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Abstract

Many applications are built upon private algorithms, and executing them in untrusted, remote environments poses

confidentiality issues. To some extent, these problems can be addressed by ensuring the use of secure hardware in

the execution environment; however, an insecure software-stack can only provide limited algorithm secrecy.

This paper aims to address this problem, by exploring the components of the Trusted Computing Base (TCB) in

hardware-supported enclaves. First, we provide a taxonomy and give an extensive understanding of trade-offs during

secure enclave development. Next, we present a case study on existing secret-code execution frameworks; which

have bad TCB design due to processing secrets with commodity software in enclaves. This increased attack surface

introduces additional footprints on memory that breaks the confidentiality guarantees; as a result, the private

algorithms are leaked. Finally, we propose an alternative approach for remote secret-code execution of private

algorithms. Our solution removes the potentially untrusted commodity software from the TCB and provides a minimal

loader for secret-code execution. Based on our new enclave development paradigm, we demonstrate three industrial

templates for cloud applications: 1© computational power as a service, 2© algorithm querying as a service, and 3©
data querying as a service.

Keywords: Trusted Computing Base (TCB), Software Guard eXtensions (SGX) Enclave, Private Algorithms,

Secret-Code Execution (SCE), Algorithm Owner (AO), Hardware Owner (HO), Data Owner (DO), Enclave Developer’s

(ED) Responsibilities, Side-Channels, Early Private Mode (EPM), Internal Enclave Functions (IEF), Public Internal Enclave

Functions (PIEF), Serialised Secret Internal Enclave Functions (SSIEF)

1 Introduction
Managing trust in remote execution environments is an

enduring challenge. This is due to the fact that privacy-

sensitive data and private algorithms remain unprotected

in remote computers. There are a number of reasons

why owners of private algorithms may need to run their

algorithms in an untrusted environment. This may occur

when the Algorithm Owner (AO) requires the capabil-

ities of a Hardware Owner (HO), for example, to gain

larger computing power in the cloud. In this case, the
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cloud infrastructure provider would be compensated and

should take responsibility for an algorithm and system

security. An alternative reason to run a private algorithm

in a remote environment would be for the benefit of the

HO, for example, the distribution of an industrial software

product to end-users. In this case, the AO would be com-

pensated, and thus responsible for security. It may also be

the case that the consumer, whether that be the AO, or the

HO, is responsible for security.

1.1 Ownership taxonomy

We use the following taxonomy throughout the rest of this

paper. A HardwareOwner (HO) refers to any entitymanag-

ing its own computational system. An Algorithm Owner
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(AO) refers to any entity who owns the intellectual prop-

erty of the secret code. Cloud infrastructure providers

offer computational power, and they maintain the hard-

ware and the software stack. In a cloud environment, the

HO is a threat against the secrecy of private algorithms of

the customers. Similarly in DRM1, a HO is considered to

be the end-user who may threaten the private algorithms

with a commercial interest. From the AO’s position, the

HO is considered to be both the cloud-provider (executing

server-side code) and the end-user (executing client-side

code). In short, the HO may be one or both of the follow-

ing entities:

– An entity who generates revenue by selling the

computational power

– And/or, an entity that needs the private algorithm to

compute a secret value in her environment.

For both reasons, the HO must offer a trustworthy

confidentiality service - either procedurally or through

technical means - in order to convince the AO to use its

services. Otherwise, the AO must take countermeasures

before releasing its private algorithm.

The AO can use obfuscation techniques to protect the

code before sending it to an execution environment. How-

ever, obfuscation methods are open to reverse engineer-

ing. On the other hand, theHOmustmake an effort within

confidentiality management to gain the trust of the AO.

For example, the HO develops the software stack to offer

isolated execution environments and it aims to provide a

remotely verifiable trusted computing base (TCB).

ADataOwner (DO) refers to an entity who has privacy-

sensitive inputs. In Section 7, we consider two cases: 1©

Between the AO and the HO and 2© between the AO and

the DO where the DO controls the HO. The case where

the HO may collude with the AO against the DO is out of

the scope of this paper.

1.2 Taxonomy of the private and public assets

The AO and the DO have a choice to keep their assets

as private or public. An asset, either an algorithm or

a data-set, might be weakly or strongly private/public.

We summarised the meanings of these new concepts in

Table 1. In the rest of this paper, we use private or public

keywords for the assets which are desired to be strongly

private or public. We consider theweakly private or public

assets to be not private and not public. These concepts are

defined as follows.

Weak-private assets An algorithm or a data-set may not

be publicly accessible, and be private against any third-

party entities. Suppose that the asset owner sends this

piece of information to a cloud platform for a remote

computation. We classify this caseWeakly Private, as the

cloud operator may access to the assets.

Strong-private assets A security mechanism in the cloud

may protect the confidentiality of these assets. Suppose

that the threat model of this mechanism considers a mali-

cious cloud owner. We call the assets Strongly Private, as

they are protected against the insider threats in the cloud.

A private asset, therefore, can be a strongly private asset

if the executionmodel satisfies the confidentiality require-

ment. We describe our secret-code execution model in

Section 6 which allows Private Algorithms and Private

Data to be strongly private.

Weak-public assets An asset might be accessible, but

it may be too complex to analyse or too big to pro-

cess. If an asset does not give much evidence about its

trustworthiness, we call itWeakly public.

Strong-public assetsWe often use the keyword public to

refer to the inspectable and attestable assets. For example,

a public algorithm refers to a piece of code that is 1© open

for inspection by members of public, and 2© attestable

through a trustworthy evidence. These are the Strongly

Public assets.

1.3 Distinguishing the private data and the private

algorithm

Much of the current research [9, 14, 31, 34, 41, 44, 48,

51] is to keep data confidential in a Trusted Execution

Environment (TEE). The novelty of our work is that, in

addition to the input values and constant values used in

an algorithm, we are adding algorithm secrecy. Our aim is

to keep additional information secret how andwhere these

values are used.

A function in a computer programme may include mul-

tiple assets such as sub-methods, operators, and constant

values. The AO defines the order and types of these assets

in a function.

Table 1 Definition of the private and public modifiers

Called as Refers to Properties Example

Private data or private algorithm Strongly private Secret and protected A secrecy-critical application logic or data-set

Not private Weakly private Special but not protected A code or data uploaded to today’s cloud servers

Not public Weakly public Open but not trusted A code or data; too complex or too big for inspection

Public data or public algorithm Strongly public Inspected and attestable A code or data with an evidence of trustworthy measurement
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We summarise these assets in the following expres-

sion (1) to distinguish the data and the algorithm. For

the given function (f ), the AO may not necessarily pro-

vide the data (input (x) and constant (c)). To point out the

difference, the AO nevertheless defines the mathematical

operations and the application logic. In a decentralised

setting, one or more DO(s) can provide confidential val-

ues, such as the inputs and the constants. The AO would

provide the secret behaviour of how the algorithm uses

the given values.

1.4 The problem of secret-code execution (SCE) with

private algorithms

The success of a commercial algorithm may be measured

on how widely it is distributed. However, the integrity

and confidentiality of this algorithmmust also be ensured.

The problem arises when either party cannot trust the

other, whether that be the execution environment, or the

product.

The problem is that theAO needs to run code on theHO

and the AO does not want the HO to discover any details

regarding the code.

In untrusted remote environments, a computation

including commercially valuable algorithms - for example,

feature engineering in machine learning, business logic,

or financial applications - may pose confidentiality con-

cerns. Ideally, anAOwould keep their private algorithm in

their own physical location. A decentralised setting, how-

ever, requires the AO to send their private algorithm to

an execution environment that may be owned by another

entity (e.g. the DO or the HO). A hospital holding secret

data may require all computations to be performed in

their environment (considered as the DO or HO), while

the hospital environment is a threat against secrecy of the

algorithm. If the AO uses a cloud service for more com-

putational power, uploading the secret binary to cloud

service may leak the application code due to reverse engi-

neering. In another case, an authority may need to run a

private algorithm on computers of end-users (considered

as the HO), requiring security guarantees to be managed

by the AO or the HO.

1.4.1 The security problem on hardware software

composition

In order to solve the problem of private algorithms, both

distrustful parties could utilise secure hardware enclaves.

A fundamental question rises as to whether theAO should

develop its enclave, or trust to the enclave developed by

the HO.

In Section 2, we explain the enclave concept and its

development model in detail. In short, the term enclave

refers to the area of one entity that is surrounded

by another entity. Intel introduced the enclave concept

into the security world with their Trusted Execution

Environment (TEE) on a new instruction set called SGX

[23]. Enclaves are developed by an entity called Enclave

Developer ED, explained in Section 2.2.

Developers may use the existing application binaries

inside secure hardware enclaves with small or no port-

ing effort. However, third-party packages programmed

with no security in mind will surely bring security risks.

TEEs cannot convert a non-secure application to a secure

application. In the building-block approach to application

design, even if each block is secure, the overall systemmay

not be secure due to non-compositionality of security [16].

Practical TEEs [19] are currently the subject of

widespread research, as their correct use and capabilities

are not yet fully known. The aim of this paper is to answer

the following research questions:

– How can we correctly utilise TEEs’ security

guarantees to protect private algorithms?

– What are the responsibilities of TEE application

developers?

– What is the impact of the software TCB components

to code confidentiality?

In this paper, we examine these questions in recent

studies and in our solution. We show the challenges and

responsibilities on the TCB design and its requirements

for secret-code execution in a remote environment. We

analyse the existing frameworks for confidentiality man-

agement, and we evaluate the attacks against code secrecy

in the software stack. Finally, we present a new solution

with a smaller TCB size and address a stronger adversary

model.

1.5 Paper structure

Section 2 provides a background on current binary execu-

tion mechanisms, as well as responsibilities of application

developers for the chosen development model. Section 3,

explains the trade-offs between design choices in TCB for

private algorithms. We analyse the TCB components of

existing frameworks with practical attacks against code

secrecy in Section 4 and Section 5 explains the bad prac-

tices in enclave design and development. Section 6 shows

our design for secret code execution with reduced TCB

that is providing better security. Finally, Section 7 demon-

strates our method in practice with three use cases of

private algorithms for industrial use.

functionf (inputx) = methodm(inputx)operatoro(constantc)

(1)

Equation (1) Splitting the Algorithm and the Data in a

function.

1.6 The motivation

The motivation for TCB minimisation comes from the

secrecy guarantees that depend on a remote system’s
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TCB components. There are a number of ways in which

developers can cause security problems in a system. It

is common for developers to include third-party soft-

ware in their enclave TCB. Unfortunately, they often fail

to perform security and compliance analysis between the

third-party package and the underlying hardware. Addi-

tionally, developers may fail to understand hardware and

software co-design while constructing secure systems.

Careless construction of composite parts within a TCB

may also cause the loss of initial security guarantees of the

hardware. This may be the main, sometimes initial, source

of security problems. In this paper, we analyse two existing

frameworks that address client-side secret code execution,

but their TCB suffers from bad practices explained below.

To solve these architectural design problems, we present a

solution with a smaller TCB, and secure TCB composition

for secret-code execution in remote environments.

We aim to eliminate these bad practices, summarising

the motivation for this paper in three points:

– Increase of TCB size—The TCB size must always be

minimal in order to avoid security risks, and enable

possibility of formal verification.

– Weak software in the TCB—The third-party software

packages included in a TCB must pass the security

requirements of the all assets.

– Non-compositionality of security—Two secure

components may not necessarily comprise a single

secure composition. Even secure software in the TCB

may create additional security issues due to

composition problems with the underlying hardware.

This may also void the hardware security guarantees.

1.7 Related work

In this section, we provide an overview of the studies

on TCB minimisation and secure TCB design. Beyond

the CPU and memory protections, Ports and Garfinkel

demonstrate [43] the impact of malicious OS behaviour

against the secure application design. Their arguments

outline the attacks and mitigations via the trusted inter-

face, and they explain utilisation of partitioning methods

to reduce the TCB size. Singaravelu et al. [52] also demon-

strated three case studies in which they were able to

use kernelised TCB at OS security level on a commodity

computer.

Similar to the arguments found within this paper,

Piessens et al. [42] argue that developers have limited

understanding of security guarantees offered by the exe-

cution infrastructure. Their work [42] focuses on lan-

guage safety and full abstraction in programming lan-

guage translations. McCune et al. [38] utilise TPM, AMD

SVM, and Intel TXT to provide secure hardware prim-

itives for minimised software TCB. Strackx et al. [56]

discuss the use of memory-safe languages on protected

module architectures for code and data security, and

they explain how secure enclaves might be written. In

our work, we focus on confidentiality issues due to the

TCB components for secret-algorithms in a practical TEE

called SGX.

Linn et al.’s work [37] in binary obfuscation aims tomake

reverse engineering difficult for application binaries. The

work [60] from Wu et al. focuses on malware evasion,

which hides the application code against the analysis. Sim-

ilar techniques can partially protect the application code;

however, they fail to maintain the algorithm secrecy in

stronger adversarial assumptions. These cases include the

decentralised settings where mutually distrustful parties

are involved, and where the adversary has full physi-

cal access over the host platform. Even though binary

obfuscation methods seem to have similar goals to our

work, they remain in the scope of reverse engineering.

Our work is in the domain of securing private algorithms

executed in an untrusted cloud. The forensic tools can

recover evidences from the memory about an operation.

This information retrieval applies mainly to the data.

Some forensic techniques can recover [1] the execution

states of a known software. However, these techniques do

not threaten the algorithm secrecy directly. We protect

the private algorithms at runtime and provide protection

before the execution.

A recent work called GolemNetwork2 provides a decen-

tralised marketplace for computational power. The golem

enclaves are similar to the interpreter enclaves we dis-

cuss in this paper. The third-party libraries included in

the TCB of interpreter enclaves may break the security

guarantees offered by the SGX. The difference to our

approach is that a Golem enclave has a large TCB size

due to the Library OS (Graphene-ng) and the unmodified

applications (e.g., Blender). With a larger TCB size, formal

analysis becomes more difficult. Second, Golem Network

provides data secrecy only, and inherited security guar-

antees might be limited, as we show in a case study on

similar interpreter enclaves in Section 4. Similarly, in one

of our industrial use cases, we present a template for com-

putational power in Section 7. Our template does not

use third-party libraries to process secrets, and it enables

running algorithms strongly-private in remote computers.

The novelty of our work is as follows: 1© we consider

mutually distrustful entities (HO, DO, AO) with conflict-

ing interests in the cloud, 2© we differentiate the private

algorithms and the private data, 3©we show the bad prac-

tices on use of TEE in the cloud, 4© we create a taxonomy

for secure execution of private algorithms in untrusted

remote environments, 5© we provide practical insights

to enclave development, 6© we perform a security anal-

ysis on existing dynamic code loaders with interpreter

enclaves, and 7©we evaluate our executionmodel in three

adversarial settings in the cloud.
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1.7.1 Research direction

The Horizon2020 funded research projects under

SERECA3 focus on a number of goals to build secure

enclaves. These goals include application partitioning

[36], trusted architectures for web services [8, 33],

container architecture [3] and library support for unmod-

ified applications (SGX-LKL4), better integrity [5] and

isolation [7], and enclave memory safety [35] in the cloud.

European Commission funded several projects on TEE

research under SecureCloud (TRUSTEE)5. The main

direction of TRUSTEE projects is dependability in the

cloud. In the context of SecureCloud, the dependability6

notion includes confidentiality, but this applies to data

only. The SecureCloud solutions [9, 14, 31, 44, 51] focus

on processing confidential data via public algorithms in

an untrusted cloud. There is no concern about keeping

the algorithms secret in SecureCloud projects. The advan-

tage of our work is that we keep the algorithms secret

in the untrusted cloud. Both SERECA and SecureCloud

projects consider the confidentiality and the privacy of the

data only.

The nature of enclaves requires enclave code to be

publicly known. The existing work focuses heavily on

private data processing through those enclaves. The dif-

ference with this paper is that we use the publicly

known enclaves to enable private algorithms in the

cloud. We show two different approaches in Section 2.3:
1© the HO develops an enclave that maintains the

code-secrecy after its release, and 2© the AO devel-

ops an enclave that ensures the code-secrecy before its

release.

There are other projects worth mentioning listed under

Intel SGX Academic Research7 page. GrapheneSGX [58]

provides library support for unmodified binaries. Projects

[12, 13, 34, 41, 48] on privacy-preserving data-analysis

provide data confidentiality. Ryoan [24] provides a two-

way sandbox for enclaves. Moat [53] helps to formally

verify the enclave code. AsyncShock [59] exploits the

time-of-check-to-time-of-use (TOCTTOU) bugs. VC3

[45] from Microsoft provides both data and code con-

fidentiality, but this applies to MapReduce functions

only. Controlled-channel attacks [61] can leak the secret

data. We analysed these attacks against the other frame-

works [17, 20] executing private algorithms client-side in

Section 4.

2 Background
Intel’s SGX is a trusted hardware solution [2, 23,

39], which provides a novel development model for

enclave binaries, as well as hardware-maintained (ring -3)

integrity guarantees for computations at user-level (ring

3). It also provides trusted computing primitives such as

Root of Trust for Measurement (RoTM) for its own exe-

cution, Root of Trust for Reporting (RoTR), Root of Trust

for Storage (RoTS), and access control for multiple isolated

memory regions.

The RoTM, at the lowest privilege level, generates trust-

worthy evidence about the state of a system [2]. In

the case of SGX, RoTM provides evidence about the

enclave’s memory layout, not about the system outside of

the enclave memory. SGX’s enclave development model

helps by securing sensitive parts of user-level applications

[39]. Enclaves can prove their identity to verifier enti-

ties who require evidence before proceeding to execution.

Therefore, SGX is a good TEE solution for application

developers.

Other than the SGX instruction set, the SGX SDK

includes SGX drivers, architectural enclaves and SGX

trusted libraries. Intel actively improves the SDK and

plans to add more instructions in SGX Version 2. SGX,

together with SDK, is an ever-evolving software technol-

ogy that provides pratical understanding of a TEE.

2.1 How universal is the enclave research?

This paper is in the domain of the Enclaves and TEEs. We

currently use SGX-enabled hardware and we make our

contributions with Intel SGX enclaves. However, enclave

research goes beyond Intel’s SGX hardware. ARM and

AMD also provide TEE solutions. Microsoft recently

announced8 the OpenEnclave SDK which provides an

abstraction to the underlying hardware.

An enclave programming model may be considered

as independent from the SGX hardware. For example,

a trusted hardware [15] may adopt Intel’s SGX enclave

programming model. Ideally, developers may replace the

underlying hardware with an open hardware solution,

providing stronger security guarantees.

2.2 How do SGX enclaves work?

The enclave programming model requires an Enclave

Developer (ED) to programme, compile and trigger the

binary into allocated enclave memory before execution

[26]. In a decentralised setting, there could be three sep-

arate entities who program, access, and call the enclave

binary. An issue may occur, however, if these entities are

from different parties with conflicting interests.

A key feature of SGX hardware is that the CPU can

measure the enclavememory [39]. Thismeasurement rep-

resents the identity of the enclave. An enclave can contain

any C functions except a few illegal instructions [25].

Enclaves can directly or indirectly communicate with the

system, other applications, other enclaves, and other enti-

ties in the network. We give further information 1© on

enclave development with different SDKs in Section 3, and
2© explain some good and bad practices on enclave TCB

design in Section 5.

Other than splitting an application into Trusted and

Untrusted components (partitioning), the trusted part
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Fig. 1 Default Enclave Execution Mechanism of SGX between the Algorithm Owner (AO) and Hardware Owner (HO). The operator of the machine,

the HO, can inspect the enclave code by reverse engineering the enclave binary. Enclaves must not include any secrets embedded in binary.

Enclaves can, however, receive secrets through a secure channel or recover sealed data

(for example, enclave binary as a shared object; .so file

in Linux) contains [28] two parts. These are the Internal

Enclave Functions (IEF), which contain application logic,

and the Interface Functions. Along with other parts of

the enclave, the IEF are open for inspection before the

initialisation process (Fig. 1). As is standard, if the AO

(who places the application logic into enclave binary) and

the HO (who calls the binary and executes the binary)

are mutually distrustful, then the HO may gain informa-

tion about the IEF and the algorithms compiled into the

enclave binary.

2.3 What differs on protecting the private algorithms

before releasing it or after receiving it?

There are two ways to secure private algorithms between

parties with conflicting interests. The AO may secure the

private algorithm via early operations on the algorithm

prior to delivery. Alternatively, the HO may preserve the

secrecy of the private algorithm after the delivery.

Both Approach 1 (protection before) and Approach

2 (protection after) (Fig. 2) have advantages and disad-

vantages in terms of usability and security. In Approach

2 (Fig. 2), the HO provides an enclave containing the

dynamic code loader and execution method for the pri-

vate algorithm. To provide this, the ED works with the

HO to create a publicly known enclave for common use.

The publicness of this enclave code is required, as the

HO must convince the users to trust her enclave imple-

mentation. If this enclave code is not open-sourced, the

HO can implement hidden functionalities. She will be free

to signal the secret-code and the secret-data to herself

through covert channels. In this case, the AO does not

need to perform any extra operations on the private algo-

rithm. This approach gives better usability to the AO, but

it requires her to trust to the TCB designed by the ED and

the HO. Section 4 evaluates the confidentiality manage-

ment of secret-code handled by the HO, as is displayed in

Approach 2 (Table 2). We classify the development types

as follows: Enclave-aware coding: The developers cre-

ate the algorithms to operate as the enclave code, with

no intermediary layer. Enclave-independent coding: The

developers create the algorithms for an intermediary layer

(such as interpreters). This layer may or may not run in an

enclave.

SGX hardware can help to preserve the confidentiality

of the enclave applications against direct memory peeping

andmemory snooping attacks. Also, the ED can optionally

implement the enclave with resilience to a set of side-

channel attacks in order to address a stronger adversary

model. To use an enclave for secret computation, develop-

ers may create publicly known enclaves with code-loading

ability combined with interpreters, and load a secret-code

on top of the interpreter to execute it. A weakly developed

enclave may provide neither confidential data processing

nor confidential execution of the secret-code.

3 SDK and TCB for the interpreter enclaves
Interpreter enclaves for private algorithms may consist

of two parts: the dynamic secret-code loader mechanism

and the script interpreter mechanism. The interpreter

mechanism with rich functionalities may have system

dependencies.
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Fig. 2 This figure shows the three separate stakeholders in running private algorithms inside enclaves and two approaches to secret code

protection. Approach 1: Enclave Developer (ED) works with the Algorithm Owner (AO) to protect the code within a secret part of the enclave. This

requires the AO to perform early operations on the private algorithm before release. Approach 2: The ED works with the Hardware Owner (HO) to

develop a publicly known interpreter enclave. This does not require the AO to perform early operations on the private algorithm

At the time of writing this paper, Intel SGX SDK only

supported the use of C programming language to cre-

ate an SGX enclave. A recent survey by Data Science

[30] shows that researchers prefer Python and other

languages over C and C++ for data analytics. In addi-

tion to this, web applications and computations on the

client side widely use the Javascript language. To exe-

cute Python or Javascript code inside an enclave, the

language interpreter must be embedded or ported to

the enclave binary. A common way is that ED may pre-

fer to port or adopt the open-sourced interpreters. To

develop such an enclave, the ED can use the partition-

ing method using Intel SDK (recommended if no system

library dependency is required). This can be achived by

removing or replacing the illegal instructions and provid-

ing a trusted interface to the ported binary. In thismethod,

the TCB size stays smaller in comparison to unmodified

binaries (e.g., an enclave comprising an unmodified appli-

cation code) supported with a Library Operating System

(LibOS). If developers prefer running unmodified binaries

Table 2 Two approaches on secret-code execution through SGX

enclaves

Approach 1 Approach 2

Responsible for secrecy Algorithm Owner Hardware Owner

Secrecy ensured Before sending the
code

After receiving
the code

Development type Enclave-aware coding Enclave-
independent
code

TCB/threat analysis In Section 6 In Section 4

Enclave developer The Private Algorithm
must be developed
for Enclave

The Enclave must
be made for
Private Algorithm

that require system support inside an enclave, they must

either use a shim layer [50] to forward the calls or embed

the unmodified binary interpreter within a LibOS, (e.g.,

Graphene LibOS with Graphene SGX SDK). The Linux

Kernel Library (LKL) is an alternative LibOS for this

goal. Both of these LibOSs can support unmodified inter-

preters, but the act of using a LibOS increases the TCB

size dramatically. The interpreters are able to handle com-

plicated tasks and provide rich functionality; however,

they require a LibOS support.

3.1 Understanding the TCB of enclaves

The SGX development model helps developers to cre-

ate applications that, ideally, have a minimal TCB size.

Because the larger TCB on a commodity computer may

contain potential vulnerabilities, minimising the TCB

reduces the risk of having vulnerable code. Develop-

ers are responsible for deciding what to include in the

TCB of an enclave. If a developer includes an arbitrary

code from third-party resources in an enclave, this may

weaken or destroy the integrity guarantees, or fully

destroy the integrity and confidentiality guarantees of

the SGX hardware. The design and implementation of

enclave (i.e., TCB) components are crucial for the secu-

rity of the application. In other words, the underlying

secure hardware may not protect the assets processed by

the bad software stack. The co-design of hardware and

software ensures proper management of the integrity and

confidentiality guarantees.

3.2 Comparison of SDKs for enclaves

An application may require system calls to operate, or

it may run entirely independently without any system

dependencies. Depending on the requirements of an
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application, there are three different ways of developing

enclaves:

– Partitioning an application and using trusted

interfaces within the enclave. We describe

application partitioning with Intel SDK in 3.3.

– Using LibOS inside an enclave to support the

dependencies. We describe development with LibOS

with Graphene SDK [58] in 3.4.

– Using shim layers to filter system calls from enclave

to outside world [50].

3.3 Developing enclaves with Intel SDK

Intel’s SGX SDK requires developers to split an application

into two parts: trusted and untrusted. Developers com-

pile both parts into executable binaries. The untrusted

application calls the trusted binary and maps it into a

memory area allocated for the enclave. Now, the untrusted

application can interact with the enclave via the trusted

interface. The trusted interface then passes the data or

requests to the internal enclave functions via Enclave

CALLs (ECALLs). If any internal enclave function needs a

system call, this request goes through the Outside CALLs

(OCALLs) to the untrusted application in the outside

world. If the internal enclave function does not require the

use of system calls, it may perform all of its computations

without OCALLs, further reducing the risk of a system

call-based attack [11].

3.4 Developing enclaves on Graphene SDK

The Graphene SDK places the Graphene LibOS [58] (sim-

ilar to the LKL9), into an enclave. In this setting, the

enclave does not need to make any OCALLs for system

dependencies to the untrusted operating system, as the

Graphene LibOS can handle all necessary system calls.

Graphene-supported enclaves can contain unmodified

binaries. The amount of code inside an enclave, however,

can extend to tens of thousands of line of code, making

the process of formal verification very difficult. Both the

larger enclave code and the larger TCB size can increase

the risk of security vulnerabilities.

3.5 Private algorithms on SGX enclaves

Once an interpreter is either ported or embedded into an

enclave, a dynamic loader is required to fetch, decrypt and

load the code for execution. Figure 3 shows the feasibil-

ity of three approaches to deploy interpreters in enclaves

based on their TCB components. The interpreter enclave

would ideally have a small TCB size and support rich

functionalities.

Loader + MuJS10 JavaScript Interpreter + Intel SDK

Developers can use a dynamic code loader at runtime

to fetch Javascript code and decrypt the blob inside the

enclave. MuJS interpreter ported for Intel SDK can inter-

pret the loaded secret-code in the execution phase. This

method provides a small TCB size compared to that which

is used with LibOSes. Enclave 1 within Fig. 3a shows

the TCB components of this approach. It provides com-

parably minimal TCB size to that shown in Fig. 3b for

an interpreter enclave. The Enclave 1 is used [17, 20] by

Goltzsche et al. and Fernandez et al., as analysed and

evaluated in Section 4.

Loader +MuJS JavaScript Interpreter + Graphene SDK

The second method (Enclave 2 in Fig. 3) to create an

interpreter enclave is to deploy MuJS on Graphene SDK.

This method reduces the development effort because

Fig. 3 Three different TCB to deploy Dynamic Code Loaders and Interpreter Enclaves for Private Algorithms. a) TCB Size may vary depending on SDK

and interpreter of the language. Graphene SDK TCB > Intel SDK TCB. CPython TCB > MuJS TCB. b) TCB Size vs Functional Capabilities in design of

Interpreter Enclaves. Ideally, the Interpreter Enclave will provide rich functionalities and will have a small TCB size
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Graphene Library OS can support an unmodified MuJS

interpreter, though it increases the TCB size. MuJS inter-

preter is smaller in comparison to CPython interpreter

(while there are advanced JS engines, such as V8, MuJS

is a lightweight option). As such, deploying a lightweight

interpreter on a LibOS would not be an ideal model,

because the majority of the TCB would not be in use.

Loader + CPython Python Interpreter + Graphene

SDK The third method to deploy an interpreter enclave

is to use Python, running over the Graphene LibOS, and

to combine a dynamic code loader to fetch encrypted

Python code at runtime and load it into the interpreter.

This method can provide richer functionality for data

analytics applications. The practical example of CPython

Interpreter and Graphene SDK, without a dynamic secret-

code loader, is available in the Graphene SGX SDK

repository11.

4 Case study: leaks on frameworks enabling
confidential code execution

Both TrustJS [20] and SecureJS [17] frameworks enable

a dynamic load of JS code at runtime. These frameworks

use the first method described in Section 3.5. This method

involves porting the MuJS for the Intel SDK, and creat-

ing a JavaScript Interpreter Enclave. Their performance

results and a detailed comparison is available in this study

[17]. However, direct porting of a third-party interpreter

may not help to hide a private algorithm. According to

the threat model of Intel SGX described in Section 5, the

ED is responsible for the security of interpreter enclaves.

We evaluate the attack surfaces and the software attack

vectors in the following sections.

4.1 Attack surface on interpreter enclaves

The load and execution flow is the same in both frame-

works of TrustJS and SecureJS. First, the Interpreter

Enclave fetches the secret Javascript code in an encrypted

blob. Inside the enclave memory area, MuJS needs

to read the Javascript code as plaintext. The enclave

dynamic loading mechanism prepares the received blob

for the interpreter. Secondly, the interpreter parses each

Javascript operation and calls the corresponding C func-

tions. Frameworks use a custom application-specific code

for the first phase of the preparation of the encrypted blob.

Then, the MuJS interpreter (open-source) performs the

second phase of execution.

TrustJS is not an open-sourced enclave12, however,

SecureJS was open-sourced13 in June 2018. To analyse the

code execution in SecureJS’s TCB, we focus on debugging

MuJS on Intel SDK displayed in Fig. 4, phase 3.

Attack vectors A straight-forward composition of

ported third-party software packages on secure hardware

enclaves introduces new attack vectors. Previously

performed attacks [6, 21, 22, 40, 61] have shown

how commodity software leaks secrets, while defence

mechanisms explain how to mitigate these attacks on

SGX enclaves. For this paper, we chose a non-trivial

attack [61], performed with data-dependent data

access and data-dependent control flow

weaknesses in interpreter enclaves. If the enclave code

has input-dependent control-transfer; e.g., calling dif-

ferent methods based on an input, the adversary can

observe the called page externally and learn the private

input. Similarly, if the data access pattern is based on

an input parameter, the adversary can learn the private

input.

Evaluation of TrustJS and SecureJS MuJS was not

designed to be an oblivious interpreter, and its use in an

enclave for secret-execution requires secure composition

and further isolation techniques. The direct use of the

unmodified binary of MuJS in an enclave in a security

domain brings potential security threats. We have identi-

fied two examples of weaknesses in MuJS used in TrustJS

and SecureJS frameworks. These frameworks rely on the

implementation of the MuJS interpreter.

Along with the interpreter, the dynamic code loader

can be another target for secret code leaks. By design,

the dynamic code loader must be public, and therefore

open for inspection. This is because, as explained in

Fig. 4 Attack surfaces on TrustJS and SecureJS in two phases (2 and 3). Phase 1: Browser extension receives the code. Phase 2: Dynamic code loaders

prepare the code blob. Phase 3: Interpreter executes the code. The confidential code may leak due to attacks placed on surface 1 and 2, targeting

the weakly developed enclave
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Section 2.3, the HO (the platform owner, the cloud owner,

the infrastructure provider) has to convince the public

that her enclave does not perform any dishonest oper-

ations. Open-sourcing the interpreter enclave is in the

interest of the HO. The HO can increase her profit in this

type of cloud scenario, if she can convince more users to

upload their secrets.

In this case study, the AO needs to attest the public

code loaders. The attestation guarantee, however, would

only prove that a known component is in execution. In

building-block enclave design, developers must carry out

security analyses on binaries and utilised third-party pack-

ages.

Analysing the TCB size The interpreter enclaves of this

analysis have used the trust relationship shown in Fig. 2

(Approach 2). The Interpreter Enclave must, therefore, be

public to gain the trust of the AO. Unfortunately, TrustJS

framework is closed-sourced; i.e., the interpreter enclave

is not open for inspection. Thanks to similar open-source

framework SecureJS, we were able to analyse its TCB.

Table 3 shows the size14 of the Software TCB compo-

nents in the SecureJS framework. The MuJS Interpreter

ca 13 KLoC takes %92 of the full TCB (ca 14 KLoC).

The rest of the interpreter enclave (1137 LoC) includes a

small loader, a decrypter code base (excluding the crypto

implementations) and one ECALL that handles all enclave

operations in a single flow. For the components other than

the interpreter, a formal verificationmight be feasible. The

MuJS executes the secret Javascript code, and processes

the secret parameters of given secret Javascript functions.

By porting the MuJS interpreter to SGX, the compiled

binary can provide the required functionality, however,

the SGX hardware cannot turn an insecure design into

a secure one. In fact, an incorrect composition weakens

the security guarantees of the hardware. The Interpreter

Enclave must satisfy the secrecy requirement for confi-

dential execution. These frameworks rely on implementa-

tion ofMuJS for confidential execution. As a consequence,

using the commodity software package for secret pro-

cessing becomes a weakness due to the confidentiality

requirement.

Table 3 TCB Components and their size in line of C code. Based

on software TCB size of SecureJS

TCB component TCB size (LoC)

Main ECALL 110

Internal enclave functions 387

Crypto functions 254

Attestation mechanism 386

MuJS interpreter 13.022

Trusted Intel libraries Not included

4.2 Weaknesses in MuJS interpreter

MuJS is a lightweight Javascript interpreter, not designed

in the security domain. The EDmust, therefore, be careful

about including third-party source code in the TCB. For

this paper, we debugged theMuJS interpreter for the input

dependent methods including the data access and the

control flow. These particular weaknesses may leak the

confidential source code and the confidential parameters.

Therefore, our aim is to observe two parts of confidential

information on source code; first leaking the Javascript

functions, and secondly, leaking the secret string

parameters.

Leaking the called Javascript functions via data-

dependent control flow weakness MuJS parses

Javascript code to extract the necessary operation

code (opcode). The opcode for the JS function is used

to call the relevant C method that corresponds with

the Javascript method. The corresponding C methods

are placed in different memory pages. We report that

the control flow in the jsrun.c file containing the

jsR_run method shown in Fig. 5 is dependent on the

input parameter of opcode containing the Javascript

method. The jsR_run method is used to parse and call

C methods. This may leak the function names of confi-

dential Javascript methods. The control-flow is therefore,

non-oblivious.

Leaking the string parameters via data-dependent

data access weakness inMuJS MuJS contains utf8 and

rune string operations for performing string transforma-

tion operations. The string operations are performed over

look-up tables. The number of accesses to a look-up table

tells the position of the character searched in given table.

An often called function for table look-up bsearch in

utftype.c exposed in Fig. 5 may leak the position of

the character in the table. This means the execution has

non-oblivious data-access.

5 Managing the Software-TCB on SGX enclaves
Both of the fundamental security notions, namely

integrity and confidentiality management, require hard-

ware and software co-design and implementation. A

secure hardware (a TEE or SGX v1.0 in practice) provides

limited security guarantees if its software contains weak-

nesses. For example, a buffer overflow vulnerability allows

an attacker to break the integrity of the target software.

If an enclave contains a run-time vulnerability, attack-

ers may take the control of the execution, compromising

its integrity. The ED should avoid any run-time vulner-

ability to ensure the integrity guarantees of underlying

instructions.

For confidentiality management, SGX can provide page-

level secrecy in its enclave memory. The content of a
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Fig. 5 Disadvantage of Third-party Packages for Confidentiality Management in Enclaves. Direct port of commodity software may leave additional

side-channel traces which ruins the confidentiality guarantees of the hardware. a) Excerpt showing the Input Dependent Control Flow in js_run

method of jsrun.c in MuJS interpreter. b) Excerpt showing the Input Dependent Data Access in bsearchmethod of utftype.c in MuJS

interpreter. (Both Accessed on May 2018 Revision.)

memory page is encrypted by the hardware. An enclave

that contains commodity software (i.e., unmodified binary

programmed without security in mind) may allow attack-

ers to learn the secrets processed by that software. The ED

should follow secure programming practices.

SGX hardware threat model states the ED’s responsi-

bilities in SGX Blogs and SGX Documentations [25–29]

since the time of launching SGX in 2015 (SGX Pro-

gramming Reference, SGXDevelopers Guide, SGXDevel-

oper Reference, SGX Enclave Writers Guide). The ED

must keep their development environment malware-free.

During programming or compiling an enclave, a malware

may infect the enclave and perform malicious operations.

The ED must also keep their enclave code vulnerability-

free. An important post by Intel [29] mentioned that15 the

type of side-channel attack identified on the RSA imple-

mentation was well-known. Developers must avoid any

weak or vulnerable code in the enclave that plays a role in

an attack.

Secure programming techniques can help to keep

enclaves free against runtime bugs. The ED has the

responsibility to program their enclaves with resistance to

software-based side-channel attacks. SGX hardware can-

not bring automatic security guarantees for an enclave

that contains vulnerabilities.

SGX hardware can provide integrity control for mem-

ory accesses so that an enclave can only access to its

own address space. The untrusted operating system, nev-

ertheless, controls the allocation of the enclave memory

pages. By design, SGX cannot provide any protection

against any denial of service attacks; if the operating sys-

tem refuses to give the enclave resources, they cannot

operate. If the enclave binary programmed by the ED

is weak (i.e., performing any data access or control flow

based on input data), the operating system can observe

the pages requested or used during execution. It has

been shown by Hahnel et al. [22] and Tsai et al. [61]

how the ED can mitigate some potential side-channel

attacks.

If the ED places vulnerable code inside the SGX enclave,

code flaws may cause integrity problems which can be

no longer be controlled by SGX (or similar trusted hard-

ware solution). The enclave implementation must contain

no code that intentionally causes information leakage

through side-channel attacks or covert-channel attacks.

These kinds of attacks do not showweakness in SGX tech-

nology [29]. The ED must analyse its implementation to

prevent the side-channel attacks [6, 21, 40] against the

software running in SGX enclaves.

Previous studies [10, 18, 47, 49] have shown solutions

for page-level and cache-level side-channel attacks. Seo et

al. [49] provided a solution for the controlled page-level

attacks with a compiler-level scheme, and this [18] study

solved the same attack with verifiable page faults. Another

study [10], solved the issue of data leakage in side chan-

nels via randomisation. Additionally, recent work [47] has

enabled Address Space Layout Randomisation (ASLR) for

SGX enclaves. The EDs may benefit from these solutions.

Utilising an oblivious RAM solution [54, 57] may also

reduce the attack surface by hiding memory content, and

the memory access patterns.

5.1 Bad practices in enclave development

5.1.1 Integrity and confidentiality

SGX technology is a practical TEE solution for securing

application secrets. The enclave TCB design is crucial for
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providing integrity and confidentiality. For confidentiality

management, third-party software included in the TCB

may fail to provide secrecy for private algorithms. As

such, TCB components that perform sensitive opera-

tions require special attention from developers as it

is possible for arbitrary software, running on trusted

hardware, to leak application secrets. Due to their

weak TCB components, TrustJS and SecureJS frame-

works may fail to preserve the confidentiality of pri-

vate algorithms. Secrets must not be processed by arbi-

trary software unless required security mechanisms are

in place.

Impact of TCB size on integrity and confidentiality

management Increasing the TCB size reduces the chance

of formal verification of the source code. SGX hard-

ware provides strong integrity guarantees for execution

and memory isolation. However, a weak software stack

included in the TCB may leak secrets that are stored or

processed in the enclave. Similarly, a run-time exploit may

give control of the enclave to an attacker.

The New Attack Vectors against the software run-

ning on trusted hardwareCommodity software products

and unmodified binaries running on trusted hardware

need additional memory protections for confidential-

ity management. Table 4 shows the ED’s responsibilities

to preserve security guarantees provided by the trusted

hardware. The non-oblivious software stack shown in

Section 4 may cause confidentiality leaks, otherwise.

Without deploying the security mechanisms that are nec-

essary in a remote environment, the performance metrics

becomes obsolete. We list the bad practices in SGX devel-

opment as following:

– Building a software stack with commodity software:

Developers lose security guarantees of the underlying

SGX hardware due to weak TCB construction caused

by commodity software. Porting the commodity

software to SGX does not directly compose it with

SGX.

Table 4 Hardware-enhanced security guarantees in enclaves,

and the cases when bad software stack may break these

guarantees. Enclave Developers (ED) are responsible for the

secure development

Notion Hardware feature May Break

Integrity Memory access
checks

Runtime vulnerability in TCB

Confidentiality Page-level secrecy Non-oblivious software stack

Fault tolerance Sealed storage Bad software implementation

Enclave availability Refuses to operate
open

Vulnerabilities in microcode

– Runtime vulnerabilities are still a threat: Developers

cause serious integrity flaws due to runtime

vulnerabilities. Enabling the features of the SGX

technology within applications does not mitigate the

runtime vulnerabilities. Consequently, a developer

who places a runtime vulnerability in the software

TCB of a SGX enclave does not show security flaw in

the SGX technology.

5.1.2 Two aspects of the availability

Availability of an SGX enclave may refer to two sub-

notions. First, the SGX enclave binary would refuse to

operate if there is no legitimate Intel SGX hardware. This

notion is independent of the ED. The security issues may

arise if SGX instructions have a design flaw. Nonetheless,

this would not threaten the validity of enclave research.

Because the microcode can receive patches, and the

secure hardware solutions in future can avoid the known

security issues.

The second point of availability is related to fault tol-

erance. An enclave-based cloud service must be available.

As the operating system controls the resources, it can

force an enclave to die. In case of a failure, the enclave

can recover from a sealed state. The recovery process

would, however, be dependent on how this fault toler-

ance mechanism is implemented. A bad software imple-

mentation may cause enclave to fail on execution, or

at recovery. The ED, therefore, are responsible for the

secure development of an enclave that is resilient to the

failures.

6 Secret-code execution (SCE) in reduced TCB
We extended the enclave development model with a

new mode called Early Private Mode (EPM), shown

as State 1 (S1) in Fig. 7. The EPM helps to SCE in

enclaves preserving strong security guarantees and avoids

the issues explained in Section 5.1. The overall archi-

tecture in Fig. 12 in the Appendix, 1© provides con-

fidential execution of private algorithms, 2© keeping a

minimal TCB size, 3© without the inclusion of any com-

modity software. The EPM runs when an AO executes

the enclave in their own execution environment by set-

ting the EPM flag as ‘true’. The enclave then outputs

the given function reference by reading from runtime

memory.

The conventional enclave lifecycle contains three states.

The developer firstly compiles the enclave binary, which

is then delivered and executed, before attesting the iden-

tity of the loaded enclave binary. In our design, we

added an Early Private Mode (EPM; or State 1; S1) to

serialise the secret code before compiling the standard

enclave binary. The S1 serialises the given secret inter-

nal enclave function and outputs it to an encrypted blob.

After verifying the enclave identity via remote attestation,
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we load the serialised secret code for execution (Fig. 8,

State 5; S5).

6.1 Further enclave partitioning: public and private

internal enclave functions

By default, in enclave development [4], binaries are split

into trusted and untrusted parts. Trusted enclave part

includes a Trusted Interface (TI), ECALLs and OCALLs,

along with Internal Enclave Functions (IEF). We extend

this paradigm with Public IEF (PIEF), and Secret IEF

(SIEF) as shown in Fig. 6. In S1 (Fig. 7), the AO produces

Serialised Secret Internal Enclave Function (SSIEF)

called Asset 1 (A1) within EPM. At this early stage,

a copy of the SIEF is created and sealed to enclave

state, to be loaded later in S5 (After Remote Attestation)

(Fig. 8).

The second state (S2) is not different from the ordinary

release mode16, but includes one additional configuration

parameter. By setting the EPM flag as ‘false’, the build pro-

cess excludes the Private Enclave Part, and outputs the

standard enclave binary. The compiled binary includes

the TI, ECALL and OCALL functions, the PIEF and the

Private Code (PC) Loader.

6.2 Late-load of secret code at the fifth state

Before execution of the enclave at State 3 (S3), the HO

has a chance to investigate the enclave code known as

Asset 2 (A2). A2 will contain no secrets that have been

embedded in advance. First, the A2 is loaded into themain

memory at State 4 (S4) via the SGX APIs triggered by the

Untrusted Application (UApp) binary. Afterwards, the

HO cannot see the content of the A2 in the enclave mem-

ory (other than the side-channel footprints explained in

Section 5). To reduce information leaks via side-channels,

we keep the TCB clean from third-party commodity

software, not processing any secrets in the PIEF. After

Remote Attestation (either TLS-based [32, 55] or Diffie-

Hellman & SigMA based [27]) between the AO and A2

(i.e., the AO attests the A2 enclave binary), the PC Loader

extracts A1, including the SSIEF, to the pre-allocated exe-

cutable memory. To execute the secret code, A2 calls the

address of A1, passing the execution flow. This opera-

tion provides runtime recovery of the secret code invisible

to the HO.

6.3 Managing security: adversarial AO vs adversarial HO

In addition to the classic threat model of SGX applica-

tions, where malicious OS and software stack threaten the

enclave, we consider a two-way adversarial case. The HO

aims to learn the secret code sent by the AO. To do so,

the HO can query the SIEF offline with all possible input

set, depending on the application. In order to prevent this,

the AO has to bind the SIEF to the HO’s input parame-

ter, while attesting A2. The parameterisation of the SIEF is

kept out of the scope in this paper. Nevertheless, AO can

mitigate the offline-querying attacks by locking the SIEF

into a specific input. In contrast, the AOmay take control

of the enclave via a malicious SSIEF in order to signal back

anyHO-specific private data used in the PIEF or SIEF. This

possibility threatens the privacy of the HO if it represents

multiple end-users (Data Owners,DO). As a countermea-

sure, the HO can physically limit any information leakage

Fig. 6 Extending the Enclave development model with Private and Public parts. In addition to the application partitioning into trusted and

untrusted, we introduce the enclave partitioning for internal functions. These functions never communicate directly with the outside world
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Fig. 7 The Early Private Mode (EPM) runs before releasing the enclave binary. It creates the Asset 1 (A1) that includes the Serialised Secret Internal

Enclave Functions (SSIEF). The standard release mode in State 2 (S2) creates the enclave binary including the Private Code Loader

by isolating their environment after loading the SIEF. We

do not, however, consider PIEF to be malicious against

the HO, as it must be open for inspection, and it must be

trusted by both parties. This requirement of PIEF being

trusted, comes from standard enclave development where

the all enclave code is being public. In our model, we keep

a part of the enclave private, while rest of it is still known

and being open for inspection. In short, the AO can lock

the SIEF against offline attacks targeting code secrecy,

and the HO can control the physical execution environ-

ment including the network infrastructure to mitigate the

covert-channels.

6.4 Comparing the Approach 1 and Approach 2

The secret code execution in reduced TCB (Approach 1)

uses direct export and import of the C code. The inter-

preter enclave method (Approach 2) enables the use of

high-level languages.

Usability Approach 1 requires the AO to be aware of

enclave development, and it requires them to take an

additional step of EPM before releasing the code. In

Approach 2, the AO does not need to have informa-

tion about the enclave development, as the interpreter

provides a layer of abstraction.

Security Using an interpreter leaves more memory

traces, potentially leaking information via side-channels.

It requires oblivious interpreters and oblivious memory

layout in order to hide the control flow. Loading native

C functions with the size of memory pages do not leave

further traces (at page-level granularity), other than the

number of calls.

TCB size Even though using a very small interpreter,

Approach 2 dramatically increases the TCB while weak-

ening the threat model. The native C execution method

in Approach 1, the TCB contains approx. 1500 LoC

for PC Loader, Attestation and other Enclave func-

tions (excluding any application-specific functionalities

of the enclave). In comparison to interpreter enclaves of

14 KloC, our method provides a TCB that is at least

10 times smaller. Also, Approach 1 addresses a stronger
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Fig. 8 The Standard Execution of an enclave, and the Extended Execution flow with EPM for private algorithms. The difference is that the AO takes also

a role in development of the enclave for private parts. The Asset 1 containing the private algorithms is loaded late in the HO’s environment for

secret-code execution after verifying the attestation report

threat model towards side-channel attacks by leaving less

footprints.

7 Industrial and practical use cases
The AO needs to run private algorithms on a remote,

untrusted computer. We show (Table 5) three examples

where our execution model can achieve this goal. These

scenarios differ from each other by the execution environ-

ments and the participant who receives the result.

7.1 Secret-code execution on computational power

(SCE-CP)

In the first scheme, the AO has a set of private algorithms,

such as 1© a private compression algorithm and 2© a

private sorting algorithm. These algorithms need high

computational power. The AO, therefore, rents a remote

server from the HO. This computation includes embed-

ded constant values and the algorithm provided by theAO

only. The DO does not involve in this scenario. The AO

wants to get the secret output of the computation.

7.1.1 SCE-CP in practice

The AO creates the SSIEF containing the algorithm

and the enclave binary. 1© The AO sends the enclave

binary to the HO. The HO executes the enclave on a

SGX-enabled machine. 2© The AO attests the enclave,

and establishes a secure channel. 3© After verifying

the enclave identity, the AO sends the encrypted SSIEF.

The HO loads the encrypted content and execution

begins. The result of the computation is encrypted

with the AO’s key. 4© The AO receives the result and

decrypts it.

Table 5 Three use cases on secret-code execution through SGX enclaves

No. Use case for Alg. status Data status Result Execution

1 Computing power (CP) Private Alg. by AO Public/no data by DO A.O. gets Only at H.O.’s environment

2 Algorithm querying (AQ) Private Alg. by AO Private data by DO D.O. gets D.O. controls H.O.’s env.

3 Data querying (DQ) Private Alg. by AO Private data by DO A.O. gets D.O. controls H.O.’s env.
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Fig. 9 Secret-Code Execution (SCE) Computational Power. The AO creates a session with the enclave binary, and shares the SSIEF. The SSIEF is

extracted into the enclave memory at runtime

7.1.2 SCE-CP establishing themutual trust

The AO designs and implements the enclave binary.

Sharing the SSIEF after the attestation process gives

the AO an inherited trust. The SSIEF is decrypted

and executed only inside the Non-Inspectable Time

Period (in Fig. 9). This scheme removes the chance

of the HO to disassemble any content of the enclave

code.

7.1.3 SCE-CPmalware in SGX argument

There is a long-lasting argument [46] that an SGX enclave

may include malicious code. We evaluate this argument

for the SCE-CP use case. Our execution model allows

the AO to include arbitrary software in the enclave.

Without the use of EPM and SSIEF, the AO may send

the enclave code in plain text, or the AO may entirely

avoid utilising enclaves. This, however, does not stop

the AO from sending malware to the cloud environ-

ment. In fact, the AO is free to run an experiment with

malicious or benign code in the cloud. At the bottom,

theHO controls the hardware resources, and observes the

usages. The HO charges more to the AO, if the resources

are used more. At all times, the HO can observe all

I/O traffic of the enclave. The HO can refuse to give

resource at any time. The enclave, resource-wise, is one

of the most visible parts in the system. Through the

enclave or not, the malicious AO has full access to the

cloud machine. We conclude that use of an enclave does

not increase the existing attack surface in the SCE-CP

scenario.

7.2 Secret-code execution on algorithm querying

(SCE-AQ)

In the second scheme, theDO has private input data, such

as 1© an image containing health data and 2© a data-set

collected from sensors. As an untrusted entity, the AO

has a private algorithm that can process this private input.

The SCE-AQ scheme (Fig. 10) outputs a private value

that the DOmust receive only. We assume that both enti-

ties are mutually distrustful. They do not want to share

their private assets with each other. A collusion between

the AO and the HO against the DO can leak the secret

data. We, therefore, consider the HO to be controlled

by the DO.

7.2.1 SCE-AQ in practice

The AO uses the EPM and creates the SSIEF containing

the algorithm, and the enclave binary. 1© The AO sends

the enclave binary to the HO that is controlled by the DO.
2© Different from the SCE-CP, the DO interacts first with

the enclave and commits the input. 3© The AO attests the

enclave and verifies the identity. 4© If convinced, the AO

shares the SSIEF with the enclave. The key point is that

neither the DO nor the enclave can change the execution

after this stage. 5© The result of the computation is

returned to the DO.

7.2.2 SCE-AQ brute-forcing the algorithm secrecy

This scheme returns the computation result to the DO.

This allows theDO to gradually learn about the algorithm.

A malicious the DO may want to find the all possible
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Fig. 10 Secret-Code Execution (SCE) Querying the Algorithm. The DO provides an input to the secret algorithm and receives the output. Input

commitment prevents querying the secret-code with a different parameter in an offline repeated execution

input and output streams of the algorithm. The Table 6

shows an example to learn the function behaviour by brute

forcing the input streams. The DO can freeze and clone

the memory state of the machine to perform an attack

against the algorithm. In our mechanism, however, the

independent input from the DO comes before the SSIEF.

Once the DO commits to an input parameter ( 2© step,

Fig. 10), the enclave does not accept any other interac-

tion other than accepting the SSIEF ( 4© step, Fig. 10). If

the DO clones the enclave at any stage, the result does not

change. The AO can thus measure how much secrecy of

the algorithm has been already leaked.

7.2.3 SCE-AQ preventing the data leaks

In contrast, the AO may want to leak the secret inputs.

Even though the AO can execute any code, the SSIEF

cannot communicate with any other entity. The DO phys-

ically controls the environment, and does not allow any

I/O operation (Fig. 11).

Table 6 Brute-force querying the algorithm by re-using the

enclave

No. Example Input_x Example method Example Result_y

001/256 00-1111-00 SSIEF(function_f()) 11

002/256 11-0101-11 SSIEF(function_f()) 10

.. .. ..... .. SSIEF(function_f()) ..

256/256 00-0110-01 SSIEF(function_f()) 00

7.3 Secret-code execution on data querying (SCE-DQ)

In the third scenario, theAO and theDO goes into another

joint computation. The difference is that the result must

be returned to the AO only. The DO has a special private

data-set. The AO wants to run a secret query on this

data-set.

Suppose that, the DO is an authority who collects

road-data and driving experiences of citizens through

sensors. In another example, the DO can be a car

manufacturer company who collects data from their cars.

The AO is an insurance company, or a government

authority, who wants to run a private algorithm on that

data-set.

7.3.1 SCE-DQ in practice

Similar to SCE-AQ, 1© the AO sends the binary, 2©
the DO commits the input, 3© the AO attests the enclave,

and 4© the AO shares the SSIEF. Differently, at step 5©,

the DO reduces the bandwidth of the result. 6© The AO

receives the result and decrypts it.

7.3.2 SCE-DQ limiting the data leakage

The difference in the SCE-DQ from the SCE-AQ is

that the AO receives the secret result. At the end of

the computation, the DO does not let SSIEF to return

an arbitrary value directly. In this example, we allow

returning only 1 bit of data (boolean) as a result. This

operation means, the DO does not know what software

has processed her input, and does not know the result.
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Fig. 11 Secret-Code Execution (SCE) Querying the Data. The AO runs a secret query on a secret data set. After the secret-code execution, the DO has

control of the bandwidth for filtering the return value

The DO, however, knows the type of the value, and

permits SSIEF to return this secret value to the AO. By

doing so, the DO can control how much secrecy of data is

disclosed.

7.4 The overhead in SCE components

We observed two types of computational costs in our

use cases: 1© The asynchronous operations that are

independent of the main computation. 2© The syn-

chronous time cost that our model adds on top of the

existing cost. Table 7 summarises the memory space (m)

and computing time (t) overheads of the components. In

the worst case, the SSIEF recovery costs an equal amount

of time to the cost of the enclave creation (t). This over-

head sums up to Worst(2t) of total time for the SSIEF

execution. The computation itself, however, can take time

andmemory as required by theAO. The SSIEF is executed

in the preallocated memory area during enclave creation.

This operation, therefore, does not require additional

Table 7 Overhead of three use cases on secret-code execution

Description SCE CP SCE AQ SCE DQ

Development time public/private partitioning: asynchronous

Compile time EPM and enclave: asynchronous

t Time cost,mmemory size 1. Step: Execute the enclave

Worst case 2t total time cost 3. Step: Exec SSIEF 4. Step: Exec SSIEF

Other operations: existing costs

memory. We keep the remote attestation costs and opera-

tions out of the scope in this study.

8 Conclusion and future work
In summary, this paper presents a security analysis on

interpreter enclaves and has aimed to demonstrate how

a third-party commodity software can become the weak-

est link in a security chain. We provided a new design

for secret-code execution in remote computers, and

demonstrated such design in three practical generic tem-

plates. Our model reduced the TCB size by a power of ten,

in comparison to the alternative design approach using

interpreters. Approach 1 brings an extra step in devel-

opment, requiring additional enclave partitioning (pub-

lic and private parts). In Approach 2, we showed it is

difficult to hide the called functions, thus requiring an

additional strong sandbox for function secrecy. This sand-

box would, ideally, need to call a set of similar functions

for each function. It is very likely to have an exponen-

tial computational overhead, and this overhead may grow

with the size of the interpreter. Despite its shortcom-

ings on usability, our approach provides stronger security

guarantees. Future work may explore automated ways

of deploying our design, however, Approach 2 will con-

tinue to have better usability. In conclusion, our late-load

method for secret-code execution provides stronger secu-

rity and native execution performance, requiring only a

small additional development effort from the Algorithm

Owner.
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