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Nutrient availability, water depth, competition, and soil management 

effects on cattail (Typha latifolia) growth in wetland systems were examined.  

Soluble reactive phosphorous (SRP), nitrate-nitrogen (NO3-N), and ammonia-

nitrogen (NH3–N) removals were tested at a constructed wetland receiving 

municipal wastewater effluent.  Over all, no significant differences in nutrients 

occurred between diverse planted and cattail areas.  T. latifolia seeds, under the 

canopy of  Eleochoris macrostachya, had low seed germination.  Established 

stands of emergent vegetation can prevent cattail colonization and spread.  

Germination of T. latifolia at various water depths was tested, and depth impacts 

on cattail seedling growth and survival were ascertained using various moist soil 

management techniques in three ponds.  Water levels at 0cm and >40cm can 

adversely impact cattail establishment. 
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INTRODUCTION 

Cattail (Typha) species are considered important wetland plants of littoral 

zones in temperate and boreal North America (Smith 1986).  Cattails exist in a 

wide range of habitats, from mineral poor to mineral rich soils, basic to acidic 

waters, and tolerate many levels of salinity (Fasset and Calhoun, 1952). In 

particular, Typha latifolia also exists in a wide range of climates and photoperiods 

(Smith 1986).   

Cattails are often abundant wetland species, and perhaps the most 

common cattail species in North Texas is Typha latifolia.  This species out-

competes other Typha species in shallow waters and is more shade tolerant.  T. 

latifolia produces relatively long rhizomes and colonies spread rapidly (Smith 

1986).  Seeds are small, one-seeded fruits that have many perigonial hairs 

(Stewart et al., 1997).  T. latifolia has a “flattened stigma and curb-shaped 

aborted pistils” (Fassett and Calhoun,  1952).  If one compares seeds per 

pistillate spike, T. latifolia has greater seed production than T. domingensis, even 

though it has a smaller seed mass.  T. latifolia has a greater ability to spread 

(compared with other Typha) based on the number of seeds produced (Stewart 

et al., 1997).   

Cattails are aggressive species that quickly inhabit disturbed areas, 

ultimately reducing diversity and productivity of wetland systems. They disperse 

seeds over a wide area and pre-empt spaces rapidly following a disturbance.  

They are mainly self-pollinators, but can also cross-fertilize (Krattinger, 1975). 

Seeds of T. latifolia, when floating or submerged under water, adjust to changes 

in temperature more successfully than when seeds find land (Thompson, 1974).  
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Normally, T. latifolia seeds germinate during the spring, when temperatures are 

mild, water levels are adequate, and day light hours are longer (Lombardi et al., 

1997). Physical characteristics, such as these, may result in T. latifolia stands 

that are oligo-specific, partly due to extensive rhizome growth that precludes 

other species (Lombardi et al., 1997).  In the absence of heavy vegetation in an 

area, cattails can spread rapidly by vegetative propagation (Gopal and Goel, 

1993).   

The success of cattail growth in ponds across North America has been 

partly attributed to changes in nutrients in freshwater, resulting in eutrophication 

(Weller 1994).  In an Everglades nutrient study, T. latifolia germinated faster in 

field water than T. domingensis under high nutrient concentrations, including 

phosphorous (Stewart et al., 1997).  Cattails thriving in an area indicate that the 

wetland area is nutrient rich and has been disturbed (DyKyjova and Kvet, 1978; 

Grace and Harrison, 1986; Keddy, 1990).  Higher nutrient levels have resulted in 

rapid growth of cattails in freshwater systems, decreasing diversity of other 

wetland species, and affecting other ecosystem components, such as duck 

populations. Decreases in vegetation diversity in waterfowl marshes can result in 

a decrease in food resources and nesting habitat (ter Heerdt and Drost, 1994).   

  Wetland management strategies today may influence cattail 

establishment.  Moist soil management strategies and the created wetland “dig it, 

fill it, and they will come” philosophy contribute to conditions conducive to rapid 

cattail establishment.  Wetland management strategies for cattails focus on water 
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fluctuation to drown plants, herbicides, and burning, etc.  This study focuses on 

water fluctuations as a management strategy. 

 To reduce cattail expansion rates, reduced water depths and hydro-

periods should be studied more in depth (Newman et al., 1998).  Management 

strategies for cattails should focus on preemptive establishment of less 

aggressive and more beneficial native species and/or water management that 

inhibits cattail germination or growth.  Complete draining or maintaining constant 

water levels are commonly practiced wetland soil management techniques used 

for waterfowl habitat, although partial drawdowns may be beneficial (Polasek, 

1994). 

 

Objectives: 

Four research objectives are presented below: 

A. Measure soluble reactive phosphorous (SRP), nitrate -nitrogen (NO3-

N), and ammonia-nitrogen (NH3–N) at various points in a constructed 

wetland for one year to evaluate whether nutrient levels differ between 

planted areas (diverse wetland plants) and unplanted areas (cattail 

stands).  

B. Examine cattail seedling germination and growth as influenced by 

competitive effects of other wetland species.  

C. Determine cattail seedling germination rates, seedling survival, and 

growth at multiple water depths.  
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D. Ascertain cattail establishment under different conditions associated 

with three moist soil management strategies.  

 

In this study, comparisons were made in a constructed wetland between 

areas occupied by cattails (disturbed areas that were quickly overrun by cattails) 

and areas purposely planted with a diversity of wetland species.  These 

comparisons were conducted to ascertain nutrient abatement of nitrogen, 

phosphorous, and ammonia.  Recent studies have shown that large aquatic 

plants, especially cattails, contribute to the removal of human disease-causing 

microorganisms and pollutants (Kadlec and Knight, 1996).  

Establishment of cattails from seed under competitive conditions, the 

influence of water depth on cattail seed germination, and seedling survival and 

growth at different water depths were examined experimentally.  It is 

hypothesized that T. latifolia has greater biomass production at low water depths 

with high percent-light transmission than areas of high water depths and low 

percent-light transmission.  Finally, cattail seedling survival, using three moist soil 

management techniques, was investigated to determine cattail establishment 

under various water fluctuation conditions. 
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2.  NUTRIENT ANALYSIS OF A WETLAND 
 

A wetland was constructed in 1992 by the city of Denton, Texas to receive 

de-chlorinated wastewater from the Pecan Creek Wastewater Treatment Plant.  

This is a type of surface flow wetland, similar to marshes, where shallow 

channels and basins resulting in water flowing at low velocities above and within 

the substrate (Shutes, 2001).  The wetland has a clay liner that restricts 

movement of groundwater inflow or outflow and has a maximum volume of 

567,812 liters. Approximately 642,000 liters per day enter this wetland 

(Baerenklau, 1996).  

The constructed wetland measures approximately 45 .7m².  Depths range 

from a few inches at the inflow of the wetland to depths up to 2 feet at the 

outflow.  Three earthen barriers were built to create a channel in the wetland 

(Baerenklau, 1996).  Three wetland plant species, bulltongue (Sagittaria 

graminea), pickerelweed (Pontederia cordata), and bulrush (Scirpus validus), 

obtained from the Lewisville Aquatic Environmental Research Facility, in 

Lewisville, Texas, were planted in the wetland between stations 1 and 2 -3 

(Figure 1).  Duckweed (Lemna spp.), hydrilla (Hydrilla verticillata), coontail 

(Ceratophyllum demersum), flatstem spikerush (Eleocharis  macrostachya) , and 

cattails (T. latifolia) have inhabited this area as well.  Figure 1 shows the diversity 

of wetland plants between stations 1 and 2 with the cattails in the rest of the 

wetland. 
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Methods 

Grab samples of water were collected at stations 1, 3, and 5 periodically 

between February 2001 and January 2002.  Station 1 was the inflow area, station 

3 was located at the middle of the wetland flow, and station 5 was located 

towards the end of the flow.  Samples were filtered using a 47mm glass fiber 

filter, and alkalinity and pH values were ascertained.  Samples were analyzed for 

SRP, NO3
--N and NH3-N per water sampling at the University of North Texas 

using standard methods for the SRP analysis and the LaMotte water testing kits 

for NO3–N and NH3–N (Eaton, 1995).   

SRP is the measure of biologically available phosphorous (Mitsch and 

Gasselink 2000).  For the SRP analysis, a standard phosphate solution was 

made (Eaton et all, 1994).  219.5 mg anhydrous KH2PO4 was dissolved in 

distilled water and diluted to 1000ml  (1.0ml = 50.0µg of PO4
3--P).  From this 

stock solution, three replicates of 0.0, 0.25, 0.5, 0.75, and 1.0 standards were 

made.  A combined reagent stock solution was made from 500ml 5N H2SO4, 

50ml potassium antimony solution (1.3715g of K(SbO)C4H4O6⋅ 1/2H2O dissolved 

in 500ml distilled water), and 150ml ammonium molybdate solution (20g of 

(NH4)6Mo7O24⋅4H2O dissolved in 500ml distilled water).  1.76g of ascorbic acid 

(0.1M) were dissolved in 100ml of distilled water.  To make the final reagent 

working solution, 70ml of combined stock reagent and 30ml of ascorbic acid were 

mixed.  

Wetland water samples were diluted with distilled water from 25ml to 

100ml as a 1:4 ratio.   Two ml of final reagent working solution was added to 
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12.5ml of sample/standard. After 10 minutes, and no more than 30 minutes, 

absorbance readings were recorded from the sample/standard using a Beckman 

DU - spectrophotometer at 880nm.   

 For the NO3-N analysis, LaMotte NO3-N water testing kits were used.  

0.7218g of potassium nitrate (anhydrous) was dried at 105°C for 24 hours and 

diluted to 1000ml with distilled water (1.0ml = 100ug NO3-N). From this stock 

solution, three replicates of 0.0, 1.0, 2.0, 3.5, and 5.0 standards were made.  

Wetland samples were diluted to a 1:4 ratio.  Five ml of each sample or standard 

was mixed with 5ml of mixed acid reagent (included in kit), and after two minutes, 

0.2g of nitrate reducing reagent (in kit) was added.  Each test tube of 

sample/standard was inverted 50-60 times/minute for four minutes.  After 20 

minutes, samples/standards absorbance readings were recorded at 543nm from 

the spectrophotometer. 

NH3-N analysis was conducted by first making an NH4Cl standard solution 

(3.819g anhydrous NH4Cl dried at 100°C and diluted to 1000ml with distilled 

water).   Three replicates of 0.0, 0.25, 0.5, 0.75, and 1.0 standards were used for 

each analysis.  The concentration of the standards varied throughout the year 

depending on sample absorbance readings.  An NH3-N water testing kit from 

LaMotte Co. was used to analyze the samples.  Eight drops of NH3-N reagent #1 

(in kit) were added to 10ml of each sample/standard, and each sample was 

mixed.  1.0ml of NH3-N reagent #2 (from kit) was added and mixed.  After 5 

minutes, samples/standards absorbance readings were recorded at 430nm from 

the spectrophotometer.  
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Concentrations were ascertained from these absorbance values from 

each analysis throughout the year.  Statistical analyses were conducted between 

the individual sampling dates for all three chemical analyses using two-sample 

independent t-tests.  Line graphs showed trends between stations of chemical 

concentrations of SRP, NH3-N, and NO3-N during the months tested. 

 

Results 

 SRP concentrations (from the inflow water) had means plus or minus the 

standard deviations (±SD) at stations 1, 3, and 5 of 1.64 ± 0.02, 1.58 ± 0.01, and 

1.65 ± 0.05 mg/L respectively.  Figure 2 shows the mean SRP concentrations for 

the entire sampling period.  In order to test differences between the 

concentrations from station 1 (inflow) to station 3 comparing it to concentrations 

from station 3 to station 5 (outflow), a t-test was used.  There were no significant 

differences between concentrations from stations 3 to 1 and stations 5 to 3 

(Independent t-test, p =0.07, alpha = 0.05).   

NO3-N concentrations decreased from stations 1 to 5 for all sample 

periods.  Between February 27, 2001 and January 8, 2002, stations 1, 3, and 5 

had mean and SD of 12.66 ± 0.37, 6.66 ± 0.14, and 2.33 ± 0.04 mg/L, 

respectively (Figure 3).  In order to test differences between the concentrations 

from station 1 (inflow) to station 3 comparing it to concentrations from station 3 to 

station 5 (outflow), a t-test was used.  Significant differences occurred between 

concentrations in stations 3 and 1 and stations 5 and 3 (Mann Whitney U test, p 

=0.0215, alpha = 0.05).  
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NH3-N concentrations at stations 1, 3, and 5, were 1.02 ± 1.89, 0.39 ± 

0.256, and 0.66 ± 0.37 mg/L, respectively. However, the only concentrations 

above 1.5 mg/L occurred in November 2001, with a maximum of 6.61 mg/L. A 

Grubb’s outlier test showed that this value of 6.61 was a statistically significant 

outlier.  This value was removed from the data when statistical analyses were 

conducted.  In order to test differences between the concentrations from station 1 

(inflow) to station 3 comparing it to concentrations from station 3 to station 5 

(outflow), a Mann Whitney U test was used since the data were non-normal.  

There were significant differences between stations 3 and 1 and stations 5 and 3 

(two-sided Mann Whitney U test, p =0.0064, alpha = 0.05).  
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Discussion 

There was no significant difference in SRP concentrations between 

stations 1 (inflow) to 5 (outflow) in the Pecan Creek Wastewater wetland, 

indicating that neither cattails nor wetland plants contributed to the reduction of 

SRP in this system.  A constructed wetland made to treat secondary runoff from 

a wastewater treatment plant was studied by Geiger et al. (1993).  SRP amounts 

ranged from 0.0 – 0.3 mg/L, with unusually high amounts of SRP reaching 

between 1 – 4 mg/L (Geiger et al. 1993).  The concentrations in this Denton 

constructed wetland are therefore considered nutrient rich in SRP, since the 

average was 1.65 mg/L, and this could be a reason for the large cattail growth.  

However, flow rates vary between wetlands.  Craft and Richardson (1997) 

showed phosphorous enrichment to be correlated with the expansion of cattail 

populations.  Evidently, cattails and other wetland plants in the Denton wetland 

had reached some peak biomass and were no longer expanding.   

The NO3-N results indicated that NO3-N was lost as N2 gas or reduced to 

some other form, such as NH3-N, as water moved through the wetland system, 

with concentrations greater at station 1 and lowest at station 5.  There was a 

significant difference between the cattail area and other wetland species area, 

indicating that reduction rates of NO3-N concentrations were different between 

the two areas (Figure 3).  High concentrations (mg/L) in municipal wastewater 

wetlands have been reported between 5.46 mg/L (inflow) and 1.55 mg/L (outflow) 

on average (Newman et al. 2000).  This is in contrast to the Denton’s constructed 

wetland concentration amounts.  Denton concentrations were much higher at the 
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inflow (12.66 mg/L average), and the outflow, averaging 2.33 mg/L.  The Pecan 

Creek wastewater laboratory tests for nitrates once a year.   In January of 2001 

the effluent concentration was 12.19 mg/L.  The nitrate concentrations are high in 

de-chlorinated treated water initially before the water reaches the wetland. 

Decreasing NO3-N 10mg/L between the inflow to outflow area of the constructed 

wetland showed that organisms living in the system decrease nitrates effectively 

by converting it into N2 gas, NH3-N, or biomass for plants and microorganisms. 

NH3-N concentrations ranged from 0 - 1.5 mg/L (Figure 4), with significant 

differences between concentrations at stations 3 and 1 and stations 5 and 3.  

The cattail area contained higher concentrations of NH3-N than the other wetland 

plant area.  However, concentrations throughout the wetland area were 

moderately low on average.  Municipal wastewater wetlands usually contain 

concentrations of NH3-N between 4.08 (inflow) and 1.6 (outflow) (Newman et al. 

2000).  The constructed wetland had 1.02mg/L average at the inflow, decreased 

to .39 mg/L on average at station 3, and then increased to 0.66 mg/L at the 

outflow.  This indicated that the Denton constructed wetland had NH3-N in low 

amounts in the water column.  A possible explanation for this low amount could 

be that most of the N03-N in the wetland converted to N2 gas by denitrification 

from microorganisms instead of a reduction to NH3-N. 

Wetland plants themselves are not the only means by which nutrients are 

removed from wastewater.  The root structure of wetland plants supplies oxygen 

to soil microorganisms. The effectiveness of wetlands to remove nitrogen, 

phosphorous, and trace organics is generally due to both microbial interactions 
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on contaminants and uptake by vegetation (Watson et al., 1989).  Soil 

microorganisms also nitrify NH3-N (Trautmann et al., 1989). In large part, 

vegetation provides the surface area for microbial growth on rhizomes and roots, 

filters solids, and transfers oxygen to create an aerobic environment for 

microorganisms, like nitrifiers (Steiner and Freeman, 1989). Phosphorous and 

nitrogen removal varies from wetland to wetland (Watson et al., 1989).  Cattails 

have been known to be a particularly effective substrate in removing nutrients 

from wastewater because of relatively high biomass above and below ground, 

providing potentially greater surface area for the uptake of nutrients and ions 

(Shutes, 2001).  

Many terrestrial ecosystems are becoming enriched with nutrients from 

transported wastewater, increased amounts of nitrogen in the atmosphere, and 

eutrophication (Verhoeven et al., 1983).  Decreasing the amount of nitrogen and 

phosphorous in freshwater systems reduces algal growth and other problems 

that occur with eutrophication.  The results of this study indicate that there is no 

significant difference in SRP, but there was a significant difference with NO3
-

concentrations between areas with diverse wetland plants and areas of only 

cattails in a constructed wetland.  NH3-N concentrations were too low throughout 

the wetland to have an ecological significance between the diverse planted area 

and the cattail area.  

Where cattails contribute to decreasing nitrates, their occurrence may help 

decrease problems with eutrophication. However, many other wetland species 
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provide the same benefit, and in cases where diversity is greater, a more optimal 

environment for soil microorganisms than cattails alone may provide.  
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3.  EFFECTS OF COMPETITION ON CATTAIL GERMINATION, SURVIVAL, 
AND GROWTH 

 

Methods 

The competition study was conducted in a small pool at the Lewisville 

Aquatic Environmental Research Facility (LAERF) beginning August 3, 2001.  

Soil from LAERF ponds was heat-sterilized at 90°C for 24 hours then mixed with 

water at a 9:4 ratio in a gasoline-powered cement mixer.  Fourteen 10cm height 

X 7cm diameter pots were filled up to 9cm depth with the mud mixture, and 

approximately 100 T. latifolia seeds were spread on top of the sediment in each 

pot.  Seven T. latifolia pots were placed in a 3m diameter X 0.76m deep pool with 

six pots of established E. macrostachya (approx. 0.61m high). The remaining 

seven T. latifolia pots were used as controls and not surrounded by E. 

macrostachya pots, exposing them to full sunlight during the entire study.  T. 

latifolia seeds (approximately 100) were also introduced to seven E. 

macrostachya pots, each of which was positioned within the colony of E. 

macrostachya/T. latifolia pots (Figure 5).   

The pool was filled with 12.5 cm depth of alum treated water.  This water 

was treated to precipitate phosphorous (Dick et al., 1993), thereby reducing algal 

growth. A 12.5cm pool depth provided a depth of 2.5cm above the soil of the 

pots. This depth was ascertained by evaluating the literature, which indicated 

such a depth to be ideal for cattail germination and survival (Stewart et al., 1997). 

  Seeds were allowed to germinate and grow beginning August 3, 2001 and 

seedlings were harvested on November 30, 2001. Plants were counted, dried, 
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and weighed for above and below ground biomass (g).  A one-way ANOVA was 

conducted to determine plant survival and percent seed germination. 

  

 

 

Results 

Mean percent seed germination of T. latifolia between the control, T. 

latifolia pots, and E. macrostachya pots were found to be non-normal  (p 

<0.0001, Shapiro-Wilks).   Rank percent seed germination was significantly 

different (alpha = 0.05, one-way parametric ANOVA on ranked data, p =0.0085).  

Ranked percent seed germination of T. latifolia was separated into three 

significantly distinct groups: mean percent seed germination of control > T. 

latifolia pots > E. macrostachya pots. 

Total biomass (above and below ground) for the control pots ranged from 

0.01g to 26.88g, with a mean and standard deviation (g±SD) of 9g± 11.47.  The 

seven T. latifolia pots had a total biomass ranging from 0.0g to .09g, with a mean 

and SD of .028g ± .036, and the E. macrostachya pots had a mean cattail 

biomass of 0±0g in all pots.  Mean total, above, and below ground biomass (g) of 

T. latifolia were each significantly different among the control group, the T. 

latifolia pots, and the E. macrostachya pots (one-way parametric ANOVA on 

ranked data, p < 0.0001 with mean total and above ground biomass (g) and p = 

0.0002 for below ground biomass (g)).  Mean to tal, above, and below ground 

biomass (g) of T. latifolia were each separated into three significantly distinct 
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groups: mean biomass of control > biomass of the T. latifolia pots > biomass of 

the E. macrostachya pots (SNK, alpha = 0.05). 
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Discussion 

The E. macrostachya shade apparently resulted in low percent seed 

germination by T. latifolia.  The absence of germination in E. macrostachya pots 

was possibly due to shading and most likely combined with an additional issue of 

a lack of space and possibly nutrients.  Competition, defined by Begon et al. 

(1986), is an interaction between individuals that share a limited supply that 

causes a decrease in survivorship, growth, and/or reproduction.  Firbank and 

Watkinson (1990) explained the plant that has emerged first in an area 

suppresses competing plants’ growth by also having the fastest growing rate. 

This plant suppresses competing plants’ growth by decreasing light, water, and 

nutrients available.  E. macrostachya  was well-established in pots and was 

situated in the pool to simulate a colony surrounding an open, non-vegetated 

spot (T. latifolia pots). Because separate pots were used, nutrients and spatial 

limitations should not have played a role in low germination rates and growth in 

T. latifolia pots.  Therefore, low germination rates and growth appeared to be 

most attributable to shading by the mature E. macrostachya pots.  Germination 

by seeds introduced directly into E. macrostachya pots may have been further 

inhibited by the absence of adequate space for seeds. Although allelopathic 

effects may have played a role in both cases, the control pots (in the same water 

as other pots) exhibited higher germination rates and growth, implying that 

germination was not inhibited by factors other than those previously mentioned. 

The T. latifolia seeds that grew best and had the greatest biomass were in the 

control group. This group had no colony shade and did not have any vegetation 
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cover from E. macrostachya.  Lombardii et al. (1997) discussed that T. latifolia 

seeds do not germinate under areas already shaded by vegetation because 

there is a risk that no seeds will grow, since light intensity and the number of light 

hours in an area regulate T. latifolia seed germination.  This explains a way to 

manage cattails. When other shady wetland plants are established in an area 

first, cattail seed germination and seedling survival decreases because of 

vegetation cover and lack of space for them to be able to grow.   
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4. EFFECTS OF WATER DEPTH ON CATTAIL GERMINATION, 
SURVIVAL, AND GROWTH 

 
 

Methods 
 

 The water depth study was conducted in a 2000 L (1.3m tall X 2.3m 

diameter) tank at the LAERF, beginning August 3, 2001.  Shelves were 

constructed at target depths by using cinder blocks (19.5cm tall) and 0.5cm 

PVC plastic sheet material.  Four PVC plastic squares were placed above 

each cinder block before the next block was added, producing 20cm 

increments.  On top of the last cinder block for each depth was a 48.26cm X 

33.02cm PVC plastic piece placed to hold the ten 10cm tall X 7cm diameter 

pots.  The seven depth levels used were: 120cm, 100cm, 80cm, 60cm, 40cm, 

20cm, and 0cm. The maximum growth depth reported for T. latifolia is 

approximately 1.2m (Nichols, 1999). 

 Soil from a LAERF pond bottom was heat-sterilized at 90°C for 24 hours 

and then mixed with water at a 9:4 ratio in a cement mixer.  Ten pots filled 

with 9cm of sediment were placed at each of the 7 depths.  Approximately 

100 T. latifolia seeds were mixed with 15ml of sand and spread on top of 

each pot.  Alum-treated water was used to fill up the tank to 120cm, with each 

shelf maintained at target depths. 

Germinated seeds in each pot were counted two, three, and six weeks 

after planting.  Percent seed germination was compared at different depths 

using a two-factor ANOVA.  Light readings were taken after one, three, five, 

and seven weeks from seed planting at each depth using a “Li-Cor 100” light 
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meter.  Light readings were taken to ascertain the amount of light that was 

received at each depth during the growth period. 

  After six weeks, three seedlings were left in each pot for evaluation of 

seedling survival.  This was to reduce competitive effects of growth on 

seedlings.  The seedlings pulled were harvested and dried to ascertain 

biomass. 

 After ten weeks, remaining plants were harvested and dried.  Above 

ground, below ground, and total biomass (g) were measured, also using the 

six weeks biomass results.  One-way and two-way ANOVAs on ranked data 

was conducted on percent seed germination data and biomass (g).  

 

Results 

Average tank temperature was 19.72°C.  Light readings were measured 

throughout the water depth study and calculated as an average percent 

transmission (Figure 6).  Seed germination occurred at each water depth. 

Percent seed germination after two weeks ranged from 6.6% (0 cm depth) 

to 39.5% (40 cm depth) for all the depth levels.  Total percent seed germination 

at each water depth after two, three, and six weeks are shown in Figure 8.   Initial 

percent seed germination was normally distributed after two and six weeks 

respectively (alpha = 0.05, p = 0.27, p =.05, Shapiro-Wilks).  After three weeks, 

percent seed germination rates were not normally distributed (alpha = 0.05, p = 

0.03, Shapiro-Wilks).  A two-factor ANOVA was performed on all three periods to 

ascertain whether seed germination rates were significantly different from one 
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another. The time the percent seed germination was recorded (alpha = 0.05, p = 

0.1731, on ranked data) was not a factor relative to depth.   

  Mean total biomass, including above and below ground, are shown in 

Figure 7.  Mean total, above, and below ground biomass of T. latifolia were 

individually tested for normality, and all three were non-normal (alpha = 0.05, p 

>0.05, Shapiro-Wilks).  Mean total, above, and below ground biomass of T. 

latifolia were highly significantly different among the seven water depths (one-

way parametric ANOVA on ranked data, p < 0.0001).  Mean total biomass was 

separated into five significantly distinct groups: 20cm depth > 40 cm depth > 0 

cm depth > 60, 80, and 100 cm depths > 120 cm depth (SNK, alpha = .05).  

When above and below ground biomass were compared by a two-way ANOVA 

on ranked data, the means were significantly different at all depths (alpha = 0.05, 

p < 0.0001).  SNK was conducted, and below ground biomass for 0 and 20 cm 

depths and the 20 cm above ground biomass were statistically greater (SNK, 

alpha = 0.05) than the biomass at other depths. 
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Discussion 

Seed germination and survival were optimal at 20cm.  Most T. latifolia 

germinated and grew at depths of 20 and 40cm, indicating that lower depths 

were more optimal for cattail establishment. Above these depths, germination 

appeared to be somewhat inhibited, possibly due to partial desiccation, although 

growth of established seedlings was fair.  Below these depths, an environmental 

stress, such as lessened percent-light transmission, could have inhibited growth 

and root structure development of the plants, causing a decrease in survival. 

Mooney (1972) explained that plants that grow in deeper areas allocate more of 

their biomass to respiration and a less proportion to photosynthesis resulting in 

less biomass production and potentially weaker plants. The above to below 

ground biomass ratio (Figure 7) indicated that more biomass was above ground 

in deeper water.  Root structure was not as prominent at depths lower than 40 

cm.  Grace (1989) stated that there is a decrease in root allocation, flowering, 

and reproduction for plants in deep water and an increase in biomass of leaves 

and stems.  These results supported Grace’s observations. 

The light reading results (Figure 6) showed a low amount of light 

transmission penetrating the deeper water depths. The 80, 100, and 120cm 

depths had less than 40% transmission the entire growth period. These lower 

light levels apparently contributed to lower germination and biomass production 

at greater depths.  The 120cm depth had 25.9% seed germination after two 

weeks, and then decreased to 16.7% after 5 weeks.  
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The percent seed germination average of 39.5% indicates a good percent 

compared with other studies.  For example, Stewart and his colleagues (1997) 

studied germination of T. latifolia, where 22% to 40% of the seeds germinated in 

seven days. 

Lombardi (1997) claimed that there has been no detailed study on seed 

germination trends and the early growth of seedlings of T. latifolia. This study 

showed depths of seed germination and how the plants allocated their biomass 

as they grew from seeds at different depths.  

Further testing should be conducted by increasing the water depths to a 

level where seeds do not germinate. Seeds germinated in all seven water depths 

in this study, implying that germination may occur at greater depths.    Although 

seed germination occurred in depths up to 120cm, survival was lowest in the 

greatest depths. Further study would possibly reveal at what depths T. latifolia 

seedlings would not survive.  

The objective of this study was to ascertain at which depths T. latifolia 

could germinate and grow.  Both germination rates and growth of cattails were 

reduced as depth increased, indicating that deeper water (that greater than 

40cm) may not be suitable for establishment of cattails.  Conversely, low 

germination (or very early seedling survival) was reduced at a depth of 0cm 

(saturated soil), indicating that exposure to desiccation also affected cattail 

establishment.  Therefore, depths greater than 40cm, or so shallow as to be 

exposed to desiccation in a wetland or pond, might minimize seedling 

germination, survival and g rowth, and therefore limit establishment of cattails. 
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5. EFFECTS OF MOIST SOIL MANAGEMENT TECHNIQUES ON CATTAIL 

SEEDLING SURVIVAL AND GROWTH  

Methods 

Several moist soil management techniques were employed to ascertain 

effects on cattail seedling survival and growth.  Three 0.125ha earthen ponds 

infested with cattails were drained and rototilled to a soil depth of 15 cm, in order 

to kill rootstalks and rhizomes.  The ponds had similar operational histories, and 

a seed bank assay (ter Heerdt and Drost, 1994) indicated no differences in viable 

cattail seeds in the ponds.  Ponds were filled to a maximum (full pool) depth of 1 

m during the 2000-2001 winter.  In March 2001, one pond was completely 

drained (dry), one pond was lowered by 0.3 m (low pool), and one pond was left 

at full pool (Figures 9, 10, and 11).  These water levels were maintained 

throughout the growing season. 

Each pond was divided into quadrants, two in the deep end (0-1 m at full 

pool) and two in the shallow end (0-0.6 m at full pool).  One deep and one 

shallow quadrant from each pond were randomly selected to provide counts of 

cattail seedlings.  The remaining quadrants were left undisturbed.   

T. latifolia seedling counts were made periodically beginning in early June 

2001 and continued through October 2001.  Seedlings that had grown to 50 cm 

in height were counted as those likely to survive in the LAERF ponds  (Dick, 

pers.comm., 2002). Plants were destructively harvested by hand pulling, and 

depth of each was recorded.  Mann-Whitney U tests were performed to compare 
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seedling survival and depths between treatments by using the SAS statistical 

program (SAS Institute, 1999).   

GIS mapping of the plant communities that had developed in each pond 

was conducted, with species’ occurrence and dominance visually estimated 

using a global positioning system (GPS) Trimble Asset Surveyor 5.0 version.  No 

statistical analysis was performed on these data.  Ponds were refilled to full pool 

in October 2002.  Duck species were counted at each of the three ponds 

approximately once per week to ascertain preferences by duck species between 

October 2001 and February 2002 (Dick, 2002).   

    

Results 

From June 13 to October 1, 3,062 T. latifolia plants were harvested from 

the full pool pond.  Sixty-seven plants were harvested from the low pool pond 

through August 1, 2001.  No plants were harvested from the dry pond the entire 

growing season (three seedlings were found growing in association with the 

pond’s drainage structure, which was excluded from the study area).  For this 

reason, statistical analyses performed did not include the dry pond.  The depth 

range for T. latifolia germination in plot 1 in the full pool pond was 0 to 45 cm.  

The depth range for plot 3 in the full pool pond was 0 to 40 cm in depth.  The 

average plant depth for the full pool pond in plot 1 was 4.76 cm, and the average 

depth for plot 3 was 7.38 cm.  Harvests were not conducted in plots 2 and 4, and 

cattails had almost over-grown both by August.  In the low pool plot 1 area, 

plants were harvested from depths between 0.5cm to 18cm with an average 
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depth of 4.52cm.  In plot 2 the depths ranged from 0cm to10 cm, and had an 

average of 4.28cm.  

Statistical analyses on depth and mean data of T. latifolia were collected 

over four months.  Plant depth analyses revealed the full pool pond depths were 

normal (p = 0.2458, Shapiro-Wilks) and were not normal in the low pool pond (p 

= 0.0047, Shapiro-Wilks).  Therefore, the Mann-Whitney U-test was used to 

analyze the data, and the mean depths of T. latifolia between the low pool and 

full pool pond were determined to be significantly different from one another (2- 

sided Mann Whitney U test, p = 0.0404, alpha = 0.05). 

The mean number of T. latifolia found in each plot of the full pool and low 

pool ponds are shown in Figure 12.  The full pool and low pool ponds were both 

normal (p = 0.7084, p = 0.6587, Shapiro-Wilks) and variances of the number of 

T. latifolia plants were equal, so a t-test was conducted.  Mean number of T. 

latifolia plants was not significantly different between the two ponds (p = 0.2453, 

alpha = 0.05). Sample size used, comparing the two ponds, was small, making 

variances extremely large.   

Plant distributions in the three ponds are shown in Figure 13. Percentages 

of dominant plants in each pond are shown in Table 1. The dry pond had not 

developed a wetland plant community and was dominated by terrestrial forbs and 

grasses.  Although cattails did not establish in this pond, the community of plants 

supported by conducting full drawdown was not desirable in terms of wetland 

habitat development.  The low pool pond developed a diverse wetland plant 

community, with cattails present, but not dominant.   Overall, this pond exhibited 
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the most desirable wetland habitat in terms of species diversity.  The full pool 

pond exhibited some diversity of wetland species but was dominated by cattails. 

In terms of habitat value, the low pool pond plant community was 

apparently the most attractive to ducks.  During winter 2001, after all three ponds 

were flooded again to full pool, the dry pond had only twelve mallard ducks (Anas 

platyrhynchos ) visit in the months the pond was observed. In the full pool pond, 

46 ducks total were observed. These consisted of two species, and included 25 

mallards and 21 green-winged teals (Anas carolinensis).  One hundred and 

twenty-nine ducks visited the low pool pond, consisting of 117 mallards, 9 green-

winged teals, and 3 northern shovelers (Spatula clypeata) (Gary, 2002). 
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Discussion 

Even though statistical ANOVA showed no significant different because of 

small sample size and large variance, the two ponds had a large difference in the 

number of cattails found between the low pool and the full pool pond.  Cattails 

established most heavily in the full pool pond, where it became the dominant 

species.  The species also established in the low pool pond, but at lower 

numbers.  Cattails did not establish in the dry pond.  

The low pool and dry ponds were drawn down in March.   Drawdown may 

have interrupted germination and/or reduced seedling survival by exposing seeds 

and seedlings to desiccation, implying that timing of drawdowns may be effective 

in lowering cattail establishment.  

Gerittsen and Greening (1989) stated water depth had a direct affect on 

seed germination of certain wetland plants, and it had an indirect effect on 

seedling growth and recruitment through nutrient dynamics.  Welling et al. (1988) 

showed that no Typha seeds or seedlings were found above shoreline heights in 

the seedbanks during drawdown periods, but seeds were found in those same 

heights during the non-drawdown periods.  Welling’s results suggested that this 

differential germination was primarily due to the variation in soil moisture along 

the height gradient.  Flooded wetland areas can inhibit wetland species’ seed 

germination (Moore and Keddy, 1988).  However, mature cattails may increase in 

growth from flooded conditions (Miao et al., 2001).  During a drawdown in 

Minnesota, recruitment of emergents, including Typha spp. and Scirpus spp., 

was greatest where moisture levels were favorable (Harris and Marshall, 1963). 
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This supports the low pool and dry pond’s results of lower cattail establishment.  

When moisture levels are higher, cattail growth increases.  In a T. latifolia study 

by Boyd and Hess (1970), most growth occurred during the short growing season 

(Grace and Wetzel, 1981). The optimal depth for cattail survival was 

approximately 40cm, determined by the water depth study and the moist soil 

management technique study.   At this depth, cattails had a high germination rate 

and a high survival rate.  By lowering the water levels during the optimal growing 

season for cattails, cattail growth and establishment could decrease. 

The low pool pond was lowered by 0.3 meters and the dry pond was 

lowered entirely.  Perennial emergents survived after re-flooding, and the mud-

flat annuals and meadow perennials died.  The zonation patterns, characterizing 

these wetlands, were likely re-established by vegetative propagation of these 

perennial emergents (Stewart and Kanturd, 1972; Millar, 1976). Reduction of 

cattail establishment in the low pool pond allowed establishment of other wetland 

and aquatic species, such as American pondweed (Potamogeton nodosus), 

Paspalum spp., Najas guadalupensis , bulltongue (Sagittaria graminea ), and 

flatstem spikerush (E. macrostachya).  Interestingly, a similar community of 

plants established in the full pond plots from which T. latifolia was harvested for 

counts:  cattails never established in the harvested plots, so the aquatic plant 

diversity increased compared to the undisturbed plots that grew rapidly with 

cattails.  So, a more desirable community of plants resulted both from water level 

manipulation (low pool pond) and physical removal of the cattail plants (full pool 

pond). 
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In contrast to what was learned in this study, Van der Valk and Davis 

(1978) revealed that plant species recruitment in prairie wetlands occurs in areas 

of low water depth, which are referred to as drawdowns.  They define a 

drawdown as a marsh substratum that is free of standing water.   Their study 

included the perennial emergents T. latifolia, Scirpus lacustris, and Carex 

atherodes.   Welling (1988) also showed that most emergent vegetation did not 

survive when the drawdown was proceeded by two years in which the water 

levels were maintained at 1 m higher than normal.  Water is fluctuated to reduce 

cattail germination (and thus establishment), allowing less aggressive species to 

establish. This may or may not lead to greater diversity.  

The duck populations preferred to visit the low pool pond (129 ducks) over 

the full pool pond (46) and dry pond (12). The most common species to utilize the 

ponds were mallard ducks.    Flooded terrestrial plants dominating the dry pond 

were apparently the least attractive to waterfowl, followed by the cattail-

dominated full pond.  Cattails had been removed from two plots (or 

approximately 1⁄2 of the pond), providing some more preferred habitat.  Ducks 

were not observed in the un-harvested plots of this pond.   The low pool pond 

attracted the greatest number of waterfowl, presumably due to the diversity of 

wetland species throughout.  Managing to minimize cattail establishment while at 

the same time maximizing wetland species community development (partial 

drawdowns) may be an effective tool in producing habitat beneficial to waterfowl, 

and presumably other wetland wildlife.  

 



 31

CONCLUSIONS 
 

 The research conducted at the Pecan Creek Wastewater Treatment Plant 

in Denton, Texas and the LAERF in Lewisville, Texas examined four issues 

concerning T. latifolia.  First, the study assessed the concentrations of SRP, NO3 

-N, and NH3-N at the beginning, middle, and end of the constructed wetland for 

one year.  This was done to determine any differences between an area 

occupied by a diverse community of wetland plants and an area dominated by 

cattails.  Next, effects of competition by E. macrostachya, another wetland 

emergent, on T. latifolia seedling germination and growth were ascertained.  

Third, cattail germination rates and seedling survival were ascertained at different 

water depths up to 120cm.  Finally, cattail establishment in ponds was 

ascertained under three hydroperiods, during the cattail-growing season, to 

determine if moist soil management techniques can control or reduce cattail 

establishment in a pond ecosystem. 

 The research conducted on the constructed wetland at the wastewater 

treatment plant showed that SRP and NH3–N (low values) concentrations were 

not affected by either cattails or the diverse community of plants, probably 

because the colonies were no longer expanding.  However, NO3–N decreased 

from the beginning to the end of the wetland, with significant differences in the 

nutrient decreases associated with the diverse community of plants or cattails.    

Essentially, cattails and the diverse community of plants of this wetland had the 

same effectiveness in reducing nutrients, except for NO3–N.  Because of other 

problems associated with cattails, particularly those concerning habitat value for 



 32

wetland and aquatic wildlife, a diverse community of plants in constructed 

wetlands is more desirable and its development and maintenance should be the 

goal of wetland managers.  However, this depends on the designed use of the 

wetland. 

  The competition study revealed that an established plant colony 

surrounding cattail seeds reduced or prevented seed germination and survival (at 

a depth of 2.5cm above soil). This implies that when other aquatic emergents are 

established in a wetland colony, cattails may have difficulty establishing from 

seed.  This information is also related to the constructed wetland at the treatment 

plant where a diversity of plants was manually established in 1992.  Cattails have 

not become a problem, whereas they have colonized the rest of the (unplanted 

portion of the) wetland.  Cattails have not over-grown the diverse area, indicating 

that established stands of emergent vegetation can prevent cattail colonization 

and spread.     

 Fluctuating water levels reduce cattail expansion.  Reducing the water 

depth during T. latifolia’s growing season can reduce germination and seedling 

survival through desiccation, and may allow less aggressive species to establish.  

Reducing cattail establishment can result in diverse wetlands that are of greater 

value to wetland wildlife than oligospecific stands of cattails. 

Both the water depth study and the soil management technique study 

showed that the most optimal depth for cattail establishment was between 0cm 

and 40cm depths.  If the soil is dry or if a pond is flooded at depths deeper than 

40cm, cattail seeds have a harder time germinating.  Additionally, seedlings in 
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water depths greater than 40cm show a larger allocation to shoots and less to T. 

latifolia roots, decreasing survival rates.  Flooding cattails during critical times 

may reduce establishment.  Newman et al. (1998) argue that maybe altered 

hydrology techniques should be focused on more than just working on 

decreasing phosphorous loading into wetlands to help problems of 

eutrophication.  The results from this study suggest that manipulating water 

levels can interrupt cattail establishment, and may be a useful and effective tool 

in managing wetlands to their greatest functionality.  
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Table 1.  Percent plant distribution in the low pool, full pool, and dry ponds in the   
               moist soil management techniques study at the LAERF, October 2001. 

 
 
 

Common Names Low Pool (%) Full Pool Dry Pool 

Panicum spp. 12.8 0 5.3

Sorghum halepense 16.1 0 17.9

Amaranthus spp. 6.7 3.9 1.8

Aster spp. 17.1 0 4.8

Paspalum spp. 20.4 24.4 9.5

Eleocharis macrostachya 14 6.2 0

Pnod/Najas/Paspalum spp. 0 23.3 0

Pnod/najas 5.8 7.7 0

Potomogeton nodosus 0 8.1 0

Najas spp. 0 7.7 0

Typha latifolia 3.3 11.2 0

Hordeum jubatum L. 3.7 0 0

Sagittaria lancifolia 0 7.4 0

Populus fremontii 0 0 4.1

Ammannia coccinea 0 0 2.8

Iva spp. 0 0 3.5

Alismataceae spp. 0 0 6.7

Sesbania spp. 0 0 43.5
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Figure 1. Constructed wetland at the Pecan Creek wastewater treatment plant in  

Denton, Texas at Station 1 to 2. The diversity of aquatic plants is 
shown here with cattails established between stations 2 to 5. 
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Figure 2.  Mean SRP (soluble reactive phosphorous) concentrations (mg/L) for  

stations 1, 3, and 5 at the Pecan Creek Wastewater Treatment Plant 
constructed wetland in Denton, Texas from April 2001 – January 2002 
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Figure 3.  Mean NO3-N concentrations (mg/L) for stations 1, 3, and 5 at the  
Pecan Creek Wastewater Treatment Plant constructed wetland in 

Denton, Texas from February 2001- January 2002 
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Figure 4.  Mean NH3-N concentrations (mg/L) for stations 1, 3, and 5 at the  

                Pecan Creek Wastewater Treatment Plant constructed wetland from 
      February 2001 – January 2002. 
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Figure 5.  Seven micro wetland colonies, each with one T. latifolia  

      pot, and one E. macrostachya pot all surrounded by an E.   
      macrostachya canopy.  The seven control pots are in the middle of the   

      pool. 
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Figure 6.  Average percent light transmission for the seven water depths  

                after one, three, five, and seven weeks of seed germination 
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Figure 7.  Final above, below, and total mean biomass of T. latifolia for seven  
                water depths 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 20 40 60 80 100 120

Depth (cm)

B
io

m
a

s
s

 (
g

)

Above ave

Below ave

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 42

Figure 8.  Total percent seed germination at each water depth after two, three,  
                and six weeks 
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Figure 9.  Dry pond at the LAERF for the moist soil management study from May  
                to October 2002 
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Figure 10.  Low pool pond at the LAERF for the moist soil management study  
       from May to October 2002 
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Figure 11.  Full pool pond at the LAERF for the moist soil management study  

        from May to October 2002 
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Figure 12.  Total cattail seedlings harvested during the moist soil management  
                   study from June to October 2001 
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Figure 13.  Plant distributions of a dry, full pool, and low pool pond at the   
                  Lewisville Aquatic Environmental Research Facility 
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