
Managing Design Knowledge to Provide Assistance to
Large-scale Software Development

Peter G. Selfridge Loren G . Terveen M. David Long
AT&T Bell Laboratories AT&T Bell Laboratories AT&T Bell Laboratories
Murray Hill, NJ 07974 Murray Hill, NJ 07974
pgs@research.att.com terveen @ research.att.com mdlong @ ihlpb.att.com

Naperville, Il. 60566

Abstract

Developing and maintaining large sofhvare systems is
notoriously dimcult and expensive. One source of
dificulty is that such projects involve large amounts of
disparate knowledge about the domain, the hardware
platform, the existing sofhvare architecture, the technical
personnel and resources, etc. A critical problem is that a
great deal of relevant knowledge is ‘yolklore”: it is not
documented and remains accessible only through human
experts. We propose to use knowledge-based technology
to manage this kind of knowledge to increase productivity
and product quality. To do so, we address three central
issues. First, knowledge must be acquired from human
experts. Second, the knowledge must be adequately
represented and made accessible to users. Third, and most
important, the knowledge must be maintained: just as
code evolves, so will this knowledge. This paper addresses
these issues in the context of providing relevant advice to
developers during sofhvare design. It then describes an
implemented design knowledge tool, augmenting an
existing organizational design process, that provides such
advice about a limited domain for a large-scale software
development project.

1. Introduction

Large-scale software development is a complex
engineering activity with some unique attributes. First of
all, the nature of the final product is fundamentally
different from physical design artifacts 141. Software is
more complex at a component level, more difficult to
visualize, and is significantly more malleable, both during
initial development and subsequent maintenance. Second,
this capability for change leads to demands for new
functionality, which in turn leads to the need for continual
maintenance of the product; this maintenance looks much
more like on-going development than maintenance of, say,
a bridge. Third, it is a newer and less mature discipline
than others, and thus its notations, conventions, and
common practice for software development are less
developed. This also applies to the practice of managing
large software projects.

These factors contribute to making the process of
software design (in this paper, we are concemed with
large-scale software design) significantly more complex
and difficult than other engineering design tasks. For
example, consider a large body of software that controls a
telecommunications switch. Such software has a multitude
of interdependent functions: it allows people to make
normal phone calls, provides dozens or hundreds of
special telecommunications features, supports billing, and
includes numerous components that make the system
more fault-tolerant. Now consider the process of adding
new functionality to the existing software, or designing
changes to fix a bug or restructure the existing code. The
success of this process will depend on taking into account
numerous general design constraints, only partly reflected
by the existing code. These general constraints may reflect
real-time considerations, intemal resource limitations, and
personnel and logistics knowledge. Rarely are such
constraints written down, partly because they are hard to
capture and also because they are very likely to evolve as
the system changes.

This paper identifies the problem of managing design
knowledge as a crucial component in a large-scale
software development project. We explore this design
knowledge problem in more detail, describe both technical
and non-technical challenges, discuss the maintenance of
such knowledge, and briefly explore the issue of
acquisition. We then describe a framework for providing
knowledge-based assistance to software developers. This
framework is integrated with and extends an existing
design process and exploits that process to address the
problem of knowledge maintenance. Then, we present an
implemented design knowledge tool instantiating our
framework that gives software developers access to
knowledge about a particular error handling mechanism.
We describe the organization of the knowledge and the
design of the interface. Finally, we discuss the status of
the implementation, areas for future work, and conclude.

2. General Design Knowledge for Software
Development

We recently began a collaboration with a large software
development organization in AT&T. This organization

163
0-8186-2880-4/92 $03.00 Q 1992 IEEE

Authorized licensed use limited to: University of Minnesota. Downloaded on April 8, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

mailto:pgs@research.att.com
http://research.att.com
http://ihlpb.att.com

consists of several thousand people whose job it is to
maintain and enhance a large telecommunications
software system. An important part of the software
development process is the design process. This process
starts with a specification document, originating from
either a customer request or an internal source. This
specification document describes a new feature of the
software in customer (behavioral) terms. This document is
used by a software developer to produce a design
document, which describes how that new feature will be
implemented and added to the existing software
architecture. This design document is then formally
reviewed by a committee of experts. If necessary,
feedback is incorporated into the design and the process
iterates. Once the design document is complete and
approved, it is passed to a coding phase. This process is
shown in figure 1:

(Coding)
Figure 1 : The Design Process

One major problem in the design process is the lack
of accessible general design knowledge. This knowledge
involves such things as real-time constraints (“one real-
time segment shouldn’t take more than 200 milliseconds
or overall performance will suffer”), knowledge of the
current implementation (“the terminating Terminal
process is already close to its memory limitation, so you
can’t add much to it”), knowledge of local programming
conventions (“call the central error reporting mechanism if
you get a bad message”), and personnel and organization
(“ask Nancy about that; she knows about local stack
space”). (These examples of general design knowledge are
diverse and informal, and this has some implications for
our approach. In particular, these examples do not easily
lend themselves to formal representation. They can,
however, be disseminated by a computer-based tool if
acquisition and maintenance issues can be addressed.)
This kind of knowledge usually is not written down,
rather, it is part of the organizational “folklore” that is
maintained and disseminated by experienced individuals
in the organization. This form of knowledge maintenance
and dissemination is unsatisfactory: not only are experts
difficult to locate when needed, but an individual must
know who the expert is for their particular problem. In
addition, expertise shifts among individuals over time; and
experts can spend more time disseminating knowledge
that solving problems relevant to their jobs. The failure of

individuals to get access to appropriate design knowledge
can result in incomplete designs, long delivery times,
personal frustration, and a final product which is sub-
optimal. We refer to this as the problem of managing
design knowledge, and it is this problem we are trying to
address.

AT&T has been aware of these problems for some
time and has taken several steps to alleviate them. The
first was to institute a number of quality initiatives to
improve the overall software development process. The
process was streamlined and a series of guidelines
developed to specify the steps and milestones in the
process. While substantially improving the process, these
changes do not address the problem of managing design
knowledge. (However, this did signal a willingness on the
part of the organization to change its way of doing work
and alerted us to the opportunities this project addresses.)

The second step taken by the organization was to try
to document as much design knowledge as possible in
structured text files. This approach is inadequate for three
reasons. The first is the acquisition and representation
problem: the amount of such knowledge is large, so
capturing it is tedious and time-consuming. It also is
unclear how to organize or index this knowledge. The
second is the access problem: without adequate indexing,
the resulting information base is simply too large to be
very useful (busy people, including software developers,
will not read large documents that are not immediately
relevant to their current task). Finally, there is the
maintenance problem: the knowledge will change over
time, just like the code of the system, and must be
maintained if it is to remain useful.

These three problems represent the technical
challenges to building a design knowledge tool. The other
primary challenge is organizational: designing such a tool
so that it can be integrated successfully with the current
organizational processes. Such integration is surprisingly
complicated; often, non-technical considerations are more
difficult to overcome [lo]. Individuals must use the tool
consistently and successfully to gain the embedded
knowledge. Then they have to incorporate this knowledge
into their designs (the fundamental purpose of the tool is
to produce better software designs); optimally, there
should be an organizational method for encouraging tool
use and checking whether the tool was used and the advice
followed. In addition, exceptions and modifications to the
advice need to be captured, both for maintenance and to
assure credibility with the developers. Finally, the
maintenance issue is a critical one: improperly maintained
knowledge will, rightfully, go the way of improperly
maintained documentation.

3. A Framework for Providing Knowledge-
Based Assistance

Our first approximation of a framework for providing
knowledge-based assistance supposes the existence of a
design knowledge base, somehow acquired and adequately

I64

Authorized licensed use limited to: University of Minnesota. Downloaded on April 8, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

represented and indexed. Then, we suppose a design
assistant program that provides access to the knowledge
base, following the general paradigm of interactive
software assistance for different phases of software
development [161. Our framework assumes the design
assistant augments an existing, informal process, and
provides informal advice for the user. It is the user's
responsibility to follow the advice or explain why the
advice does not apply to his or her design. This contrasts
with a design assistant that plays a more central role and
provides advice about specific designs [20]. Similarly,
attempts to formalize design artifacts through the use of
knowledge-based tools [l, 11, 12, 141 are complementary
to our approach. The augmented software design process
is shown in figure 2:

I

Design Document

Design Assistant 0 4
I Design Knowledge Base 1

Figure 2: Design process with Knowledge-based
assistance added

However, this framework has a fundamental flaw: it
would be adequate only if all relevant design knowledge
could be captured completely, once and for all. This is
clearly an unlikely and unrealistic assumption. As Clancey
states particularly well [6], a knowledge base is always

subject to additional refinement and re-interpretation.
More important, the world changes: the software base
changes (indeed, this is the goal of the design activity), the
hardware and software technology changes, protocols and
conventions change, customer requirements change, and
all the other assumptions and constraints are subject to
continual, if slow, evolution. This places some additional
requirements on our framework: in particular, that it
support (1) the elaboration and evolution of design
knowledge as the tool is used and evaluated; and (2) the
addition of new knowledge generated during design
activities.

To support the first requirement, we record a trace of
user interactions with the Design Assistant and annotate
the Design Document with this trace. This allows those
aspects of the design that were influenced by the advice to
be traced during design review. In addition, we modify the
review process slightly to make the advice itselfan object
of review. To support the second requirement, note that
the problem is not to produce new knowledge, but rather
to ensure the new knowledge already generated during
normal design and review activities is captured in the
knowledge base. We do this in two ways. First, we modify
design documents further by allowing designers to note
new knowledge they would like to see added to the
knowledge base. Second, we add a knowledge base
maintenance activity to the design process. This activity
takes as input the annotated design document and reviewer
comments and generates changes or updates to the design
knowledge base. The knowledge base maintenance
process is responsible for integrating into the knowledge
base the new knowledge produced during design,
including designerheviewer disagreements with or
modifications of information already in the knowledge
base. Figure 3 shows the complete framework.

Annotated Design Document
I I I

base
1s

Figure 3 Design process with design assistance and knowledge base maintenance

165

Authorized licensed use limited to: University of Minnesota. Downloaded on April 8, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

To summarize this framework, the design knowledge
base contains information relevant to design tasks in the
application domain. As developers design, the design
assistant program helps them to access relevant
knowledge. The result of the design process includes the
design document, suggestions the developer may have for
updates to the design knowledge base, and a trace of the
interactions of the developer with the design assistant. At
the review, reviewers examine the design and identify
issues, some of which result from the advice of the design
assistant. Such issues lead to (proposals for) modifications
of the design knowledge base, for example, exceptions to
rules or counter-arguments in a design rationale structure
[l, 141. Other issues lead to (proposals for) additions of
new knowledge to the knowledge base. All proposals for
modifications and additions to the knowledge base that are
generated during design and review are collected and sent
to a knowledge base maintainer. The knowledge base
mainrainer interacts with a maintenance assistant program
- a knowledge acquisition tool tailored to the design
knowledge base - to update the knowledge base,
integrating the new design and any additional knowledge
generated during design and review.

4. The Design Knowledge Tool

We have designed and implemented a design knowledge
tool using the above framework and have integrated this
tool into the design process of the software organization.
Our f is t step was to identify a sub-domain of general
software design knowledge in which to test our framework
and approach. The sub-domain we chose was that of a
particular error handling mechanism. This mechanism is
part of a multi-layered system of error detection and
handling procedures which is critical to the system’s fault-
tolerance. This error handling mechanism is used if the
code being designed ever reaches an illegal state. The
mechanism is implemented in the code as a macro call
with a number of arguments. These arguments have
various effects on the system. For example, one choice of
one argument causes a so-called “selective initialization”,
initializing the processor that is running the process. Other
arguments cause the dumping of different kinds of data
needed to diagnose the problem or schedule a data-
checking audit. Thus, after the user has decided to use this
error mechanism, he or she then has to make a series of
decisions about exactly how to invoke it. Some of these
decisions are quite complicated and interact in various
ways.

This domain, while limited, still has the following
imDortant features. First, it is a difficult domain:

These experts disseminate this information in a frustrating
and inefficient manner, i.e., one-to-one communication
with individual developers. Third, the domain has some
underlying structure that could be used to advantage; i.e.,
the knowledge is more than a collection of ad-hoc rules.
Finally, numerous discussions with software developers
convinced us that this domain is very typical in all of these
respects, and that many other domains within the
organization share these problems.

Once the domain was chosen we spent dozens of
hours interviewing the local domain experts about the
knowledge needed to use this mechanism and studying the
written documentation that did exist. We took a set of
existing examples of this mechanism in the current code
base and asked the experts to categorize these examples in
terms of designproblems. This is a very important
abstraction step because tool interaction must be in terms
that are familiar to the designer, rather than syntactic
features of the construct. Presumably designers won’t be
familiar or comfortable with the latter vocabulary, since it
is precisely this they are getting help about.

After several false starts, we succeeded in generating
a small number of design problems with almost complete
domain coverage. We then distilled the information
needed to use the error handling mechanism into a small
number of decisions. Each decision could be expressed as
a succinct question with a small number of answers; for
example: “What macro will be used, macro A, B1, B2,
B3, C or D?’ Then, for each design problem, we elicited
from the domain experts advice about how to address each
decision needed to use the error handling mechanism. For
example, for a “bad parameter problem”, how does one
decide which macro to use? This may depend on whether
the bad parameter is from a function call or a message and
on the severity of the error. The experts’ advice was
distilled into small units of text that we call advice items.
We indexed individual advice items by both problem and
decision to create a problenddecision grid illustrated in
figure 4:

DECISIONS

PR(3BLEMS

programmers typically do not know when to use this /
mechanism, how to use it, or even how to find out about
it. This is especially true of novices in the organization,
but even experienced developers commonly mis-apply the
construct. (In fact, many of the existing uses in the code
base are incorrect.) Second, there do exist local experts
who have extensive knowledge about this mechanism.

Advice Item
Figure 4: Problem/Decision grid

This graphical representation leads to an interesting
observation that impacts the possible representation and
organization of advice items in a knowledge base.

I66

1 I !

Authorized licensed use limited to: University of Minnesota. Downloaded on April 8, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

Consider the situation where the advice is the same for all
design problems, shown by the dark column in figure 4.
Instead of having identical advice items for each problem
we can remove this redundancy by grouping the
associated problems into a new problem category and
associating a single advice item with all of the problems of
that category. This is especially appropriate when the
advice holds over all design problems, as shown by the
dark column. Grouping problems based on the
commonality of their advice items is an appealing idea
and suggests a problem hierarchy based on this
commonality. Using a formal knowledge representation
[2, 31 this structure can be represented as a classification
or description hierarchy, where a problem description at
higher levels subsumes a lower level description. For
example, the problem description “Data Problem” might
subsume both “Bad Function Parameter Problem” and
“Bad Value in Message Field Problem”. Then, advice
items can be associated with either a leaf in the hierarchy
(an individual problem) or an internal node in the
hierarchy, indicating the applicability of that advice item
to all subsumed problems. We discovered some hidden
structure in our problem set through the commonality of
advice and structured our problem set appropriately.

In addition, consider a situation where an advice item
holds over every problem but one, shown by the lighter
column in figure 4. Instead of splitting the “exception”
problem into a separate class, we can instead introduce the
idea of “overriding advice” to handle these cases. That is,
we can add an advice item to a node in the problem
hierarchy and label it as overriding. What this means is
that any advice items associated with any parents of this
node and indexed by the same decision are suppressed in
favor of this new, more specific item. This mechanism for
overriding both further reduces redundancy and makes
explicit the notion of “exception” advice, which we found
relatively common in our domain.

Finally, we added three more fields to our
representation of advice, The first responded to the
observation that the advice elicited from the experts
tended to come in one of several priority classes. For
example, some advice was critical to a particular problem
and decision, for example, which macro to use. On the
other hand, some advice was general, background
knowledge and thus secondary in importance. We use
these priorities to order the output of the tool so that
primary advice is presented first and secondary advice is
presented second, serving to highlight the primary advice.
Second, we added an advice identification number. This
number is used in maintenance so that an individual
advice item can be referred to by a distinct number. Third,
we also added an explicit advice item owner, which we
discuss later. The representation of an advice item is now:

Advice-item:
advice: STRING
problem: PROBLEM
decision: DECISION
override: {TRUE, FALSE)
priority: {PRIMARY,

SECONDARY }
id: INTEGER
owner: STRING

During execution the tool runs the following general
algorithm, where A(P) is the set of advice items associated
with problem P, Decision(A) is the decision associated
with Advice Item A, and the hierarchy is rooted at
THING:

For each design problem P
ask whether the user’s design
anticipates this problem;
if yes

AdviceSet = NULL;

go up the problem hierarchy and examine all possibly
relevant advice; add new advice that is not overridden by
more specific advice

while P f THING
for each AdviceItem A in A(P)
unless there exists A’ in Adviceset
such that Decision (A) =
Decision (A’)

P = PARENT (P);
put A in Adviceset;

order advice according to the priority and output

OrderB ypriority (Adviceset);
OuputAdvice (Adviceset);

In summary, advice items are represented as
structured objects with a number of fields. The actual
advice is a text string. Two fields index the advice: the
Problem and the Decision fields. The Problem field
associates the set of advice with a Problem Hierarchy such
that the advice associated with a node applies to all
problems subsumed by that node’s Problem. The decision
field is used to group related advice to see if an override
situation exists. When a user indicates a problem is
relevant to his or her design, all possible advice items are
examined. More specific advice in the Problem Hierarchy
may complement or override more general advice. The
final set of advice items is ordered by priority and
presented to the user.

Having described the acquisition and representation
of the knowledge in the tool, we now briefly discuss
issues of access and maintenance.

One of the interesting constraints put on this project at
the beginning concerned the interface. Because of the

I67

Authorized licensed use limited to: University of Minnesota. Downloaded on April 8, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

wide variety of terminals used within the target
organization, it became clear that the tool should be
ASCII-based, i.e., not depend on any specific window or
platform features. For this reason we designed both the
appearance of the tool and the interaction with the tool to
be as simple as possible. When the tool is run, it asks a
few introductory questions to identify the user and the
design under consideration. It then gives the user several
high-level options to choose from. One option begins a
dialog with the user about his or her design. It asks a
series of yesho questions about the design, such as: “Does
your design anticipate a situation where local and global
parameters will become unsynchronized?” If the user
responds “yes” to a question, the system will output a
formatted list of advice about how to use the error
checking mechanism for this situation. The list is grouped
by decision and by priority, and is usually about half a
page in length. (We also use the size of the screen, both
the line length and the number of lines, to format the
output properly and control a simple paging mechanism
that keeps the advice on the screen until the user is ready
to see more.) Finally, when the user is done, the tool asks
some simple evaluation questions and gives the user a
chance to enter some comments and suggestions about his
or her interaction with the tool.

We discussed the overall issue of maintenance in
section 3; here, we summarize and make a few more
comments. The output of the tool is a script of the
interaction with the user. This script is added to the formal
design document for two reasons. First, the advice
becomes part of the document and will get reviewed
during the formal review process. The reviewers will have
a chance to make sure that the software developer either
followed the advice of the tool or determined that his or
her situation was an exception to the situation anticipated
by the tool - the exception itself is worth noting,
discussing and acquiring. Second, the advice itself can be
reviewed, and changes and modifications can be directed
to the maintenance process illustrated in figure 3.

5. Discussion

This paper is about managing design knowledge to
provide knowledge-based assistance for software
development. It describes the problem of providing
general design knowledge to individual software
developers and maintaining that knowledge in an
organizationally effective way. After acquiring design
knowledge about the use of a specific error-handling
mechanism, we represented that knowledge by creating a
taxonomy of design problems and associating advice
items with nodes in that taxonomy. The taxonomy
removes redundancy and facilitates an advice exception
mechanism. This knowledge base is accessed by a design
assistant program which asks the user questions about his
or her design and provides advice as textual output.
Maintenance is addressed by having the design advice

reviewed as part of the design itself, using an existing
organizational process.

This tool has been implemented and tested at AT&T
and has been initially deployed as part of AT&T’s
software development process. This means that all
developers involved in software design in one particular
large organization use this tool as part of their software
development activities. We anticipate a good deal of
feedback during the early phases of use. However, we
have already tested the tools with a number of individuals
in the following way. We created a realistic software
design problem and asked people to write a section of
design involving the error handling mechanism. They used
the tool to get advice on how to do so. Their reaction was
highly favorable; in some cases, it was asserted that the 20
minutes spent using the tool saved from 4 to 8 hours of
their time! The reason for this is that the only other way to
find out the knowledge presented by the tool would have
been to track down the local experts or search through
large documents, both notoriously time-consuming
activities.

This tool will provide several benefits. First, the
designs produced by software developers will be of
higher-quality: the tool’s advice will enable developers to
know when to choose the error handling construct and use
it properly. A related but less tangible benefit is lowering
the frustration of developers when trying to find out
information. Now, instead of trying to track down a local
expert or wade through volumes of written or on-line
documentation, the tool gives developers a focused, single
source of knowledge. In addition the review process itself
will be streamlined. Currently, a developer scheduling a
review tends to try to get all potentially relevant human
experts to attend this review. This scheduling can often
take weeks. Because the tool will guarantee that the
developer has at least been exposed to guidelines on error
handling, some experts will no longer be required, and
scheduling the review will be easier. Finally, demands on
the experts’ time will decrease. All of these benefits are
especially important in very large organizations, where
even a small process improvement can make a big
difference to organizational output.

The key to the success of a tool of this kind is
maintenance. We have taken a number of steps to assure
that the maintenance issue is addressed. First of all, we
designed the tool with maintenance in mind; thus the
representation of the knowledge facilitates maintenance.
Redundancy is minimized and because each advice item
has a unique identifier and an owner, questions or
proposed modifications can be intelligently resolved, i.e.
directed to the right person. Second, we have addressed
the integration of this tool with current practice in such a
way that the output of the tool, and thus the knowledge
base itself, is reviewed.

Our tool and approach is consistent with other
approaches to introducing knowledge-based technology to
support software development. For example, the idea of a
“knowledge-based software assistant” [9, 161 proposes

I68

Authorized licensed use limited to: University of Minnesota. Downloaded on April 8, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

that automation play a supportive role in development; it
also suggests that different knowledge-based assistants
support different phases of software development
(although coordinated through a central repository or
project management database). Our tool has exactly this
flavor, but it is somewhat narrower in scope than other
projects such as the Requirements Assistant [151, the
ARIES project [l l l , and the KBSA Concept Demo [5].
However, it is also deeper in the sense that it both tackles
a real-world domain and addresses the issues of
integrating tool use with current organizational practice.
Our tool currently is oriented towards providing direct
advice for the use of a limited but important code
construct as part of the software design process; it does
not assist in general software design. We anticipate
looking at the problem of general design assistance, as
others have done 18, 17, 18, 19,201.

We have several plans for the future. First of all, we
are exploring the application of our general framework to
other software development problems within AT&T. One
aspect of our approach which enhances its generality is
that the nature of an “advice item” is not constrained: as a
small piece of text, it can contain technical advice,
suggestions to run another tool or investigate another
source of information, or even a suggestion to go talk to a
specific individual! In general, we anticipate various
knowledge-based advice tools within the software
development process. Second, the issue of an adequate
maintenance tool will become more and more important as
our current knowledge base needs maintenance and as the
technology gets used more within the software
development organization. A variety of issues arise in
designing such a tool. First of all, given that the purpose
of such a tool is to add, remove, or modify knowledge, the
knowledge must be both modular and highly connected to
the context to which it is relevant. This means the tool
must support both the modification of knowledge as such
and also the “editing” of its context. For our tool, a
maintainer must be able to change the binding of a piece
of advice to a position in the problem hierarchy, and easily
add new advice and manipulate the priority and overriding
fields of existing advice items.

Envisioning the existence of multiple tools such as
ours raises some other difficult issues of maintenance and
coordination. It will almost certainly be the case that
knowledge within one tool will be relevant to the domains
of other tools; i.e., they will not be fully separable.
Keeping multiple knowledge bases synchronized and up-
to-date is similar to the analogous problem in databases
[7]. Sharing knowledge, either in a distributed fashion or
through a central repository, is a difficult problem which
we anticipate addressing in the future.

6. Conclusions

We have identified the crucial problem of managing
design knowledge in large scale software development;

described a particular approach to this problem; and
presented an implemented tool for solving this problem in
one particular domain. The solution involves acquiring
and representing design knowledge, providing appropriate
access to the knowledge for those who need it, and
ensuring that the knowledge is adequately maintained. Our
approach emphasizes providing design advice to humans
at appropriate times; in order to do this, we had to both
integrate the tool with the existing software process and
present the advice in an appropriate way. Maintenance of
the knowledge is facilitated by the underlying
representation and its integration with an existing
organizational review process.

7. References
1.

2.

3.

4.

5 .

6.

7.

8.

Bailin, S.C., Moore, J.M., Bentz, R., andM. Bewtra,
KAPTUR: Knowledge Acquisition for Preservation
of Tradeoffs and Underlying Rationales, Proceedings
of the 5th Conference on Knowledge-Based Software
Assistant, pp. 95-104, 1990.

Borgida, A., Brachman, R.J., McGuinness, D.L, and
L. A. Resnick, CLASSIC: A Structural Data Model
for Objects, Proc. 1989 ACM SIGMOD Int’l. Con$
on Management of Data, 1989.

Brachman, R.J., McGuinness, D.L., Patel-Schneider,
P.F., Resnick, L.A., and A. Borgida, Living with
CLASSIC: When and How to Use a KL-ONE-Like
Language, in: Formal Aspects of Semantic Networks,
J. Sowa, Ed., Morgan Kauffman, 1990.

Brooks, F.P., No Silver Bullet: Essence and Accidents
of Software Engineering, ZEEE Computer Magazine,
April, 1987.

Cabral, G. and M. DeBellis, Domain-Specific
Representations in the KBSA Concept Demo,
Proceedings of the 6th Annual Knowledge-Based
Software Engineering Conference, Syracuse, NY.
September 1991, pp. 97-106.

Clancey, W., The Frame of Reference Problem in the
Design of Intelligent Machines. In van Lehn, K., ed.
Architectures for Intelligence: The Twenty Second
Carnegie Symposium on Cognition, Lawrence
Erlbaum Associates, 1991.

Elmasri, R. and S.B. Navathe, Fundamentals of
Database Systems, Benjamin-Cummings, 1989.

Fischer, G., Grudin, J., Lemke, A., McCall, R.,
Ostwald, J.., & Shipman, F. 1991. Supporting
Asynchronous Collaborative Design in Integrated
Knowledge-Based Design Environments.
Department of Computer Science, University of
Colorado.

169

Authorized licensed use limited to: University of Minnesota. Downloaded on April 8, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

9. Green, C., Luckham, D., Balzer, R., Cheatham, T.,
and C. Rich, “Report on a Knowledge-Based
Software Assistant”, Rome Air Development Center
report RADC-TR-83-195, August 1983.

10. Grudin, J. 1988. Why CSCW Applications Fail:
Problems in the Design and Evaluation of
Organizational Interfaces. CSCW-88.85-93.

11. Johnson, W.L., Feather, M.S., and D.H. Harris, The
KBS A Requirements/Specification Facet: ARIES,
Proceedings of the 6th Annual Knowledge-Based
software Engineering Conference (Syracuse, NY.
September 1991), pp. 57-66.

12. Mark, W., & Schlossberg, J. 1990. Interactive
Acquisition of Design Decisions. Proceedings of the
5th Knowledge Acquisition for Knowledge-Based
Systems workshop. Banff, Canada.

13. Musen, M.A., Conceptual Models of Interactive
Knowledge Acquisition Tools, K n o w l e d g e
Acquisition 1: 73-88, 1989.

14. Ramesh, B. and V. Dhar, Representation and
Maintenance of Process Knowledge for Large Scale
Systems Development, Proceedings of the 6th Annual
Knowledge-Based Software Engineering Conference
(Syracuse, NY, September 1991), pp. 223-231.

15. Reubenstein, H.B. and Waters, R.C., The
Requirements Apprentice: an initial scenario,
Proceedings of the 5th International Workshop on
Software Spec@cation and Design (Pittsburg, Penn.,
May 19-20, 1989) In ACM SIGSOFT Engineering
Notes 14(3), May 1989.

16. Rich, C.H., & Waters, R.C., The Programmer’s
Apprentice. Addison-Wesley, 1991.

17. Silver”, B.G. and T.M. Mezher, Expert Critics in
Engineering Design: Lessons Learned and Research
Needs, AAAl Magazine, Spring, 1992.

18. Terveen, L.G. 1992. Intelligent Systems as
Cooperative Systems. In Thomas, P., Ed. Special
Issue of the International Journal of Intelligent
Systems on The Social Context of Intelligent Systems.
(forthcoming).

19. Terveen, L.G., & Wroblewski, D.A. 1991. A Tool
for Achieving Consensus in Knowledge
Representation. Proceedings of AAAI-91, pp. 74-79,.
1991

20. Waters, R.C. and Y.M. Tan, Toward a Design
Apprentice: Supporting Reuse and Evolution in
Software Design, submitted to the 1991 IFIP TC2
Working Conference on Constructing Programs from
Specifications.

I70

Authorized licensed use limited to: University of Minnesota. Downloaded on April 8, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

