a closed form solution that relates control policies and fab configuration
to system performance (e.g., manufacturing cycle time, throughput, work
in progress.) Such an analytical model makes it easy to explore the per-
formance consequences of different facility configurations and operating
policies without heavy computational requirements. However, since the
approach relies on certain assumptions and approximations, the resulting
solutions must be considered in conjunction with a simulation study for
verification before being put to use. The authors verify their model by
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comparing the results to actual observations and to detailed simulation
output. Their results show that the accuracy of their model is within 10–
30% with respect to cycle time and 5–10% with respect to throughput and
that it only requires the mean processing time and variance information
for each machine operation. This study can be considered as a proof of the
concept on the application of queuing networks to semiconductor wafer
manufacturing. Connors, Feigin, and Yao (1996) extend the previous work
by incorporating rework and scrapping of wafer lots and by extending
the queuing network model by incorporating tool characteristics: single
wafer tools and batch processing tools whose efficiency depends on job
size (hence importance of rework and scrap). They use this model to plan
for tool capacities. Kumar and Kumar (2001) provide a tutorial overview
of queuing networks in semiconductor wafer fab performance analysis.

Bard, Srinivasan, and Tirupati (1999) make use of the closed-form so-
lution of a queuing model to develop a set of nonlinear equations that
represent the cycle time as a function of the total number of tools in
the system. A nonlinear mixed integer optimization model is developed,
which aims to minimize cycle time with respect to a given demand profile
and a given budget available for tool purchases. The authors develop sev-
eral heuristic solution approaches and validate them with a set of industry
data.

Kao and Chou (2000) develop a tool portfolio planning methodology
that iterates between an aggregate capacity model and a queuing model
and considers cycle time, tool investment costs and throughput. A tool
portfolio refers to the quantity and type of tools in a fab. Later, Chou, et al.
(2001) extend the previous work with the use of a simulation model in
a hierarchical fashion. The methodology is then used to find a minimum
cost tool portfolio subject to throughput and cycle time constraints. Chou
and Everton (1996) develop a multi-criteria decision making framework
that considers throughput, cycle time, tool capacity and investment cost
simultaneously. A utility function is developed and used for evaluating
alternative solutions with respect to the above criteria. The resulting deci-
sion model is applied to describe and quantify the advantages of capacity
sharing between partner plants.

Hopp et al. (2002) also combine a queuing network model with simu-
lation. The study attempts to find a minimum cost capacity configuration
while the cycle times are within acceptable limits and throughput is as
desired. The queuing model is used to guide the search of the optimiza-
tion model to achieve this feat Batch processes, machine changeovers and
re-entrant flows are incorporated. Iwata, Taji, and Tamura (2003) also use
a queuing network model to derive cycle time and production costs as
functions of the number of tools in tool groups and of the throughput for
products. The model is used to determine the number and size of tool groups
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with the criteria being the tradeoff between manufacturing costs and the
product throughput. They use the model to analyze the impact of fab scale
on cycle time and production costs. They show that the degree of versatility
of the tool groups determines the required fab capacity to achieve a given
performance: as the versatility increases the required fab scale decreases.
Agile mini-fabs could therefore be achieved by installing versatile tools.

Heuristics and Simulation Based Approaches
There are a large number of studies that develop rough-cut heuristic ap-
proaches for finding easy-to-understand practical capacity planning so-
lutions. These are often reported by practitioners and published in con-
ference proceedings. Some of these approaches are based on simulation.
However, development complexity and high runtime, requirements pre-
clude simulation from being a mainstream application tool. These kinds
of studies are numerous and we therefore provide only a limited sample.
Optimization does not take place but rather closed-form formulations are
developed drawn from common best planning practices. As such, most
of these models lend themselves to easy implementation via spreadsheet
applications.

Chou and Everton (1996) apply simulation for capacity planning in a
development wafer fab and look at the work in process (WIP), cycle time,
bottleneck operations and the impact of randomness on the performance.
Their study helps Fujitsu determine staffing levels and equipment acqui-
sitions to support projected production levels. Witte (1996) describes a
capacity planning tool developed at Harris Semiconductor. The model is
based on company wide tool availability, process requirement and demand
data which are used in simple equations to turn a first cut aggregate results
into capacity requirements. A software tool which subsequently imple-
mented the model provides a unifying framework across facilities to start
their capacity analysis. Detailed analysis at individual facility level may
follow. Mercier (1998) describes a spreadsheet model for identifying tool
groups that are capacity bottlenecks.

Chen et al. (1999) develop a materials requirement planning model tai-
lored to a twin wafer fab system. The model keeps track of WIP amounts,
current capacity loads and also decides on wafer releases assuming unlim-
ited capacity. Its main goal is to smooth loading across fabs and across
planning periods. Kotcher and Chance (1999) describe an easy-to-apply
methodology for assessing the sensitivity of tool capacity with respect to
product mix. The methodology could be used in connection with a simu-
lation model to identify bottleneck tool groups and make tool acquisition
decisions. Occhino (2000) describes a spreadsheet application that im-
plements equations that relate product mix to capacity consumption at a
high volume DRAM manufacturer. Iwata and Wood (2002) develop simple
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equations that relate fab capacity to wafer cost. The resulting model de-
composes facility costs into capacity-dependent and -independent com-
ponents and takes into account processes variety, tool sizes and machine
changeovers. The model is used to establish a relationship between tool
and process characteristics and fab size. The conclusions are that increased
process diversity and decreased tool versatility leads to larger scale fabs to
achieve given delivery and cost performance.

Cakanyildirim and Roundy (2002a) evaluate tool and factory floor (shell
space) capacity planning and expansion methodologies that are commonly
practiced in industry and highlight their relative performance under differ-
ent conditions. They make use of an optimal-seeking algorithm developed
previously by the authors that finds the optimal tool purchase time and
quantities such that the sum of expected lost demand and tool purchase
costs are minimized. The results of this algorithm serves as a common
comparison basis for the heuristic methods that are practiced. They show
that the optimum-seeking approach reduces costs by 5–10%. In another
experiment they study the effects of restricting capacity expansion deci-
sions to the beginning of a planning period. The experiment concludes that
the quality of decisions deteriorate only if the periods are longer than six
months. In a related experiment they look into the impact of the frequency
of planning and forecasting on the solution quality. The experiment reveals
that the practitioners should revise forecasts and plan at least once every
quarter.

Operational Planning and Scheduling

Although detailed planing and scheduling decisions usually take place af-
ter aggregate capacity planning decisions are made, they have a direct im-
pact on efficient capacity utilization, and as such they indirectly influence
capacity planning decisions. Due to the complexity of the wafer manu-
facturing process operational problems are equally challenging to solve.
Uzsoy, Lee, and Martin-Vega (1992) list some characteristics of the wafer
manufacturing process that complicate operational planning: the large num-
ber of operations a wafer has to go through, the re-entrant flow of wafer
batches, the sequence-dependent machine setups, wide variety of machine
characteristics—some process one wafer at a time and others do batch pro-
cessing and time dependency of some operations. The fact that conflicting
planning objectives such as reducing cycle time, increasing throughput and
decreasing work in progress inventories are heavily interconnected makes
operational planning even more challenging.

We will refer to major review papers published in this area as a starting
point for the interested reader. Uzsoy, Lee, and Martin-Vega (1992, 1994)
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present an excellent review in two parts that covers existing literature and
discusses research directions. In a more recent review, Fowler, Cochran,
and Horng (1999) develop a classification scheme with respect to several
dimensions including problem type, modeling technique and publication
characteristics. They set up a public Internet site where researchers can
search a bibliography database and obtain a listing of references and they
pledge to keep it up to date. As of the publication date the authors report
an availability of 559 articles.

CONCLUSIONS

While the literature on high-tech capacity planning and management is
limited, related literature that addresses various aspects of this topic is
vast. It is beyond the scope of this article to cover all relevant literature
in this area; however, we believe that the article describes the general
research landscape and points to several exciting new directions for capacity
research.
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