
42 PERVASIVEcomputing Published by the IEEE CS and IEEE ComSoc ■ 1536-1268/03/$17.00 © 2003 IEEE

D E A L I N G  W I T H  U N C E R T A I N T Y

Managing Context
Information in Mobile
Devices

M
obile device users want to be
able to access and manipulate
information and services spe-
cific to their location, time, and
environment. Context infor-

mation gathered from sensors, networks, device
status, user profiles, and other sources can en-
hance mobile applications’ usability by letting
them adapt to conditions that directly affect their
operations.

To achieve true context
awareness, however, mobile sys-
tems must produce reliable in-
formation in the presence of
uncertain, rapidly changing, par-
tially true data from multiple
heterogeneous sources. Mobile
devices equipped with low-cost

sensing elements can recognize some aspects of
context. However, extracting relevant context
information by fusing data from several sensors
proves challenging because noise, faulty connec-
tions, drift, miscalibration, wear and tear, humid-
ity, and other factors degrade data acquisition.
Extracted contexts overlap, change with time, and
yield only partially reliable approximations. 

Furthermore, mobile devices’ dynamic envi-
ronments require that we learn context descrip-
tions from multidimensional data. Learning sys-
tems can’t easily generalize beyond training data,

however. Using even sufficiently reliable derived
contexts directly to control mobile applications
poses problems because users with different ideas
of “context” might find application behavior
irritating.

To address these challenges, we present a uni-
form mobile terminal software framework that
provides systematic methods for acquiring and
processing useful context information from a
user’s surroundings and giving it to applications.

A context management framework
The framework we present permits recogniz-

ing semantic contexts in real time in the presence
of uncertain, noisy, and rapidly changing infor-
mation and delivering contexts for the terminal
applications in an event-based manner. Our
application programming interface (API) for
using semantic context information uses an
expandable context ontology to define contexts
that clients can use.

We chose a blackboard-based approach1 as the
underlying communication paradigm between
framework entities. Our approach focuses on
mobile terminal capabilities rather than infra-
structure. Accordingly, we designed the frame-
work for the Symbian platform (www.symbian.
com) to achieve true device mobility, high per-
formance, and a broad user base.

Four main functional entities comprise the con-

A new software framework simplifies the development of context-aware
mobile applications by managing raw context information gained from
multiple sources and enabling higher-level context abstractions.

Panu Korpipää, Jani Mäntyjärvi,
Juha Kela, Heikki Keränen, and
Esko-Juhani Malm
VTT Technical Research Centre 
of Finland



text framework: context manager, re-
source server, context recognition ser-
vice, and application. When entities
communicate, the context manager func-
tions as a central server while other enti-
ties (except security) act as clients and
use services the server provides. The con-
text manager, any resource servers, and
applications run on the mobile device
itself, and the services are either distrib-
uted or local.

At the heart of the mobile terminal
context system is the blackboard-based
context manager. This central node
stores context information from any
source available to the terminal and
serves it to clients in three ways:

• Clients can directly query the manager
(as a context database) to gain context
data.

• Clients can subscribe to various con-

text change notification services.
• Clients can use higher-level (compos-

ite) contexts transparently, where the
context manager contacts the required
recognition services.

The resource servers connect to any
context data source and post context
information to the context manager’s
blackboard, which further processes the
data if needed and delivers it to the
clients according to their subscriptions.
The delivered data’s abstraction level
should be high enough and the frequency
low enough to be useful yet not over-
whelming. With raw high-frequency
(sensor) data, the resource server should
perform low-level recognition before
delivering the data to the context man-
ager. Figure 1 shows the low-level con-
text recognition process flow in the
resource server. The measurement phase

reads the sensors and outputs raw data.
The preprocessing phase builds mea-
surement data arrays that contain a cer-
tain number of samples (quantization of
time dimension) and calculates generic
features for each time interval.

Feature extraction calculates more
specific context features. The quantiza-
tion phase binds the feature values to the
real-world context, which has a meaning
for a person or an application according
to a predefined ontology. Fuzzy sets or
crisp limits are used for quantizing ex-
tracted features. The quantization phase
outputs context atoms (base context
units) that applications can use or recog-
nition services can further refine. The
resource servers use one of two methods
for quantization:

• Set crisp limits, resulting in a true-false
labeling for context atoms represented
with fuzzy membership functions de-
noted as µ(x). For example, in quan-
tizing environment sound intensity, the
quantization divides the processed fea-
ture into three quantities—Silent,
Moderate, and Loud—corresponding
to the three membership functions Fig-
ure 2a shows. If one of these is true,
the others are false. 

• Apply a fuzzy set for features, result-

JULY–SEPTEMBER 2003 PERVASIVEcomputing 43

Context manager

Application

SecurityChange detection
service

Resource
server

Context
recognition service

PreprocessingSensor
measurement

Feature
extraction

Quantization and
semantic labeling

Resource server:
Low-level context recognition

Figure 1. Entities and information flow
(arrows) in the context framework.
Clients (application, resource server,
recognition service) can add, subscribe
to, and request context information. 
The context manager stores contexts 
and delivers responses and change 
notifications to the clients. The figure
details resource-server information 
flow to illustrate the phases required 
to transform the raw sensor data into
human-interpretable context information,
which applications can further process
and use in an event-based manner.

Silent

0

1

L(x)µ
Moderate Loud

Feature x

Silent

0

1

L(x)µ
Moderate Loud

Feature x Figure 2. Examples of (a) crisp and (b)
fuzzy quantizations.

(b)(a)



ing in continuous valued fuzzy label-
ing (Figure 2b). For example, µL(x) =
0.7 / Silent + 0.3 / Moderate + 0 / Loud. 

The manager’s recognition service
table registers plug-in context recogni-
tion services, which lets applications
share the recognized higher-level con-
texts. Developers or processes can add
and remove recognition services from
the system online. The registration pro-
cess defines each recognizer’s input and
output, so that any change in a recog-
nizer’s input data set automatically spurs
the recognition of higher-level context.
The application can operate by using the
higher-level contexts without needing to
know about the underlying processing.
Context recognition services use as input
either a set at a certain time instant or a
time series of context atoms, and return
single higher-level contexts for the con-
text manager. 

In other words, the resource server and
recognition service convert an unstruc-
tured raw measurement data flow into a
representation defined in the context
ontology,2 which permits serving the
human-interpretable context information
for the applications in an event-based
manner. The framework thus provides a
semantic interface that enables more sys-
tematic and rapid application develop-
ment and facilitates more efficient reuse
of context information compared to
using raw measurement data.

The framework in Figure 1 also con-
tains blocks for change detection and
security, but we don’t focus on these
functionalities here. Briefly, any change
detection services facilitate alternative
ways to detect context change. The secu-
rity module checks the trustworthiness
of incoming contexts, which is especially
important for contexts received from
outside the terminal.

Information sources
A mobile device can acquire context

information from many possible sources.
In our experiments, we used sensors
including a microphone, three accelerom-
eters, two channels for light, and sen-
sors for temperature, humidity, and
touch. Sensor data provided the start-
ing point—we could also use other con-
text sources available for the terminal—
and we designed the framework to
handle contexts from such sources as

• Device processes that represent mobile
devices’ internal information, such as
applications currently running

• The Internet and other networked
resources

• The Global Positioning System, among
the most important sources of location
information

• Internal device processes, which pro-
vide explicit information on device
application use and users’ scheduled
tasks, preferences, and social networks

• Time information, used to associate
certain events with others and form
event sequences that might relate to a
current higher-level context or predict
a future event

Mobile devices that support various
wireless networks, such as GSM and
GPRS, and short-range ad hoc networks,
such as Bluetooth, provide continuous
and ad hoc connectivity to local and
remote data.

Ontology for sensor-based context
information

To manage the context information
systematically, the framework entities
must have a common structure for rep-
resenting information. We therefore
designed an ontology for representing
sensor-based context information.2 The
ontology (Table 1) consists of a sche-
ma—which represents the structure and
the properties for all the ontology’s con-
cepts—and a client-usable, extendable
vocabulary that presents the terms for
describing context information. To facil-
itate ontology sharing and communica-
tion, we used the Resource Description
Framework (www.w3c.org) as the
description syntax. RDF offers common
properties and syntax for describing
information and permits sharing the
ontology among different information
providers or sharing context between
devices communicating collaboratively.

44 PERVASIVEcomputing http://computer.org/pervasive

D E A L I N G  W I T H  U N C E R T A I N T Y

TABLE 1
Sensor-based context ontology vocabulary example.

Context type Context value

Environment:Sound:Intensity { Silent, Moderate, Loud }
Environment:Light:Intensity { Dark, Normal, Bright }
Environment:Light:Type { Artificial, Natural }
Environment:Light:SourceFrequency { 50Hz, 60Hz, NotAvailable }
Environment:Temperature { Cold, Normal, Hot }
Environment:Humidity { Dry, Normal, Humid }
User:Activity:PeriodicMovement { FrequencyOfWalking, FrequencyOfRunning, NotAvailable }
Device:Activity:Stability { Unstable, Stable }
Device:Activity:Placement { AtHand, NotAtHand }
Device:Activity:Position { DisplayDown, DisplayUp, AntennaDown, AntennaUp, SidewaysRight, SidewaysLeft }

Context type (higher-level) Context value

Environment:Location:Building { Indoors, Outdoors }



The framework describes each context
using six properties. Each context expres-
sion must contain at least Context type
and Context value:

• Context type refers to the context cat-
egory. All subscriptions and queries
must have context type or source as
the primary parameter. Context type
concepts form a tree structure.

• Context value refers to the semantic or
absolute “value” of context type and is
usually used together with context type,
forming a verbal description (Tables 1
and 2). In some cases, context value
might contain an absolute numerical
value or feature describing context.

• Confidence, an optional property,
describes the context’s uncertainty,
typically as a probability or a fuzzy
membership of context depending on
the source.

• Source describes the context’s (seman-
tic) source. A client interested in con-
texts from a specific source can use
this property.

• Timestamp denotes the latest time the
context occurred.

• Attributes specify the context expres-
sion freely and might contain any
additional details not included in the
other properties.

Higher-level context and context
atoms differ only in that the former’s
Context type property links to a recog-
nition service description that contains
the Input context type set for recogniz-
ing the higher-level context. Hence, the
following three properties describe re-
cognition services:

• Context type: a client can use the cat-
egory of the higher-level context as a
normal context atom or specifically
request the recognition for the type. 

• Context recognition service: the re-
cognition service takes as input the
contexts defined in the Input context
type set, performs the classification,
and returns the higher-level context
description.

• Input context type set: the recognition
service subscribes to the input context
type set to be notified of the changes.
Upon change in input type set, the

recognition service infers the higher-
level context.

The structure permits creating and
handling composite contexts and con-
text hierarchies. The client can use all
contexts similarly despite the possible
underlying hierarchy, making recogni-
tion processing transparent for the client.
Table 1 shows the fusion of the two
higher-level contexts (last row of the
table) using naive Bayesian classification
from a set (vector) of 14 atoms describ-
ing the environment’s light, humidity,
and temperature. In Table 2, the seven
context values in the last row describe
higher-level contexts fused from a set of
47 audio-based context atoms.

Both Table 1 and Table 2 examples
form part of the sensor-based context
vocabulary, which we designed to be
expandable. We’ve identified and can
measure or recognize about 80 contexts
that currently consist mostly of context
atoms. The contexts result from mea-
suring and processing audio, light, three-
axis acceleration, temperature, humid-
ity, and touch. The audio context atoms

JULY–SEPTEMBER 2003 PERVASIVEcomputing 45

TABLE 2
Audio-based context ontology vocabulary example.

Higher-level contexts are presented separately at the bottom of the table; the rest are atoms the resource server extracts from sensor data.

Context type Context value

Environment:Sound:Harmonicity { Low, Medium, High }
Environment:Sound:HarmonicityUpperLimit { None, Low, Medium, High }
Environment:Sound:SpectralCentroid { UltraLow, Low, Medium, High }
Environment:Sound:Transients { None, Transients }
Environment:Sound:CombFilterLength { Low, High }
Environment:Sound:HighHarmonicityRatio { Low, Medium, High }
Environment:Sound:UpperLimitRatio { Low, Medium, High }
Environment:Sound:HistoryF0Ratio { Low, High }
Environment:Sound:HistoryTransients { None, Medium, High }
Environment:Sound:HistoryUpperLimitRatio { Low, High }
Environment:Sound:SpectralSpread { Low, Medium, High }
Environment:Sound:SpectralSpreadRatio { Low, Medium, High }
Environment:Sound:SpectralFlatnessOfFourthBand { Low, High }
Environment:Sound:SpectralCentroidDeviation { Low, Medium, High }
Environment:Sound:FundamentalFrequencyRatio { Low, High }
Environment:Sound:HistoryHarmonicityDeviation { Low, Medium, High }
Environment:Sound:HistoryCombFilterLength { Low, Medium, High }
Environment:Sound:ConsecutiveFundamentalFrequency { Low, High }
Environment:Sound:LowEnergyRatio { Low, High }

Context type (higher-level) Context value

Environment:Sound:Type { Car, Elevator, RockMusic, ClassicalMusic, TapWater, Speech, 
OtherSound }



use algorithms from the upcoming
MPEG-7 standard. We chose context
atoms for the vocabulary based on their
ability to describe some potentially use-
ful real-world properties. Other criteria
include the feasibility of measuring or
recognizing the chosen context as accu-
rately and unambiguously as possible.

Most of the context atoms are accu-
rate in that they represent more or less
direct low-level descriptors of the mea-
sured data. However, this isn’t always
the case. Some context types, such as
semantic temperature, are subjective and
their meaning depends on the observer.
Furthermore, higher-level contexts al-
ways incorporate some uncertainty in
the form of inferred probability based
on previously learned evidence. Even
worse, both low- and high-level contexts
often ambiguously reflect real-world
conditions. Hence, the use of recognized
contexts is not always straightforward.

The extendable vocabularies let devel-
opers add both context types and their
values. Figure 3 shows the context
vocabularies’ main concept categories.
The representation corresponds to the
list representation in Tables 1 and 2, and
colons separate subcategories. Current
vocabulary sets are also available online
(www.iie.fi/tie/publications/publications_
index.htm). We address naming con-
ventions elsewhere.2

Among its most important tasks, the
framework manages uncertainty of sen-
sor-based information. As mentioned
earlier, the Confidence property describes
context uncertainty: a context derived
from multiple sensory input only holds
true with a certain probability. Similarly,
a context might be only partly true when
the boundary between two contexts is
not clear and discrete, in which case a
fuzzy membership associated with the
context indicates its partial truth.

Context recognition uses confidence
properties of the input data set to form
the classifier input vector. If no confidence

property value exists, the framework uses
either zero or one on the basis of the cor-
responding context atom’s presence.

Inference mechanism concept
The conceptual blackboard-based sys-

tem allows the use of any inference
framework for reasoning new contexts
or actions. Context uncertainty described
in the confidence property can prove use-
ful in such inference frameworks as prob-
abilistic networks, clustering, or case-
based reasoning.3 The central blackboard
manager distributes the inference and
makes it transparent to the client. The
recognition services take information
from the common dataspace, process it,
and return more abstract information.
Developers don’t need to restrict the ser-
vices’ internal processing methods if the
services return information as defined by
the common ontology. The recognition
services produce higher-level contexts
from either a set of contexts at a certain
moment or a context history.

Bayesian reasoning for higher-
level contexts

A naive Bayes classifier recognizes
higher-level contexts (Tables 1 and 2)
from lower-level context atoms.4 In the
framework, the classifier could serve as

a plug-in context recognition service that
takes a set of context atoms as input
from the context manager, performs the
classification, and returns a higher-level
context to the manager. The manager
stores it and delivers it to clients based
on requests and subscriptions. The naive
Bayes classifier works well for online
context inference and sensor fusion
because

• It has proven robust even with missing,
uncertain, and incomplete information.5

• For input, it can use context data
described by the ontology, a vector of
context atom confidence values. Fuzzy
membership values can be applied as
virtual evidence.5

• It is computationally efficient. Train-
ing and inference both have a linear
complexity in input data size.

• It requires no background information
modeling except for choosing the rel-
evant network inputs. For instance,
background knowledge tells us it is
irrational to try to infer the type of
ambient music from the context atoms
describing device stability, even though
it might happen to be a discriminating
factor based on the data set.

Table 3 presents examples of contexts

46 PERVASIVEcomputing http://computer.org/pervasive

D E A L I N G  W I T H  U N C E R T A I N T Y

Activity

Light

Temperature

Humidity

Sound

Activity

Application

Context

User

Environment

Location

Time

Device

Figure 3. The expandable context 
vocabulary’s main categories.



that a naive Bayes classifier can recog-
nize. The context manager blackboard
contains contexts in the format shown,
with only security code and timestamp
omitted. Context atoms and higher-level
contexts both use the same representa-

tion. The ontology defines context struc-
ture and vocabulary.

Two separate naive Bayesian networks
produce the first four examples Table 3
shows. Audio context recognition is
based on 47 lower-level context atoms.

Within the framework, whenever any
input-set atoms change, the recognition
service performs the classification for
subscribed clients. In the first four exam-
ples, where the context source is the
Bayesian network recognition service,
the context confidence attribute states
the context probability as shown by the
free attributes field. In examples 5, 6,
and 8, confidence states the context’s
fuzzy membership value, and example 7
results from a crisp quantization.

Figure 4 shows the formation of the

JULY–SEPTEMBER 2003 PERVASIVEcomputing 47

TABLE 3
Examples of contexts from various situations as they appear on the context manager blackboard. 

Clients employ the contexts by using the API.

Example Context type Context Confidence Source Attributes
context value

1 Environment: Car 1.0 Recognition Confidence = Probability

Sound: Type Service 1

2 Environment: Elevator 0.9 Recognition Confidence = Probability

Sound: Type Service 1

3 Environment: Speech 0.8 Recognition Confidence = Probability

Sound: Type Service 1

4 Environment: Outdoors 1.0 Recognition Confidence = Probability

Location: Building Service 2

5 Environment: 21 1.0 Device Sensor ValueUnit = Celsius
Temperature: Absolute

6 Environment: Dry 0.7 Device Sensor Confidence = Fuzzy membership

Humidity

7 Device: Activity: AtHand 1.0 Device Sensor Confidence = Crisp

Placement

8 User: Activity: Walking 0.6 Device Sensor Confidence = Fuzzy membership;

PeriodicMovement Frequency Speed = 5;

SpeedUnit = km/h

Intensity

Environment

Location

Humidity

Indoors
OutdoorsBuilding

Bayesian
classification

Light Type

SourceFrequency

Temperature

Environment

First-level
contexts

(context atoms)

Second-level
contexts

(higher-level
contexts)

Dark
Normal
Bright

Artificial
Natural
50Hz
60Hz

NotAvailable
Dry

Normal
Humid
Cold

Normal
Hot

0
0.4
0.6
0
1
0
0
1

0.3
0.7
0
0
1
0

0
1

Figure 4. The formation of the higher-
level context Outdoors from the context
atoms. White rectangular boxes represent
types and light tan boxes represent 
context values. Dark tan boxes contain
the corresponding confidence instance
values for the current situation. A naive
Bayesian network classifies the confidence
instance values into one of the previously
defined output classes, Indoors and
Outdoors in this network. The audio 
network uses a similar principle but with
an input vector length of 47 and seven
output classes.



higher-level context Outdoors (example
4) from the context atoms. The In-
door/Outdoor Bayesian network (recog-
nition service 2) classifies the current sit-
uation’s context atom confidence values
(vector). The classifier associates each
context atom with a conditional proba-
bility indicating each input’s probability
given the output. The classifier learns
conditional probabilities from the train-
ing data. The classification applies the

Bayes theorem to calculate the output
class given current input values and con-
ditional probabilities.

Our earlier study4 applied naive
Bayesian networks to classify nine con-
texts of a mobile device user in their nor-
mal daily activities. We based these con-
texts on an extensive set of audio context
atoms derived partly from the upcoming
MPEG-7 standard’s algorithms and
partly from other sensors’ context atoms.
We sought to recognize the nine contexts
(Table 1 and 2, higher-level contexts)
measured from a continuous real-life sce-
nario containing different activities such
as driving a car, running, walking, using
an elevator, listening to different kinds of
music, and speaking. The measurement
system hardware consisted of a small sen-
sor box attached to the shoulder strap of
a backpack containing a laptop. When
collecting scenario data, the user carried
the backpack.

The classification results indicated that
the naive Bayes classifier can extract sit-
uations fairly well, even from continu-
ous input, but also showed that most
results will likely be valid only in a
restricted scenario. Under controlled

conditions, recognition accuracy for the
nine contexts measured 96 percent true
positives and 100 percent true negatives.
In real-world conditions, where the clas-
sifier didn’t know context transitions
and where disturbances, undefined phe-
nomena, and scenario phase transitions
decreased the performance, the overall
recognition accuracy fell to 87 percent
true positives and 95 percent true nega-
tives. These were averaged over nine 8-

minute scenarios and nine different con-
texts, and measured by four testees.
However, the classifier recognized some
audio-based contexts, such as Car, Ele-
vator, and Tapwater, with nearly 100
percent accuracy.

From the machine-learning viewpoint,
the study took the supervised learning
approach, which defines the target
classes and their inputs before training.
After training, the classifier could be
used to recognize the trained contexts
online as a registered recognition service.
However, we still faced the traditional
machine-learning problem of general-
ization beyond training data, in addition
to possible ambiguities, because in a
wider perspective some features might
refer to multiple real-world situations.

Application programming
interface

The framework lets clients put con-
text information to practical use once
the resource servers and recognizers have
processed it to a suitable level of abstrac-
tion. The context manager API, which
we’ve implemented on the Symbian plat-
form, offers several services.

Adding context
Any secure client can add context to

the context blackboard. Resource servers
process and collect the context proper-
ties into context objects, then send them
to the context manager. Device-external
sources should use a message syntax
such as RDF that facilitates information
sharing. The following example shows
the method for adding context:

ContextAdd( ContextObject )

Requests and responses
The client may request context infor-

mation directly from the context man-
ager database, or specifically request
context recognition. The application
developer only needs to know the con-
text ontology and the methods. The
client may also request context infor-
mation by the context ontology tree sub-
branch (shown below), in which case the
response will contain all contexts under
the subbranch. The following examples
denote responses to requests with an
arrow (→) and show only the Context
value attributes of any response objects
for clarity.

ContextRequest( Environment:Light:Intensity ) 
→ Bright
ContextRequest( Environment:Light )
→ {Bright, Natural, NotAvailable}
ContextSetRequest( {Environment:Humidity, 

Device:Activity:Position}
→ {Dry, AntennaUp}
ContextSetRecognitionRequest( 

Environment:Sound:Type )
→ Car

The context set request lets the appli-
cation developer get all the required con-
texts by using one command instead of
many. The recognition register defines
the input context types used to recognize
the Environment:Sound:Type higher-
level context.

In addition to the examples, the API

48 PERVASIVEcomputing http://computer.org/pervasive

D E A L I N G  W I T H  U N C E R T A I N T Y

From the machine-learning viewpoint, the study

took the supervised learning approach, 

which defines the target classes and their inputs

before training. 



contains methods for requesting several
latest contexts or a time interval of a cer-
tain context type.

Subscriptions and indications
The subscription-indication service

gives applications the required context
information in an event-based manner.
Applications can subscribe to context
change notifications—clients essentially
tell the context manager, “when some-
thing about this happens, let me know.”
The following examples illustrate how
applications use this service (again show-
ing only the indication object’s Context
value attribute for clarity).

ContextChangeSubscribe(Device:Activity:Placement)
→ AtHand
ContextChangeSubscribe( 

Environment:Temperature:Absolute )
→ 21
ContextStartSubscribe( Location:Facility, MovieTheatre)
→ MovieTheatre
ContextChangeSubscribe( 

Environment:Sound:Type )
→ Elevator

The first example simply notifies the
client when device placement changes.
The next example, subscribing to con-
text’s absolute value, only proves suitable
for context types properly treated for

change by the source because this service
indicates every time the value changes.
The next example, subscribing to start
and end notifications for a specific con-
text, can prove especially useful for a
large context set, such as location. For
instance, an application might only need
the context MovieTheatre to change the
device profile to silent upon arrival and
back to previous after leaving. Subscrib-
ing to context start and end relieves the
application from receiving unnecessary
indications about all changes in the con-
text type—the application will only get
the relevant messages.

In the final example, the client has sub-
scribed to a recognition from a context
set. The client gives the resulting higher-
level context type. The recognition reg-
ister defines the set of recognition service
input subcontexts. Hence, whenever any
context in the input set changes, recog-
nition occurs automatically and, if the
recognized higher-level context changes,
the client receives the result. Similarly,
methods exist for recognition based on
the sequence of previous values for a cer-
tain type. 

Example application
We’ve used the context ontology to

demonstrate the use of sensor-based con-
text information in mobile terminal

applications such as browsing and infor-
mation presentation in the user inter-
face.6 The approach uses part of the
ontology vocabulary, particularly the
context types Environment:Light:Inten-
sity, Environment:Sound:Intensity, and
User:Activity:PeriodicMovement. Envi-
ronment sound intensity controls the
volume of operating tones. Font size,
screen brightness, and service content
adapt according to user activity and
ambient light level. We’ve chosen these
context types and variables empirically
based on tests with real sensor measure-
ments. Figure 5 shows context-based
information representations of a bus
timetable service.

Fuzzy controllers, designed using fuzzy
rules that are basic operations for fuzzy
sets, help guide the application adapta-
tion. For example, the fuzzy rule defini-
tion for adapting font size using the log-
ical operation AND uses the membership
of the intersection between two fuzzy
sets—Environment:Light:Intensity and
User:Activity:PeriodicMovement:

µFONTSIZE (x) =
min(µUSER:ACTIVITY:PERIODICMOVEMENT(x), 

µENVIRONMENT:LIGHT:INTENSITY (x)).

Fuzzy rule definition also uses the log-
ical operations OR and NOT, which per-
mit conversion of multivariable rules
into single continuous control signals for
applications.

We employed context-based applica-
tion adaptation, validated with users, to
demonstrate our sensor-based context
ontology.6 User feedback revealed that
direct adaptation of minor application
features such as display illumination is

JULY–SEPTEMBER 2003 PERVASIVEcomputing 49

Figure 5. Adaptive information 
representation on the display of a mobile
terminal during service browsing.
Current contexts in screenshots are (a)
Environment:Light:Intensity Normal;
User:Activity:PeriodicMovement NotAvailable;
and (b) User:Activity:PeriodicMovement
RunningFrequency.

(a) (b)



50 PERVASIVEcomputing http://computer.org/pervasive

D E A L I N G  W I T H  U N C E R T A I N T Y

acceptable, but the device must ask the
user before adapting major application
features such as information presenta-
tion. Further studies will let us more
extensively validate the whole frame-
work from multiple viewpoints such as
application developer, recognition ser-
vice developer, and application user.

Discussion
Our framework and context ontology

provide a semantic application pro-
gramming interface for handling impre-
cise information from multiple sources.
Many obstacles remain, however, to the

rapid use of many contexts derived from
sensor data. We need more sensors and
a large data collection to gain enough
information to discriminate reliably
between higher-level contexts in a gen-
eral mobile device usage setting. Also,
some contexts are ambiguous or subjec-
tive and, as such, application-specific.

The blackboard mechanism is widely
used for communicating information
between entities and has proven suitable
for many problem domains. However, it
isn’t the most efficient method because
every communication through a black-
board requires at least two hops. We

must therefore add resource server infor-
mation processing requirements. The
sources should process the context data
to a sufficient abstraction level before
adding it on the blackboard and shouldn’t
add context data too frequently.

Even though the context manager
can handle the continuous flow of raw
data from source to client, several fac-
tors argue against this. First, event-
based communication of high-abstrac-
tion-level data is optimal for most
context-aware applications. Applica-
tions can subscribe to context change
notifications instead of having to

N umerous studies discuss context extraction in mobile com-

puting, and research exploring wearable-computer context

recognition has used such methods as wearable cameras, environ-

mental audio signal processing, and Hidden Markov Models.1 Exe-

cuting context recognition from multidimensional sensor signals,

for example, combines the benefits of neural networks and Markov

models.2 Processing multiple sensors’ information as multidimensional

context vectors permits extracting and compressing relevant con-

text information using statistical methods.3 Time series segmenta-

tion can be used to extract higher-level context descriptions.4

Context recognition itself is not enough; we must also deliver the

extracted information to the applications in a practical manner.

Context frameworks can facilitate the systematic development of

context-aware applications. The Context Toolkit5 offers one solu-

tion for supporting context-aware application prototyping. Its

design separates context acquisition from use and supports con-

text interpretation, distributed communication, constant context

availability, context storage, and resource discovery. The Context

Toolkit represents one of many ways to approach the context

framework problem.

Researchers have proposed many models for coordinating mul-

tiple interoperating components. Terry Winograd6 divides these

models into three groups—widget, client–server, and blackboard

models—with the latter proposed as an alternative context 

framework model.7 Blackboard architecture is a heritage from AI

research.8

REFERENCES

1. A. Schmidt et al., “Advanced Interaction in Context,” Proc. Int’l Symp.
Handheld and Ubiquitous Computing, LNCS 1707, Springer-Verlag,
1999, pp. 89–101.

2. K. Van Laerhoven and O. Cakmakci, “What Shall We Teach Our Pants?”
Proc. 4th Int’l Symp. Wearable Computers, IEEE CS Press, 2000, pp. 77–83.

3. J. Himberg, J. Mäntyjärvi, and P. Korpipää, “Using PCA and ICA for
Exploratory Data Analysis in Situation Awareness,” Proc. IEEE Conf. Multi-
sensor Fusion and Integration for Intelligent Systems, IEEE CS Press, 2001,
pp. 127–131.

4. J. Himberg et al., “Time Series Segmentation for Context Recognition in
Mobile Devices,” Proc. IEEE Conf. Data Mining, IEEE CS Press, 2001, pp.
203–210.

5. A.K. Dey, G.D. Abowd, and D. Salber, “A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware Applica-
tions,” Human-Computer Interaction, vol. 16, nos. 2–4 (special issue on
context-aware computing), Dec. 2001, pp. 97–166.

6. T. Winograd, “Architectures for Context,” Human-Computer Interaction,
vol. 16, nos. 2–4 (special issue on context-aware computing), Dec.
2001, pp. 401–419.

7. A. Fox et al., “Integrating Information Appliances into an Interactive
Workspace,” IEEE Computer Graphics & Applications, vol. 20, no. 3,
July/Aug. 2000, pp. 54–65.

8. R. Engelmore and T. Morgan, eds., Blackboard Systems, Addison-Wesley,
1988.

Related Work on Context Extraction and
Frameworks



process a continuous flow of low-level
measurement data. Second, communi-
cating low-level data up to a client con-
tinuously consumes more processing
power and, correspondingly, the lim-
ited battery resources. Third, the raw
data flow would quickly fill the history
space reserved for each context type in
the context database. Optimal use of
the context manager therefore requires
defining practices for developing the
sources allowed to add contexts.

U
sing the widely adopted Sym-
bian platform and context
manager data storage capa-
bilities, mobile systems will

soon be able to effortlessly collect real-
world context data from multiple users.
Analyzing the collected data will also
help us develop more reliable, generic
higher-level context recognition engines
capable of delivering more accurate con-
text information to applications. More-
over, the framework will make applica-
tion development itself more systematic
and facilitate reuse of contexts and the
modules that produce them. Creating
real mobile context-aware applications
using the API will validate the approach
and evaluate the framework’s suitability
for different application domains.

REFERENCES
1. R. Engelmore and T. Morgan, eds., Black-

board Systems, Addison-Wesley, 1988.

2. P. Korpipää and J. Mäntyjärvi, “An Ontol-
ogy for Mobile Device Sensor-Based Con-
text Awareness,” Proc. Context ‘03, LNAI
no. 2680, Springer-Verlag, 2003, pp.
451–459.

3. T. Mitchell, Machine Learning, McGraw-
Hill, 1997.

4. P. Korpipää et al., “Bayesian Approach to
Sensor-Based Context Awareness,” Per-
sonal and Ubiquitous Computing J., vol. 7,
no. 4, 2003.

5. J. Pearl, Probabilistic Reasoning in Intelli-
gent Systems, Morgan Kaufmann, 1988.

6. J. Mäntyjärvi and T. Seppänen, “Adapting
Applications in Handheld Devices Using
Fuzzy Context Information,” Interacting
with Computers J., vol. 15, no. 4, 2003, pp.
521–538.

For more information on this or any other comput-
ing topic, please visit our Digital Library at http://
computer.org/publications/dlib.

JULY–SEPTEMBER 2003 PERVASIVEcomputing 51

the AUTHORS

Panu Korpipää is a research scientist at the Technical Research Center of Finland,
VTT Electronics, in the Knowledge Engineering group. His current professional inter-
ests include research for increasing the degree of context awareness in mobile de-
vices and developing visual interfaces for multidimensional data. He received his
MSc in electrical engineering from the University of Oulu and is working toward a
PhD in the Department of Electrical and Information Engineering at the University
of Oulu. Contact him at VTT Technical Research Centre of Finland, VTT Electronics,
P.O. Box 1100, FIN-90571 Oulu, Finland; panu.korpipaa@vtt.fi.

Jani Mäntyjärvi is a senior research scientist at the Technical Research Center of
Finland, VTT Electronics, in the Knowledge Engineering group. His current profes-
sional interests include pervasive and context-aware computing for handheld de-
vices and technologies for adaptive user interaction. He received his MSc in bio-
physics from the University of Oulu and is working toward a PhD in the Department
of Electrical and Information Engineering at the University of Oulu. Contact him at
the VTT Technical Research Centre of Finland, VTT Electronics, PO Box 1100, FIN-
90571 Oulu, Finland; jani.mantyjarvi@vtt.fi.

Juha Kela is a research scientist at the Technical Research Center of Finland, VTT
Electronics, in the Knowledge Engineering group. His research interests include mul-
timodal and mobile interaction. He received his MSc in electrical engineering from
the University of Oulu and is working toward a PhD in the Department of Electrical
and Information Engineering at the University of Oulu. Contact him at VTT Techni-
cal Research Centre, VTT Electronics, PO Box 1100, FIN-90571 Oulu, Finland;
juha.kela@vtt.fi.

Heikki Keränen is a research scientist at the Technical Research Center of Finland,
VTT Electronics, in the Knowledge Engineering group. His research interests include
usability, user interface software, and software engineering. He received his MSc in
information engineering from the University of Oulu and is working toward a PhD
in the Department of Information Processing Science at the University of Oulu. Con-
tact him at the VTT Technical Research Centre, VTT Electronics, PO Box 1100, FIN-
90571 Oulu, Finland, heikki.keranen@vtt.fi.

Esko-Juhani Malm is a research scientist at the Technical Research Center of Fin-
land, VTT Electronics, in the Knowledge Engineering group. His professional inter-
ests include embedded software engineering and pervasive computing. He received
his MSc in electrical engineering from the University of Oulu. Contact him at the
VTT Technical Research Centre, VTT Electronics, PO Box 1100, FIN-90571 Oulu, Fin-
land; juhani.malm@vtt.fi.


