
Managing Distributed Applications Using Gush

Jeannie Albrecht and Danny Yuxing Huang

Williams College, Williamstown, MA

Abstract. Deploying and controlling experiments running on a distributed set
of resources is a challenging task. Software developers often spend a significant
amount of time dealing with the complexities associated with resource configu-
ration and management in these environments. Experiment control systems are
designed to automate the process, and to ultimately help developers cope with
the common problems that arise during the design, implementation, and evalua-
tion of distributed systems. However, many of the existing control systems were
designed with specific computing environments in mind, and thus do not provide
support for heterogeneous resources in different testbeds. In this paper, we ex-
plore the functionality of Gush, an experiment control system, and discuss how it
supports execution on three of the four GENI control frameworks.

1 Introduction

As network technologies continue to evolve, the need for computing testbeds that allow
for experimentation in a variety of environments also continues to rise. In recent years,
there has been significant growth in the number of experimental facilities dedicated to
this purpose around the world, including GENI in the U.S. [1], FIRE in Europe [2],
AKARI in Japan [3], and CNGI in China [4]. These testbeds play a crucial role in the
development of the next generation Internet architecture by giving researchers a way to
test the performance of new protocols and services in realistic network settings using
diverse resources.

While these new testbeds offer many benefits to developers with respect to experi-
mentation capabilities, they also introduce new complexities associated with managing
computations running on hundreds of computing devices worldwide. For example, con-
sider the task of running an experiment on one of these testbeds, which involves first
installing the required software and then starting the computation on a distributed set
of resources. When running a computation on a single resource, it is trivial to down-
load any needed software and start an execution. However, ensuring that hundreds of
devices are configured correctly with the required software is a cumbersome task that is
further complicated by the heterogeneity—in terms of both hardware and software—of
the resources hosting the experiment. Similarly, starting a computation requires syn-
chronizing the beginning of the execution across a distributed set of resources, which
is especially difficult in wide-area settings due to the unpredictable changes in network
connectivity among the resources involved in the experiment [5].

In addition to configuration and deployment, there are many other challenges in-
volved with keeping an experiment running in distributed environments, such as failure
detection and recovery. In experiments that only involve a single resource, monitoring

T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 401–411, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011



402 J. Albrecht and D.Y. Huang

an execution and reacting to failures typically consists of watching a small set of pro-
cesses and addressing any problems that arise. In experiments involving distributed ap-
plications, monitoring an execution consists of watching hundreds of processes running
on resources around the world. If an error or failure is detected among these processes,
recovering from the problem may require stopping all processes and restarting them
again. The difficulties associated with these tasks are frustrating to developers, who end
up spending the majority of their time managing executions and coping with failures,
rather than developing new optimizations for increased application performance.

Experiment control frameworks are often used to alleviate the burdens associated
with installing and executing software in distributed environments. They are designed
to simplify the tasks associated with software configuration, resource management, fail-
ure detection, and failure recovery. However, many of these frameworks are designed
with a single execution environment in mind, and thus are not adaptable to other envi-
ronments with different resources. This limitation reduces the overall usefulness of the
framework, and restricts its use to a single deployment platform. Further, as computers
become more ubiquitous and the diversity of network-capable computing devices con-
tinues to grow, there is an increasing need for extensible management frameworks that
support execution and experimentation in a variety of environments.

In response to the limitations of other application management frameworks, we de-
veloped Gush [6], an experiment control system that aims to support software config-
uration and execution on many different types of resources. Gush leverages prior work
with Plush [7,8], and is being developed as part of the GENI project. Gush accom-
plishes experiment control through an easily-adapted application specification language
and resource management system. The resource management system abstracts away the
resource-specific details and exports a simple, generic API for adding and removing re-
sources from an application’s resource pool. The Gush resource matcher then uses the
resources in the resource pool and the application’s requirements as defined in the ap-
plication specification to create a resource matching.

In this paper, we summarize the basic operation of Gush, with an emphasis on Plan-
etLab [9] resource management and experiment configuration in Section 2. In Section 3,
we examine how the Gush resource matcher interacts with different types of resources
in GENI (in addition to PlanetLab) to construct valid matchings and run experiments in
two other GENI control frameworks: ORCA [10] and ProtoGENI [11]. We then discuss
related work in Section 4. The fourth GENI control framework, ORBIT [12], focuses on
wireless resources, which are currently not supported by Gush. In Section 5 we discuss
how Gush can be extended to support execution in this environment and other wireless
environments as well, and make general conclusions.

2 PlanetLab Application Management with Gush

Before discussing how Gush provides support for various types of resources, we first
summarize the basic operation of Gush. The purpose of this section is to provide a
high-level overview of how Gush works in a typical usage scenario. The design and
implementation of Gush greatly leverages our previous work with Plush; however, this
paper focuses on GENI-specific extensions to Gush. A detailed discussion of the design



Managing Distributed Applications Using Gush 403

and implementation of Plush can be found in [7]. It is important to note that Gush
and Plush were both initially designed for the PlanetLab control framework, and the
performance and operation of both systems on PlanetLab is largely the same. Thus, this
section uses experimentation on PlanetLab as a motivating example. In the next section
we discuss how Gush also supports other GENI control frameworks.

Gush is an experiment control framework that aims to simplify the tasks associ-
ated with the development, deployment, and maintenance of software running on a
distributed set of resources. The two main components in the Gush architecture are the
controller and the clients. The Gush controller process is responsible for managing the
Gush client processes running on the distributed resources. The controller process is
often run on the desktop computer of the Gush user (i.e., the software developer).

The main role of the controller is to receive and respond to input provided by the user
and guide the flow of execution on the clients. The clients are lightweight processes
that run on specified ports on each resource involved in an experiment. When starting
an execution, the controller initiates a separate TCP connection to each client process
creating a communication fabric. For the remainder of the execution, the controller
sends messages to the clients via the fabric instructing them to run commands and start
processes on behalf of the user. The clients also periodically send the controller updates
regarding their individual status or in response to failures. Using these status updates,
the Gush controller can construct a single, global view of the progress of an experiment.

To manage an experiment using Gush, the user must provide the Gush controller
with two pieces of information: an application specification and a resource directory.
We discuss each of these components in detail in the following subsections.

2.1 Describing an Experiment in Gush

The application specification is an XML file that describes the flow of control for the ex-
periment. In Gush, these are described using a set of “building block” abstractions that
describe the required software packages, processes, and desired resources. The blocks
can be arbitrarily combined to support a range of experiments in different environments.

Figure 1 shows a sample application specification for a very basic experiment. Start-
ing at the top of the XML, we define the software required for our experiment. The soft-
ware definitions specify where to obtain the required software, the file transfer method
as indicated by the “type” attribute for the package element, and the installation method
as indicated by the “type” attribute of the software element. In this particular example,
the file transfer method is “web” which means that a web fetching utility such as wget
or curl is used by the Gush clients to retrieve the software package from the specified
URL. The installation method is “tar.” This implies that the software.tar package has
been bundled using the tar utility, and installing the package involves running tar with
the appropriate extraction arguments.

Moving to the next main section in the XML, we define our experiment’s component.
This is essentially a high-level description of our desired resources. Each component is
given a unique name, which is used by the component blocks later to identify which set
of resources should be used. Next, the “rspec” element defines “num hosts,” which is
the number of resources required in the component. The “software” element within the
component specification refers to the “SimpleSoftwareTarball” software package that



404 J. Albrecht and D.Y. Huang

<?xml version="1.0" encoding="utf-8"?>
<gush>

<project name="simple">
<software name="SimpleSoftwareTarball" type="tar">

<package name="Package" type="web">
<path>http://sysnet.cs.williams.edu/˜jeannie/software.tar</path>

</package>
</software>
<component name="GENIMachines">

<rspec><num hosts>20</num hosts></rspec>
<software name="SimpleSoftwareTarball" />
<resources>

<resource type="planetlab" group="williams_gush"/>
<resource type="gpeni" group="gpeni_gush"/>
<resource type="max" group="maxpl_gush"/>

</resources>
</component>
<experiment name="simple">

<execution>
<component block name="compBlock1">

<component name="GENIMachines" />
<process block name="procBlock1">

<process name="catProc">
<path>cat</path>
<cmdline><arg>software.txt</arg></cmdline>

</process>
</process block>

</component block>
</execution>

</experiment>
</project>

</gush>

Fig. 1. Gush application specification that is used to manage an experiment on 20 GENI resources.
This trivial example simply runs “cat software.txt” on each resource.

was previously defined. Lastly, the “resources” element specifies which resource group
the Gush controller will use to create a resource matching. In this case we are interested
in 20 hosts from one of three GENI resource aggregates (all part of the PlanetLab con-
trol framework): PlanetLab [9], GpENI [13], and MANFRED (or MAX) [14]. Specif-
ically, we want to use hosts assigned to the williams gush, gpeni gush, or maxpl gush
slices.

Finally, we define the experiment’s execution using XML, and specify which com-
ponent we want to use. Our simple example contains one component block that maps
to our previously defined component comprised of 20 PlanetLab, GpENI, and MAX
machines, and one process block consisting of a single process. This process runs the
Unix command “cat software.txt” on each of our machines and then exits. (Note that
software.txt is contained in software.tar.) More complicated executions are described in
a similar fashion. Examples can be found on the Gush website [6].

2.2 Constructing a Resource Pool

In addition to the application specification, the user must also provide Gush with a
resource directory. The resource directory is used to define resource pools in Gush,
which are simply groupings of resources that are available to the user and are capable



Managing Distributed Applications Using Gush 405

of hosting an experiment. The simplest way to define a resource directory in Gush is by
creating another XML file (typically called directory.xml) that lists available resources.
This file is read by the Gush controller at startup, and internally Gush creates a Node
object for each specified resource. A Node in Gush contains a username for logging
into the resource, a fully qualified hostname, the port on which the Gush client will
run, and a group name. The purpose of the group name is to give users the ability to
classify resources into different categories based on application-specific requirements.
We discuss how this name is used when creating a matching in the next subsection.

The resource file also contains a special section for defining hosts in the PlanetLab
control framework. Rather than specifically defining which PlanetLab hosts a user has
access to, the directory file instead lists which slices are available to the user. In addition
to slice names, the user specifies their login to all available aggregate managers (which
internally run their own version of the PlanetLab Central server) as well as a mapping
(“port map”) from slice names to port numbers. At startup, the Gush controller uses this
login information to contact each manager (PLC) directly via XML-RPC using the API
specified by the Slice-based Facility Architecture (also called SFA or geniwrapper [15]).
Each PLC server returns a list of hostnames that have been assigned to each available
slice. The Gush controller uses this information to create a Node object for each host
available to the user. The username for these hosts is the associated slice name, and the
port is determined by the port map. The group name is set as the slice name.

Note that for all PlanetLab aggregate managers, Gush assumes that the experimenter
has a slice a priori. Since the current SFA does not provide APIs for creating slices,
Gush also does not have the ability to create slices. The experimenter must register with
the aggregate managers and upload their public key before using Gush. Once a slice
has been created, Gush does have the ability to add and remove nodes from the slice.
When a node is added to a PlanetLab slice, a Linux vserver [16] is created on the node,
and the experimenter’s key is eventually copied out to the vserver. However, the SFA
does not provide the ability for Gush to receive any notification as to when the vserver
is available for use.

Figure 2 shows a resource directory file that could be used in conjunction with the
application specification in Figure 1. The first group of resources are identified as stan-
dard SSH resources, which means that they can be accessed using the standard SSH
protocol with the username specified in the “user” attribute. The port specified indicates
the port on which the Gush client process will run. The “group” attribute is optionally
used to categorize resources. In our example, we only have two resources in the local
group. Note that these resources have nothing to do with GENI. The next three groups
of resources are all GENI resources. Gush uses XML-RPC to contact each aggregate
manager’s PLC database using the email addresses provided in the “user” tags to ob-
tain information about the resources assigned to the williams gush, gpeni gush, and
maxpl gush slices respectively. The ports specified in the “port map” tags indicate the
ports on which the Gush clients will run for these slices. (Note that this syntax is likely
to change, since the SFA APIs are changing rapidly.)

To gain an appreciation for the flexibility of the resource management abstractions
in Gush, consider our example experiment from before as shown in Figure 1. Recall
that in this example we are running “cat software.txt” on 20 PlanetLab, GpENI, and



406 J. Albrecht and D.Y. Huang

<?xml version="1.0" encoding="UTF-8"?>
<gush>

<resource manager type="ssh">
<node hostname="sysnet1.williams.edu:15400" user="jeannie" group="local" />
<node hostname="sysnet2.williams.edu:15410" user="jeannie" group="local" />

</resource manager>
<resource manager type="planetlab">

<user>jeannie@cs.williams.edu</user>
<port map slice="williams_gush" port="15415"/>

</resource manager>
<resource manager type="gpeni">

<user>jeannie@cs.williams.edu</user>
<port map slice="gpeni_gush" port="15416"/>

</resource manager>
<resource manager type="max">

<user>jeannie@cs.williams.edu</user>
<port map slice="maxpl_gush" port="15417"/>

</resource manager>

</gush>

Fig. 2. Gush resource directory file specifying different types of resources.

MAX hosts. Now suppose we want to change our application to instead run on the 2
cluster resources defined in the “local” group in our resource directory. To change our
target resources, the only modification required to the application specification is in
the component definition. Thus, if we change the value of num hosts in the component
definition in Figure 1 to 2 instead of 20, and also change the resource element to

<resource type="ssh" group="local"/>,

our experiment will run on our local cluster instead.
In addition to the resources defined in a Gush resource directory file, resources can

also be added and removed by aggregate managers at any point during an experiment’s
execution. This is typically accomplished using an XML-RPC interface provided by
the Gush controller. Managers that create virtual resources dynamically based on an
experiment’s needs, for example, contact the Gush controller with information about
new available resources, and Gush adds these resources to the user’s resource pool. If
these resources become unavailable, the external service calls Gush again, and Gush
subsequently removes the resources from the resource pool. This is especially useful
for lease-based control frameworks, such as ORCA.

2.3 Creating a Matching

After the Gush controller parses the user’s application specification and resource direc-
tory file, the controller’s resource matcher is responsible for finding a valid matching—
a subset of resources that satisfy the application’s demands—for the experiment being
managed. The matcher starts with the user’s global resource pool consisting of all avail-
able resources, and then filters out the resources that are not in the group specified in the
component definition. In our initial example, this includes all hosts not assigned to our
three slices. Using the remaining resources in the resource pool, the matcher randomly
picks 20 (as specified by num hosts in our example) Node objects and inserts them into



Managing Distributed Applications Using Gush 407

a resource matching. The Gush controller then connects to the Gush clients running on
the resources, and begins installing and configuring the required software.

If any failures occur during configuration or execution, the controller may choose
to requery the resource matcher to find replacement resources. In the case of failure,
the matcher sets the “failed” flag in the Node that caused the failure, removes it from
the matching, and inserts another randomly chosen resource from the resource pool.
This process is repeated for each failure throughout the duration of the experiment’s
execution. Note that resources that are marked as failed are never chosen to be part of a
matching unless they are explicitly un-failed by the user.

3 Supporting ORCA and ProtoGENI

The preceding section discusses how Gush resources are internally maintained and or-
ganized into resource pools. It also describes how the Gush resource matcher uses these
resource pools and the component definition section of the application specification to
create matchings for the experiments being run. These basic abstractions for manag-
ing resources, in addition to our extensible XML-based specification language, are the
keys to providing an adaptable framework that supports execution in a variety of envi-
ronments and across multiple control frameworks. The previous section describes how
Gush interacts with resources in the PlanetLab control framework. In this section, we
take a closer look at how Gush interacts with slice controllers and aggregate managers
in two other GENI control frameworks to select and use sets of resources for hosting
experiments on different testbeds.

3.1 ORCA Control Framework

In addition to resources in the PlanetLab control framework, Gush also supports exe-
cution on virtual machines (VMs) that are dynamically created by the ORCA control
framework [10]. A thorough description of the Gush XML-RPC interface and imple-
mentation details are described in [7]; we provide a brief summary here only to help the
reader appreciate the flexibility of the Gush resource management framework. ORCA
provides users with the ability to create clusters of Xen virtual machines [17] or Linux
vservers [16] on demand. It is important to note that the VMs do not exist before Gush
starts the experiment. Instead, the VMs are created dynamically at startup, and the Gush
XML-RPC interface is used to add the new VMs to the Gush resource pool. The XML-
RPC interface is also used to remove VMs from the Gush resource pool when the ex-
periment ends or when a resource lease expires.

Suppose we want to run our sample application (Figure 1) on a cluster of VMs cre-
ated by ORCA instead of 20 PlanetLab machines. Using Gush, we do not have to mod-
ify our application and execution elements in any way. We only have to add an <orca>
element into the component’s rspec definition. The Gush resource management frame-
work abstracts away the low-level details associated with contacting ORCA and con-
figuring the new VMs with the Gush client process. Figure 3 shows the resulting XML.
The XML tags that are required in the new <orca> component correspond to supported
VM attributes in ORCA, including OS type, memory, bandwidth, CPU share, and re-
quested lease length.



408 J. Albrecht and D.Y. Huang

<component name="VMGroup1">
<rspec>

<num hosts>20</num hosts>
<orca>

<num hosts>20</num hosts>
<type>1</type>
<memory>784</memory>
<bandwidth>300</bandwidth>
<cpu>75</cpu>
<lease length>12000</lease length>
<server>http://geni.renci.org/orca:8080</server>

</orca>
</rspec>
<resources>

<resource type="ssh" group="orca"/>
</resources>

</component>

Fig. 3. Gush component definition that includes an ORCA VM cluster description

3.2 ProtoGENI Control Framework

In the spectrum of architectural design choices between PlanetLab and ORCA, Proto-
GENI [11] lies somewhere in the middle. Like PlanetLab, ProtoGENI requires users to
register in advance and upload a public key. Unlike PlanetLab, ProtoGENI also requires
experimenters to specify a network topology for the nodes involved in the experiment.
Gush currently does not provide any support for creating these files, so when using Pro-
toGENI, any necessary topology files must be created before using Gush. In addition,
Gush contacts the ProtoGENI XML-RPC server using SSL; thus, experimenters should
download an SSL certificate from the ProtoGENI website and save it locally before
starting Gush.

After creating an account on the ProtoGENI website, specifying a network topology,
and downloading an SSL certificate, experimenters may begin using Gush to deploy
experiments on ProtoGENI. The first step involves configuring the resource directory
with the information necessary to communicate with the ProtoGENI XML-RPC server.
An example is shown in Figure 4. (Note that Gush currently uses the Emulab API [18]
in ProtoGENI, which is why the resource manager’s type is “emulab.” We are in the
process of upgrading Gush to use the new ProtoGENI API.) The pertinent information
in this case includes our login name, port number, project ID, experiment ID, and net-
work topology (NS) file. This information is sent to the ProtoGENI server to create
and swap in an experiment (if it does not already exist) using the specified topology.
Like ORCA, ProtoGENI creates virtual machines dynamically when an experiment is
created. Unlike ORCA, the ProtoGENI server has not yet been extended to provide any
callbacks to Gush to indicate when the resources are actually ready for use (although
the API does provide a blocking RPC call that does not return until all resources are
ready). Thus, if a researcher uses Gush to create an ProtoGENI experiment, they must
wait some small period of time (less than 5 minutes on average) for the virtual machines
to be created and the topology to be instantiated before running any experiments.

At this point, the execution of Gush proceeds in the same way as before: Gush con-
tacts the ProtoGENI server to obtain a list of available resources, and then uses SSH



Managing Distributed Applications Using Gush 409

<?xml version="1.0" encoding="UTF-8"?>
<gush>

<resource manager type="emulab">
<user>jeannie</user>
<port>15420</port>
<EmulabProjectID>Gush</EmulabProjectID>
<EmulabExperimentID>gush</EmulabExperimentID>
<EmulabNSFile>nsfile.ns</EmulabNSFile>

</resource manager>

</gush>

Fig. 4. Gush directory file that includes ProtoGENI (Emulab) resources

to login to these resources and configure them accordingly. Upon the completion of an
experiment, Gush uses the ProtoGENI XML-RPC interface to swap the experiment out,
which shuts down all virtual machines associated with the experiment.

4 Related Work

With respect to related work, it is worthwhile to point out the key differences between
this paper and [7]. The goal of this paper is to highlight how Gush manages resources
in a variety of environments, while the focus of [7] is on the design and implementa-
tion of the experiment controller architecture. In addition, this paper discusses several
extensions that were added to Gush specifically for GENI that are not part of Plush.

In the context of application management, Gush has similar goals as PlanetLab’s
appmanager [19] and HP’s SmartFrog framework [20]. appmanager is designed exclu-
sively for long-running services on PlanetLab, and thus cannot easily be extended to
support different types of resources or control frameworks. SmartFrog is a Java toolkit
that can be used to manage a variety of applications on resources that run Java. Unlike
Gush, SmartFrog is not process-oriented, however, and thus only supports execution via
Java classes and remote method invocation.

In GENI, every project has a set of testbed-specific tools for resource configuration
and experiment management. The majority of these tools are not designed for extensi-
bility, and thus do not support execution across testbeds or control frameworks.

5 Future Work and Conclusion

Gush is an application management framework that helps developers deploy and main-
tain software running on distributed sets of resources. Through a generic resource man-
agement interface and an extensible application specification, Gush supports execution
on several different types of resources, including PlanetLab machines, ORCA virtual
machines, and ProtoGENI hosts. However, some of the fundamental assumptions that
Gush makes about resources—such as unlimited energy, always-on network connectiv-
ity, and process-oriented execution—do not support an emerging class of wireless and
sensor-based resources. Moving forward, we hope to relax these assumptions to allow
Gush to perform experiments on a wider variety of resources. For example, to sup-
port sensors or configurable routers, Gush may not connect directly to the resources,



410 J. Albrecht and D.Y. Huang

but instead connect to a client proxy connected to the resource that can interpret Gush
commands and perform the corresponding action on the sensor or router. Maintaining
persistent TCP connections may also prove to be futile in wireless sensor networks
comprised of mobile devices. The overall challenge in these environments is to provide
environment-specific support from a common experiment controller framework. We are
currently in the process of exploring ways to use Gush in some of these environments,
including the ViSE [21] and DOME [22] testbeds. In doing so, our goal is to ultimately
provide an adaptive experiment control framework for all GENI users.

References

1. GENI, http://www.geni.net
2. FIRE, http://cordis.europa.eu/fp7/ict/fire/
3. AKARI, http://akari-project.nict.go.jp/eng/conceptdesign.htm
4. CNGI, http://www.cernet2.edu.cn/en/bg.htm
5. Albrecht, J., Tuttle, C., Snoeren, A.C., Vahdat, A.: Loose Synchronization for Large-

Scale Networked Systems. In: Proceedings of the USENIX Annual Technical Conference
(USENIX), pp. 301–314 (2006)

6. Gush, http://gush.cs.williams.edu
7. Albrecht, J., Braud, R., Dao, D., Topilski, N., Tuttle, C., Snoeren, A.C., Vahdat, A.: Re-

mote Control: Distributed Application Configuration, Management, and Visualization with
Plush. In: Proceedings of the USENIX Large Installation System Administration Conference
(LISA), pp. 183–201 (2007)

8. Albrecht, J., Tuttle, C., Snoeren, A.C., Vahdat, A.: PlanetLab Application Management Using
Plush. ACM Operating Systems Review (OSR) 40(1), 33–40 (2006)

9. Peterson, L., Bavier, A., Fiuczynski, M., Muir, S.: Experiences Building PlanetLab. In: Pro-
ceedings of the ACM/USENIX Symposium on Operating System Design and Implementa-
tion (OSDI), pp. 351–366 (2006)

10. Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.: Sharing Networked
Resources with Brokered Leases. In: Proceedings of the USENIX Annual Technical Confer-
ence (USENIX), pp. 199–212 (2006)

11. ProtoGENI, http://www.protogeni.net
12. Orbit, http://www.orbit-lab.org/
13. GpENI, http://wiki.ittc.ku.edu/gpeni
14. MANFRED, http://geni.maxgigapop.net/
15. GeniWrapper, http://svn.planet-lab.org/wiki/GeniWrapper
16. Soltesz, S., Potzl, H., Fiuczynski, M., Bavier, A., Peterson, L.: Container-based Operating

System Virtualization: A Scalable, High-performance Alternative to Hypervisors. In: Pro-
ceedings of the EuroSys Conference (EuroSys), pp. 275–288 (2007)

17. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A: Xen and the Art of Virtualization. In: Proceedings of the ACM Symposium on
Operating System Principles (SOSP), pp. 164–177 (2003)

18. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M., Barb,
C., Joglekar, A.: An Integrated Experimental Environment for Distributed Systems and Net-
works. In: Proceedings of the ACM/USENIX Symposium on Operating System Design and
Implementation (OSDI), pp. 255–270 (2002)

http://www.geni.net
http://cordis.europa.eu/fp7/ict/fire/
http://akari-project.nict.go.jp/eng/conceptdesign.htm
http://www.cernet2.edu.cn/en/bg.htm
http://gush.cs.williams.edu
http://www.protogeni.net
http://www.orbit-lab.org/
http://wiki.ittc.ku.edu/gpeni
http://geni.maxgigapop.net/
http://svn.planet-lab.org/wiki/GeniWrapper


Managing Distributed Applications Using Gush 411

19. PlanetLab Application Manager,
http://appmanager.berkeley.intel-research.net

20. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: SmartFrog: Con-
figuration and Automatic Ignition of Distributed Applications. In: HP Openview University
Association Conference (HP OVUA), pp. 1–9 (2003)

21. ViSE Project, http://vise.cs.umass.edu
22. Soroush, H., Banerjee, N., Balasubramanian, A., Corner, M.D., Levine, B.N., Lynn, B.:

DOME: A Diverse Outdoor Mobile Testbed. In: Proceedings of the ACM International Work-
shop on Hot Topics of Planet-Scale Mobility Measurements (HotPlanet), pp. 1–6 (2009)

http://appmanager.berkeley.intel-research.net
http://vise.cs.umass.edu

	Managing Distributed Applications Using Gush
	Introduction
	PlanetLab Application Management with Gush
	Describing an Experiment in Gush
	Constructing a Resource Pool
	Creating a Matching

	Supporting ORCA and ProtoGENI
	ORCA Control Framework
	ProtoGENI Control Framework

	Related Work
	Future Work and Conclusion
	References


