
Managing Distributed, Shared L2 Caches through OS-Level Page Allocation

Sangyeun Cho Lei Jin
Department of Computer Science

University of Pittsburgh

{cho,jinlei}@cs.pitt.edu

Abstract

This paper presents and studies a distributed L2 cache
management approach through OS-level page allocation
for future many-core processors. L2 cache management
is a crucial multicore processor design aspect to overcome
non-uniform cache access latency for good program per-
formance and to reduce on-chip network traffic and related
power consumption. Unlike previously studied hardware-
based private and shared cache designs implementing a
“fixed” caching policy, the proposed OS-microarchitecture
approach is flexible; it can easily implement a wide spec-
trum of L2 caching policies without complex hardware sup-
port. Furthermore, our approach can provide differenti-
ated execution environment to running programs by dynam-
ically controlling data placement and cache sharing de-
grees. We discuss key design issues of the proposed ap-
proach and present preliminary experimental results show-
ing the promise of our approach.

1 Introduction

Multicore processors have emerged as the mainstream
computing platform in major market segments, including
PC, server, and embedded domains. Processors with two
to eight cores are commercially available now [13, 19, 25].
Moreover, projections suggest that future processors may
carry many more cores–10’s or even 100’s of cores within
a single chip [5]. This trend is accelerated by the unprece-
dented technology advances and the less-than-desirable sin-
gle core scalability [6].

In a future multicore processor, the ever widening
processor-memory speed gap as well as the severely lim-
ited chip bandwidth exacerbates the dependence of program
performance on the on-chip memory hierarchy design and
management [11]. The desire to keep more data on chip
will lead to a large L2 cache comprising many banks or
slices, likely distributed over the chip space [18]. Unfor-

tunately, the wire delay dominance in nanometer-scale chip
implementations and the distributed nature of the L2 cache
organization result in non-uniform cache access latencies,
making the L2 cache design and management a challeng-
ing task. Researchers are actively exploring the L2 cache
design space to tackle this problem [8,9,12,21,30].

So far, L2 cache research and development efforts have
been based on the two baseline designs: private cache and
shared cache. In a private cache scheme, each cache slice
is associated with a specific processor core and replicates
data freely as the processor accesses them. This automatic
data attraction allows each processor to access data quickly,
leading to a low average L2 hit latency. However, the lim-
ited per-core caching space provided by a single private
L2 cache often incurs many capacity misses, resulting in
expensive off-chip memory accesses. On the other hand,
shared caches in aggregation form a logically single cache
where each cache slice accepts only an exclusive subset
of all memory blocks [13, 19, 25]. A shared cache de-
sign can potentially achieve better overall utilization of on-
chip caching capacity than a private design because mem-
ory blocks and accordingly accesses are finely distributed
over a large caching space. In addition, enforcing cache co-
herence becomes simpler because a memory block is found
in a unique cache slice, which is easily derivable from the
memory address. Unfortunately, the average L2 cache hit
latency will be longer than that of a private cache since the
cache slice keeping critical data may be far off.

Previous works have shown that neither a pure private
design, nor a pure shared design, achieves optimal perfor-
mance under different workloads [11,12,22,30]. For exam-
ple, a program with its working set entirely fit into a cache
slice will perform better with private caching, while large
applications with a high degree of data sharing may per-
form better on shared caches. Therefore, researchers have
further examined optimizations such as cache block migra-
tion [18] and data replication [30] in the context of a shared
design to improve data proximity. On the other hand, pri-
vate caches can be optimized to provide more capacity by



Figure 1. An example 16-core tiled processor
chip and its tile (core).

limiting the degree of data replication or reserving a portion
of cache space for other cores to use [8,9].

In this work, we investigate an OS-managed data to
cache slice mapping approach at the memory page granu-
larity for future many-core processors. Figure 1 depicts an
example 16-core processor chip. Our approach is based on
the intuition that (i) finely interleaving cache lines to phys-
ically distributed L2 cache slices is not generally beneficial
for good program-data proximity; and (ii) OS-level page al-
location (i.e., virtual-to-physical mapping) can directly con-
trol where, among many L2 cache slices, cache lines are
placed if data to L2 cache slice mapping is done at the mem-
ory page granularity. Using simple shared cache hardware,
our approach seamlessly implements a private caching pol-
icy, a shared cache policy, or a hybrid of the two without any
hardware support under a multiprogrammed workload. For
shared-memory parallel workloads, we consider a coordi-
nated process scheduling and data mapping strategy based
on a program-data proximity model.

The salient aspect of our approach is that process
scheduling and data mapping decisions can be made in a
dynamic and synergistic fashion with a full flexibility by the
OS. For example, available processor cores can be clustered
together, where the clusters are each managed with differ-
ent L2 caching strategies. A high-priority program may
be given a differentiated execution environment with more
caching space than others. Cache slices can be made off-
line easily when power and fault management requirements
exist. As such, our research is a critical departure from cur-
rent hardware-oriented research trends and opens up new
research directions that have not been fully explored. The
initial results we obtained are encouraging.

The rest of this paper is organized as follows. Sec-
tion 2 describes our idea of managing shared L2 cache
slices through OS-level page allocation. Section 3 presents
a quantitative evaluation of hardware-based L2 cache man-
agement schemes and our approach. Section 4 summarizes
other related works. Finally, concluding remarks and future
works will be given in Section 5.

2 L2 Cache Location Aware Page Allocation

2.1 Partitioning and allocating physical address space
to cache slices

In a shared L2 cache design with multiple slices, mem-
ory blocks are uniquely mapped to a single cache slice, as
shown in Figure 2(a). For example, recent commercial mul-
ticore processors such as IBM Power5 [25], Sun Microsys-
tems T1 [19], and processor models found in research pro-
posals [12, 30] use the following simple equation to define
the mapping:

S = A mod N,

where S stands for the cache slice number, A for the mem-
ory block address, and N for the number of cache slices.
We call the core (cache slice) hosting a memory block home
core (slice) for it. Note that contiguous memory blocks are
hosted by different cache slices using this method.

The above mapping method improves the L2 cache
capacity utilization by finely distributing memory blocks
among the available cache slices. It also increases the L2
cache bandwidth by scattering temporally close loads and
stores to different cache slices. This method is not desir-
able in a future many-core processor, however, since this
fine-grained data distribution will significantly increase the
on-chip network traffic and effective cache access latency.
If memory blocks are equally distributed to all tiles, for ex-
ample, a streaming program on tile 0 will experience on
average a 6-hop network delay (for request and response)
on each L2 cache access, let alone the cache access latency.

To capture sufficient data locality within the local L2
cache slice, we propose that the data to cache slice map-
ping granularity should be of page, as shown in Figure 2(b),
so that consecutive memory blocks (within a page) can re-
side in the same cache slice. This change can be achieved
simply by replacing A with physical page number (PPN)
in the above equation. Changing the mapping granularity
has other advantages. For example, it will be much eas-
ier to adapt previous memory optimization techniques, such
as various prefetching schemes [27] and OS page color-
ing [17], to a many-core processor.

Given this arrangement, here is our key observation: if
memory to L2 cache slice mapping is done at the granular-
ity of memory page, it is the OS that determines to which
L2 cache slice a particular data item belongs, because it
assigns each virtual page a PPN which in turn determines
the associated L2 cache slice. This point is depicted in Fig-
ure 2(c). Our observation leads to the notion of L2 cache
location aware page allocation, motivating a design ap-
proach departing from the current research trend that fo-
cuses on hardware mechanisms to statically implement a
private, shared, or hybrid scheme [8,9,13,19,25,30].



Figure 2. (a) Physical memory partitioning and mapping to cache slice at the cache line granularity.
(b) Physical memory partitioning and mapping at the memory page granularity. (c) Virtual to physical
page mapping (P0, P1: process 0 and 1, VM: virtual memory).

2.2 Data to cache slice mapping via page allocation

The OS manages a free list to keep track of available
pages in physical memory. Whenever a running process
needs new memory space, the OS allocates free pages from
this list by creating virtual-to-physical page mappings and
deleting the allocated pages from the free list. Previously
allocated pages are reclaimed by backing up their content
to a non-volatile storage if needed, and putting these pages
back to the free list.

If there is no sharing of data between programs running
on different cores (e.g., under a multiprogrammed work-
load), the OS will have the full flexibility of using L2 cache
slices as a private cache, a shared cache, or a hybrid of the
two, by mapping virtual pages to a specific core, to any-
where, or to a specific group of cores, respectively. For a
more formal discussion, we define the congruence group
CGi (0 < i < N − 1) given N processor cores and a phys-
ical page to core mapping function pmap:

CGi = {physical page (PPN = j)|pmap(j) = i}
In other words, pmap defines a partition ({CGi}) of all the
available physical pages in main memory so that each par-
tition CGi maps to a unique processor core i. Given pmap,
the home core for a physical page (and accordingly memory
blocks in it) is uniquely defined. A convenient pmap func-
tion will be modulo-N on PPN, partitioning the physical
memory space equally regardless of its size. Now, the fol-
lowing virtual to physical page allocation strategies achieve
the following previously proposed caching schemes:
Private caching. For a page requested by Pi, a program
running on core i, allocate a free page from CGi.
Shared caching. For a requested page, allocate a free page
from all the congruence groups {CGi} (0 < i < N − 1).
One can use a random selection strategy or a round-robin

strategy to pick up a free page from a congruence group
with available free pages.
Hybrid shared/private caching. First, partition {CGi}
into K groups (K < N ). Then define a mapping from a
processor core to a group. For a page requested by Pi, allo-
cate a free page from the group that core i maps to. Here,
each group defines a set of cores that share their L2 cache
slices. Again, one can use a random or round-robin selec-
tion strategy within the selected group. Alternatively, one
can consider the location of the requesting program.

Due to the flexibility of the proposed approach, it is pos-
sible to further customize the use of available cache slices,
beyond the above well-established policies. For example,
multiple cache slices can be dedicated to a single program
by not allocating other programs’ data to them. When there
are idle processor cores (possibly not uncommon in a 100-
core processor), their cache slices can be utilized by other
cores. When a cache slice becomes unavailable due to cer-
tain chip operating constraints, such as power consumption
or reliability issues, it can be easily made off-line.

Implementing cache location aware page allocation will
entail non-trivial changes in the OS page allocation algo-
rithms, however. Instead of a single free list, for example, it
needs to manage N free lists, each associated with a congru-
ence group1. Moreover, process scheduling should consider
existing data mappings when allocating a processor core to
a process, which requires adding more information in pro-
cess control blocks. To obtain high performance and fully
utilize the available cache space under changing workload
behaviors, accurate, yet efficient performance monitoring
schemes will be required.

1As a similar yet simpler example, a modern OS already manages mul-
tiple free lists to support optimizations such as page coloring or bin hop-
ping [17], in an effort to reduce L2 cache conflict misses by not allocating
too many virtual pages to specific page colors or bins within the cache.



Figure 3. Program (“P”) and data locations determine the minimum distance to bridge them.

2.3 Data proximity and page spreading

To obtain good program performance, it is important to
keep program’s critical data set close to the processor core
on which the program runs [18]. We showed in the previous
subsection that the OS has full control over where (among
processor cores) cache lines will be placed if memory to
L2 cache slice mapping is done at the page granularity. In
comparison, private caches attract data closest to each pro-
cessor core by actively replicating data in the local slice. If
critical data set is large, however, private caches may per-
form poorly since each core’s caching space is limited to its
own cache slice. On the other hand, hardware-based shared
caches provide potentially larger caching space than private
caches, equally to all cores [13, 19, 25]; unfortunately, they
do not have any provisions to improve data proximity.

In an ideal situation where L2 cache slices are larger than
program working sets, the OS can allocate new pages to
requester cores; each L2 cache slice then simulates a pri-
vate cache, ensuring fast data access. On the other hand, if
a local cache slice is too small for the program’s working
set and its performance suffers due to this, subsequent page
allocations may be directed to cache slices in other cores
to increase the effective cache size. We call this operation
page spreading. It can increase the caching space seen by
a program by selectively borrowing space from other cache
slices. In addition, the OS may be forced to allocate physi-
cal pages from other free lists than the most desirable ones,
if they have very few free pages currently, below a thresh-
old. This operation is called page spilling, and is important
for a balanced use of available physical pages.

While spreading pages, the OS page allocation should
consider data proximity. Figure 3 shows how tiles are as-
signed a tier depending on the program location. Tiles
marked with a same tier number can be reached from the
program location in the same minimum latency if there is
no network contention. As an example, consider a program
running on tile 5, as in the case 3 of Figure 3. Page spread-

ing will be performed on tile 1, 4, 6, and 9 (i.e., tier-1 tiles)
before going to other tiles. This judicious page spreading is
important not only for achieving fast data access but also for
reducing overall network traffic and power consumption.

Further, the OS page allocation should consider cache
pressure in addition to data proximity when spreading
pages. Under a heavy cache pressure, a tile may experience
a large volume of capacity misses, rendering itself unable
to yield cache space to other tiles. If all tier-1 tiles received
many pages and suffer from high cache pressure, for exam-
ple, page spreading must be done to other tiles with lower
cache pressure, even if they are not a closest tile. For this
purpose, we define cache pressure to be program’s time-
varying working set (e.g., approximated by the number of
actively accessed pages) divided by cache size.

We note that a modest architectural support can greatly
simplify the task of accurately estimating cache pressure.
Figure 4 shows an example mechanism to count actively
accessed pages using a Bloom filter [4]. Whenever there
is an access to the L2 cache, its page number is directed
to the Bloom filter for look-up. If the page is found, there
is no further action. If the page is not found in the Bloom
filter, however, it is recorded there, and the counter is in-
cremented. Essentially, the Bloom filter keeps the identity
of all accessed pages and the counter counts the number of
“unique” pages accessed. Both the data structures are pe-
riodically reset to track phase changes. The counter value
can be then used to compute cache pressure. For a 512-
kB cache slice, an 8-kB page, and a cache pressure of 4, a
512-byte Bloom filter will be able to accurately track all the
accessed pages with a false positive rate of less than 0.5%.

After all, in the proposed approach, the OS determines
a home core (i.e., home slice) for each page to achieve a
performance goal in a systematic way. Here, a performance
goal may be to obtain maximum overall IPC (instructions
per cycle) given a set of processes. In other cases, a power
consumption constraint or priority levels in the processes
may be given. A home allocation policy guides OS in de-



Figure 4. A Bloom filter based monitor mech-
anism to count actively accessed pages.

termining home slices by defining profitability toward the
goal, computed for each (candidate) slice at page allocation
times. A generic, idealized profitability measure for cache
slice i given a program running on core k will look like:

Pi(k) = f(M, L, P, Q, C),

where M is a vector having recent miss rates of L2 caches,
L is a vector having recent contention levels of network
links, P is the current page allocation information (e.g., per-
process mapping and free list status), Q is the QoS require-
ments (e.g., cache capacity quota per process), and C is the
processor configuration (e.g., number of caches). As a re-
sult of computing profitability for candidate cache slices, a
cache slice with the highest score will be selected to become
the home for the page in consideration. An actual embod-
iment of a policy will of course pose technical issues such
as “how can we efficiently collect run-time information (M
and L)?” and “what is an efficient and accurate f for a spe-
cific performance goal?”.

2.4 Embracing parallel workloads with virtual multi-
cores

So far our discussions were concerned mostly with mul-
tiprogrammed workloads. In this subsection, we discuss
how the proposed OS-level page allocation approach can
help execute a parallel application efficiently on a tile-based
multicore processor.

When parallel applications are running, an OS will try
to schedule the communicating processes and allocate their
pages in a coordinated way to minimize the overall cache
access latency as well as the network traffic. When a
hardware-based shared caching scheme with line interleav-
ing is used, the OS has no control over data distribution and
there is little it can do to improve performance and traffic.
Using our approach, on the other hand, the OS will ensure
that new page allocations are directed to cache slices close
to the requesting core (“data proximity”) to reduce the cache

Figure 5. A virtual multicore (VM) example.

access latency. Since a number of processes share their data
in a typical parallel application, it is natural to spread pages
to the cores that run these communicating processes.

To minimize the network traffic between the cores, the
OS will also try to schedule a parallel application onto a set
of processor cores that are close to each other (“program
proximity”). Suppose we have four parallel applications
requiring six, four, four, and two processors, respectively.
Figure 5 shows a mapping of the four parallel jobs to six-
teen cores. The cores are grouped by the OS to form virtual
multicores (VMs). Cache slices within a VM will be shared
by the parallel program running on it. As the OS will opt for
data proximity and program proximity, a VM will comprise
tiles that form a cluster on the chip surface.

Within each VM, the OS can allocate pages in a round-
robin fashion, in response to the core which requested the
memory page, based on a data use prediction model (e.g.,
obtained through compiler analysis or program profiling),
or using a hybrid of them. Our VM approach guaran-
tees that coherence traffic and core-to-core data transfers
are confined within each VM, improving the overall per-
formance and energy consumption of parallel jobs.

Compared with the private cache scheme, the VM ap-
proach maximizes the L2 caching space for shared data
since there is no data replication, while placing an upper
bound on the network latency and minimizing the related
network traffic on an L1 cache miss. Compared with the
shared cache scheme, our approach can result in much less
network traffic and leads to no cache contention between
different (parallel) programs. As discussed in Section 2.3,
spreading pages outside a VM should be done in the light
of cache pressure and data proximity at the VM level.

2.5 Perspectives

The proposed OS-level L2 cache management approach
uses simple shared cache hardware, while providing choices
from a spectrum of private and shared caching strategies in
a dynamically controllable way. Table 1 briefly compares
the private caching, the shared caching, and the OS-based
cache management approaches.



PRIVATE SHARED (w/ line interleaving) OS-BASED

Hardware (tile) Similar to a conventional unipro-
cessor core with two-level caches;
coherence mechanism (e.g., direc-
tory) to cover L1 and L2 caches

Coherence enforcement is simpler
and is mainly for L1 because L2 is
shared by all cores

(Same as SHARED); simple
hardware-based performance
monitoring mechanism will help
reduce monitoring overhead

Software (NA) (NA) OS-level support, esp. in the page
allocation algorithm

Data Proximity Data items are attracted to local
cache slices through active repli-
cation; limited caching space can
result in performance degradation
due to capacity misses

Fine-grained cache line interleav-
ing results in non-optimal data
distribution; there is no explicit
control over data mapping

Judicious data mapping though
page allocation can improve data
proximity

Network Traffic High coherence traffic (e.g., direc-
tory look-up and invalidation) due
to data replication [23]; increased
off-chip traffic due to high on-chip
miss rate

High inter-tile data traffic due to
remote L2 cache accesses, of-
ten 2× to 10× higher than PRI-
VATE [30]; lower off-chip traffic
due to larger caching capacity

Low off-chip traffic like SHARED;
improved program-data proxim-
ity through page allocation and
process scheduling leads to lower
inter-tile traffic than SHARED

Table 1. Comparing private caching, shared caching, and OS-based cache management approaches.

Throughout this paper, we base our hardware structure
on a simple shared cache organization with no additional
hardware support. As a result, only fixed-size congruence
groups were considered in Section 2.2, which can become
a burden for an OS. With a modest architectural support,
such a burden can be relaxed. For example, if each TLB
entry (and page table entries) is extended with a field con-
taining the home slice number, the need for handling multi-
ple free lists is completely removed because physical pages
are decoupled from cache slices [16]. The OS will further
benefit from hardware support to track page access behav-
iors (e.g., access frequency and sharing degree) for more
accurate page allocation decisions. We presented one such
scheme in Section 2.3. Directly measuring cache misses
(e.g., sampled miss counters [24]) may also be helpful. De-
tailed program execution information such as data size and
data access patterns, obtained through compiler analysis
and on-line/off-line profiling, can be used as hints.

We note that our approach does not preclude incorpo-
rating previously proposed hardware optimizations. For ex-
ample, with additional hardware support, fine-grained cache
line-level data replication [30] and data migration [9] may
be employed within our OS-based L2 cache management
framework for even higher performance.

Finally, there are two potential drawbacks to the pro-
posed page-level cache management approach. First, due to
the coarser granularity of mapping, available caching capac-
ity may not be fully utilized if there is disparate behavior by
cache lines within a page. Second, there is additional soft-
ware complexity involved, and the OS may not respond to
workload changes quickly. An in-depth research including
extensive implementation work is called for to fully address
these issues, which is beyond the scope of this paper.

3 Quantitative Evaluation

3.1 Experimental setup

3.1.1 Machine model

We develop and use cycle-accurate, execution- and trace-
driven simulators using the source code base of the Sim-
pleScalar tool set (version 4) [1], which model a multicore
processor chip with 16 tiles organized in a 4×4 mesh, sim-
ilar to Figure 1. Each tile includes a single-issue proces-
sor with a 16kB L1 I/D caches, and a 512kB L2 cache
slice. The single-cycle L1 caches are four-way set asso-
ciative with a 32-byte line size, and each 8-cycle L2 cache
slice is 8-way set associative with 128-byte lines. The ag-
gregate L2 cache size is 8MB. For coherence enforcement,
we model a distributed directory scheme.

When a datum is traversing through the mesh-based net-
work, a two-cycle latency is incurred per each hop. In the
worst case, the contention-free cross chip latency amounts
to 24 cycles round trip. We modeled contention at L2
caches, network switches, and links. The 2-GB off-chip
main memory latency is set to 300 cycles.

The execution-driven simulator is used to run a single-
threaded application, a multiprogrammed workload com-
posed of a general benchmark and a “hard-wired” synthetic
benchmark called ttg (described below). The trace-driven
simulator is used to run an arbitrary mix of general bench-
marks or a parallel application. A trace is generated by a
cycle-accurate simulator with a perfect data memory sys-
tem. Delays due to instruction cache misses, branch mis-
predictions, inter-instruction dependences, and multi-cycle
instructions are accurately captured in the generated traces.



NAME DESCRIPTION INPUT

gcc gcc compiler reference (integrate.i)
parser English parser reference

eon probabilistic ray tracer reference (chair)
twolf place & route simulator reference

wupwise quantum chromodynamics solver reference
galgel computational fluid dynamics reference
ammp ODE solver for molecular dynamics reference

sixtrack particle tracking for accelerator design reference

fft fast Fourier transform 4M complex numbers
lu dense matrix factorization 512×512 matrix

radix parallel radix sort 3M integers
ocean ocean simulator 258×258 grid

Table 2. Benchmark programs.

When traces are imported and processed in the trace-driven
simulator, additional delays due to cache misses and net-
work traversals are taken into account.

We implemented a parameterized page allocation unit in
our simulators. Based on the demand paging concept com-
monly used in UNIX-based systems [2], every memory ac-
cess is caught and checked against already allocated mem-
ory pages. If a memory access is the first access to an un-
allocated page, the page allocator will pick up an available
physical page and allocate it according to the selected allo-
cation policy. Given the 2-GB main memory and the bench-
mark programs, we experienced no page spilling instance
(see Section 2.3) in all the experiments we performed.

3.1.2 Workloads

We use three types of workloads in our experiments: single-
threaded workloads, multiprogrammed workloads, and par-
allel workloads. For a single-threaded workload, we use
one program from a set of SPEC2k benchmarks [26], four
integer (gcc, parser, eon, twolf) and four floating-point pro-
grams (wupwise, ammp, sixtrack, apsi). These benchmark
programs were selected because they have largely differ-
ent working set sizes and access patterns. Programs were
compiled to target the Alpha ISA using Compaq Alpha C
compiler (V5.9) with the -O3 optimization flag.

To construct a multiprogrammed workload, we use one
program from the above SPEC2k benchmarks, which we
call a target benchmark, and a synthetic benchmark pro-
gram called ttg (tunable traffic generator). ttg generates a
continuous stream of memory accesses. We can adjust the
working set size of ttg, the rate of memory accesses injected
into the network and memory system, and the level of con-
tention within shared cache slices. During actual simula-
tions, we run our target benchmark on core 5 and ttg on all
the other cores. This arrangement is required for us to ac-
curately assess the sensitivity of different L2 caching strate-

gies to various network traffic and cache contention levels,
which is not achievable by using an arbitrarily constructed
mix of programs. After skipping the initialization phase
and a 100M-instruction warm-up period, we collect anal-
ysis data during 1B instructions of the target benchmark.

For parallel workloads, we use fft, lu, radix, and ocean
from the SPLASH-2 benchmark suite [29]. These programs
run on four cores (tile 5, 6, 9, and 10). Shared memory
program constructs such as locks and barriers are modeled
using a set of magic instructions implemented with the Sim-
pleScalar annotations [1]. We used gcc 2.7.2.3 (with -O3)
to compile these programs to target SimpleScalar PISA. The
benchmark programs and their input data used in our exper-
iments are summarized in Table 2.

3.2 Results

3.2.1 Comparing policies, single-threaded workloads

The following policies are compared in our first experi-
ment: PRV (private), SL (shared, hardware-based line inter-
leaved), SP* (shared, OS-based page allocation), and PRV8
(private, 8MB per slice) as a limit case. For page alloca-
tion (SP*), we consider four different page allocation poli-
cies: SP-RR (page allocated to all cache slices round-robin),
SP80 (80% of pages allocated to the local cache slice and
the remaining pages spread to the cache slices in the tier-1
cores, numbered 1, 4, 6, and 9), SP60 (similar to SP80 but
with 60% of pages allocated locally), and SP40 (similar to
SP80 but with 40% of pages allocated locally). SP-RR is an
OS version of a shared cache implementation at the mem-
ory page level. For PRV8 we assume the same cache access
latency as PRV, while each cache slice is 8MB in size.

In our first experiment, we measure the performance of a
single program running on core 5 whereas all the other cores
stay idle. This “single-threaded” configuration is an impor-
tant special case for a multicore processor [30], and gives



Figure 6. Single program performance
(time−1) of different policies, relative to PRV.

us an insight into the maximum performance each different
policy can offer. Figure 6 shows the result.

wupwise is almost insensitive to the L2 caching scheme
used since it has a very high L1 hit rate. On the other hand,
twolf, galgel, and ammp have a bigger working set and get
a large performance gain if more caching space is provided
(e.g., with SL). In case of eon, SL and SP-RR performed
worse than PRV even though they provide more caching
space, due to their increased average L2 cache access la-
tencies. The performance of SP-RR closely matches that of
SL, suggesting that this OS-based policy is a faithful imita-
tor of the hardware-based shared caching scheme.

Comparing with SL and SP-RR, the tier-1 page spread-
ing schemes (SP*) achieved comparable performance for
programs like twolf, galgel, and sixtrack. In case of ammp,
SP* schemes did not provide enough caching space and
they perform relatively poorly, topped at around 2× the per-
formance of PRV, while SL and SP-RR achieve about 5×.
SL performed best for gcc, parser, twolf, and ammp in this
experiment; it is however very sensitive to cache and net-
work contention as we will see in the following discussions.

Table 3 shows the L2 cache load miss rates and the on-
chip network traffic of the studied programs. PRV showed
larger miss rates than other configurations, leading to higher
off-chip traffic levels. Page spreading (SP*) was shown
to be effective in reducing miss rates. As more caching
space is used (i.e., moving from SP80 to SP40), increasingly
lower miss rates were achieved. In case of wupwise, there
are only compulsory misses and caching space or caching

strategy did not make any impact.
Again, the SP* configurations show varying on-chip traf-

fic levels. Clearly, spreading pages leads to more caching
space and reduces miss rates and off-chip traffic as a result;
in turn, it increases on-chip network traffic. This trade-off
should be carefully considered while spreading pages, given
the on-chip and off-chip communication overheads and the
performance and power consumption goals.

3.2.2 Sensitivity to cache/network contention, multi-
programmed workloads

We repeated experiments with a varying level of contention
in cache and network, by running multiple copies of ttg.
Three traffic levels, LOW (low traffic), MID, and HIGH,
were generated, by setting the average L2 cache miss inter-
val of ttg to 1500, 300, and 60 cycles, respectively. These
values were determined after examining the eight SPEC2k
programs we study; their average L2 cache miss interval
is in the range of 30 to 500 cycles when there is no con-
tention. In this experiment, We focus on comparing the
following three policies: SL (shared, hardware-based line-
interleaved), SP40 (shared, page-interleaved, 40% of pages
allocated locally and the rest spread to tier-1 tiles), and
SP40-CS (SP40 with “controlled spreading”). In SP40-CS,
we limit spreading unrelated pages onto the cores that keep
the data of the target application.

Overall, Figure 7 shows that shared cache designs (e.g.,
SL and SP40) are sensitive to cache and network contention,
since cache lines are often fetched over the on-chip network.
The target benchmark performance of SL is comparable to
that of SP40 under a light traffic load, but at a heavier traffic
level, SP40 gradually performs better than SL.

In terms of overall chip throughput (i.e. the number of
instructions committed over a same period of time), SP40
was better than SL slightly, by 2% to 4%. Interestingly,
SP40 often experienced more cache sharing contention than
SL, since programs have less network contention and tend
to access caches more frequently, and caches are not glob-
ally shared as in SL, resulting in more hot cache sets.

In terms of network traffic, SP40 cuts down the on-chip
network traffic by at least 50% in all the programs, com-
pared with SL. Considering these trade-offs, a complete OS
and microarchitecture design of our approach will try to
optimize performance and power by controlling both data
placement, which will determine the minimum latency to
fetch data and the associated network traffic, and data shar-
ing degrees, which will affect contention within each cache.

Lastly, SP40-CS achieves the highest performance under
heavy traffic, except for ammp. In case of ammp, a high lo-
cal cache miss rate (due to the local allocation of 40% of the
total pages) limited the performance of SP40-CS. The result
shows that the proposed OS-based cache management ap-



PRV SL SP-RR SP40 SP60 SP80 PRV8
gcc 2.9 0.1 0.5 1.8 2.1 2.8 0.1
parser 6.6 0.5 0.6 2.6 3.7 5.8 0.4

load eon 0.0 0.0 0.0 0.0 0.0 0.0 0.0
miss twolf 16.3 0.1 0.1 1.6 7.3 13.1 0.0
rate wupwise 25.0 25.0 25.0 25.0 25.0 25.0 25.0
(%) galgel 6.3 0.1 0.1 0.9 3.4 5.0 0.1

ammp 46.6 0.1 0.4 18.9 26.4 34.9 0.1
sixtrack 13.5 0.5 0.5 1.4 3.2 10.4 0.5

gcc 10.8 270.4 261.7 135.9 76.0 55.6 0.4
parser 8.7 96.8 96.5 40.4 18.9 18.2 0.5

on-chip eon 0.0 86.9 90.2 23.7 20.4 17.7 0.0
network twolf 35.0 138.2 150.1 67.8 48.4 37.8 0.1
traffic wupwise 35.1 39.4 39.9 20.3 15.6 10.1 0.1

galgel 38.0 412.0 406.6 185.8 132.3 76.2 0.6
ammp 441.7 810.9 803.4 424.6 361.9 306.9 0.5
sixtrack 9.6 57.2 60.9 22.0 18.9 15.8 0.4

Table 3. L2 cache load miss rate and on-chip network traffic (message-hops) per 1k instructions.

Figure 7. Performance sensitivity to network
traffic. Performance relative to PRV, no traffic
case.

proach can differentiate the hardware resources (i.e., execu-
tion environment) seen by programs and can give preference
to a high-priority program by not allowing other programs
to interfere with it. A pure hardware-based scheme like SL
does not provide this flexibility.

3.2.3 Parallel workloads

In this experiment, we measured the performance of the par-
allel workloads. We compare three caching policies: PRV

(private), SL (shared, hardware-based line-interleaving),
and VM (virtual multicore). In VM, page allocations were
performed in a round-robin fashion on the participating
cores. Figure 8 reports the result.

Except fft, PRV outperformed SL. Apparently, the stud-
ied programs were highly optimized to maximize data lo-
cality even on small caches [29] and as a result their perfor-
mance on PRV is often better than that of SL, as similarly
evidenced in previous studies [12,30].

In case of fft and radix, the studied caching schemes did
not result in much performance difference. On the other
hand, lu and ocean had a higher L1 miss rate than fft and
radix, and were affected to a larger extent by the L2 caching
scheme employed. As a result, the performance of SL was
negatively impacted due to a longer average L2 cache ac-
cess latency. VM was shown to be consistently better than
other policies. In case of ocean, VM outperformed PRV by
5% and SL by 21%.

4 Related Works

Private caching and cache sharing issues had been stud-
ied even before multicore processors emerged. Nayfeh
and Olukotun [22] studied clustering multiple processors
around a shared cache in a small-scale shared memory mul-
tiprocessor built on an MCM (Multi-Chip Module) sub-
strate. They showed that shared caches provide an effective
mechanism for increasing the total number of processors
without increasing the number of invalidations. They fur-
ther showed in their later work [23] how shared cache clus-
tering helps reduce global bus traffic. In terms of overall
performance, however, neither the private caching strategy,
nor the shared caching strategy, was shown to be optimal for
all the studied workloads, depending on the data access and



Figure 8. Performance of parallel workloads,
relative to PRV.

communication patterns. Their results have been confirmed
in the context of multicore processor designs [12,30].

The unprecedented integration of transistors and un-
even delay scaling of device and interconnect due to ad-
vanced process technologies are posing new L2 cache de-
sign challenges in single-chip processor architectures. Kim
et al. [18] studied a spectrum of design alternatives for a
large L2 cache in a wire delay dominated chip environ-
ment. Based on a single core model with many, relatively
small L2 cache banks, they proposed a dynamic cache block
migration scheme called D-NUCA. In a multicore proces-
sor running a multithreaded application with a great deal of
data sharing, however, D-NUCA may become less effective
because critical shared data will be often placed in central
banks, equally far from all processors, if they are arranged
in a dance-hall configuration. To overcome the deficiency,
Beckmann and Wood [3] studied a stride-based prefetching
technique.

Chishti et al. [9] proposed CMP-NuRAPID, a hybrid of
private, per-processor tag arrays and a shared data array,
with hardware optimizations to control replication and com-
munication overheads. Zhang and Asanović [30] proposed
victim replication in a shared L2 cache structure. In their
design, each cache slice keeps replaced cache lines from its
local L1 caches as well as its designated cache lines. Es-
sentially, the local L2 cache slice provides a large victim
caching space for the cache lines whose home is remote.
Chang and Sohi [8] proposed cooperative caching based on
a private cache design with a centralized directory scheme.
They studied optimizations such as cache-to-cache trans-
fer of clean data, replication-aware data replacement, and
global replacement of inactive data.

Liu et al. [21] proposed an L2 cache organization where
different number of cache banks can be dynamically allo-
cated to processor nodes, connected through shared bus in-
terconnects. In their scheme, a hardware-based mapping ta-
ble should be maintained by the OS so that right amount of
cache banks can be allocated to different processors. Since
their memory address to cache bank mapping is not de-
terministic, once an access from a processor misses in its

assigned banks, the access should be directed to all other
banks to find data, potentially incurring a large amount of
network traffic. Huh et al. [12] studied a cache organiza-
tion where cache line-bank mapping can be arranged dy-
namically. Their organization requires bank mapping ta-
bles in L1 cache controllers, bank controllers, and the cen-
tral on-chip directory that must be maintained by the OS at
the cache line granularity. Compared with the hardware-
oriented optimization schemes summarized above, our ap-
proach is based on a simple shared cache design, with no
special hardware support to bookkeep data to cache slice
mappings.

Finally, there is a large body of research on the OS-
level memory management in the context of NUMA (Non-
Uniform Memory Access) multiprocessors [10, 20, 28]. In
a NUMA machine, frequent cache misses going to remote
memory can severely impact application performance. Cox
and Fowler [10] evaluated a page replication and migra-
tion policy, backed up by a coherence enforcement algo-
rithm in the OS. LaRowe and Ellis [20] studied a vari-
ety of page replication and migration policies in a unified
framework. They employed a software-based page scanner,
which maintains a set of reference counters by aging cer-
tain hardware reference bits. Using the collected informa-
tion, it generates an artificial page fault as a triggering point
for the OS to perform new memory management actions.
Verghese et al. [28] uses hardware-based counters for guid-
ing OS decisions in CC-NUMA (Cache Coherent NUMA)
and CC-NOW (Cache Coherent Network of Workstations).
Although both our work and these previous works opt for
data proximity in a distributed memory structures, there are
important differences between them. First, the target level
of management (L2 cache vs. main memory) is different.
A new mapping in the previous works involves actual data
copy and delete operations, while in our work actual cache
misses trigger individual memory block transfer. Second,
the overhead involved in accessing data in a remote mem-
ory structure (remote L2 cache on-chip vs. remote memory
via off-board network) is dissimilar. It results in very dif-
ferent trade-offs in applying memory management policies.
To the best of our knowledge, our work is first to manage
distributed L2 caches using OS-level page allocations.

5 Concluding Remarks and Future Work

This paper considered an OS-level page allocation ap-
proach to managing on-chip L2 caches in a future many-
core processor built with an advanced process technol-
ogy. Unlike previously studied hardware-oriented manage-
ment approaches, the proposed OS-level page allocation
approach is flexible; it can easily mimic various hardware
strategies and furthermore can provide differentiated hard-
ware environment to running programs by controlling data



placement and data sharing degrees. Such flexibility can
be a critical advantage in a future many-core processor, be-
cause under a severe power constraint it will be of utmost
importance to maximize the efficiency of on-chip resource
usage with varying workload behaviors [5,14].

There are several directions for future research. First
of all, a detailed study of different page allocation policies
with a full system simulation environment is needed. How
to achieve a performance goal under dynamically chang-
ing workloads is of particular interest. Second, it will be
interesting to incorporate other related architectural or OS
techniques with our approach and study how they interact.
For example, cache block replication [30], cache block mi-
gration [9,18], page coloring [17], and page recoloring [24]
are good candidates. Lastly, to accurately monitor cache
performance and its behavior, light-weight hardware- and
software-based monitors will be necessary. Detailed pro-
gram information (e.g., data usage pattern) through com-
piler analysis or profiling may prove very useful. We ex-
pect that more informed page allocation will not only re-
duce conflict misses in a shared cache when co-scheduled
processes are running [7], but also offer adjustable quality
of service to these processes [15].

Acknowledgment

We thank anonymous referees for their constructive comments.
Our thanks also go to Hyunjin Lee, Rami Melhem, and Youtao
Zhang at the University of Pittsburgh for their technical feedback
on earlier drafts of this paper.

References

[1] T. Austin, E. Larson, and D. Ernst. “SimpleScalar: An Infrastructure
for Computer System Modeling,” IEEE Computer, 35(2):59–67, Feb.
2002.

[2] M. J. Bach. Design of the UNIX Operating System, Prentice Hall,
Feb. 1987.

[3] B. M. Beckmann and D. A. Wood. “Managing Wire Delay in Large
Chip-MultiprocessorCaches,” Proc. Int’l Symp. Microarch., pp. 319–
330, Dec. 2004.

[4] B. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, 13(7):422–426, July 1970.

[5] S. Borkar et al. “Platform 2015: Intel Processor and Platform Evolu-
tion for the Next Decade,” Technology@Intel Magazine, Mar. 2005.

[6] D. Burger and J. R. Goodman. “Billion-Transistor Architectures:
There and Back Again.” IEEE Computer, 37(3):22–28, Mar. 2004.

[7] D. Chandra, F. Guo, S. Kim, and Y. Solihin. “Predicting Inter-Thread
Cache Contention on a Chip MultiprocessorArchitecture,” Proc. Int’l
Symp. High-Perf. Computer Arch., pp. 340–351, Feb. 2005.

[8] J. Chang and G. S. Sohi. “Cooperative Caching for Chip Multipro-
cessors,” Proc. Int’l Symp. Computer Arch., pp. 264–276, June 2006.

[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. “Optimizing Repli-
cation, Communication, and Capacity Allocation in CMPs,” Proc.
Int’l Symp. Computer Arch., pp. 357–368, June 2005.

[10] A. L. Cox and R. J. Fowler. “The Implementation of a Coherent
Memory Abstraction on a NUMA Multiprocessor: Experiences with
PLATINUM,” Proc. ACM Symp. Operating Systems Principles, pp.
32–44, Dec. 1989.

[11] J. Huh, D. Burger, and S. W. Keckler. “Exploring the Design Space
of Future CMPs,” Proc. Int’l Conf. Parallel Architectures and Com-
pilation Techniques, pp. 199–210, Sept. 2001.

[12] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. “A
NUCA Substrate for Flexible CMP Cache Sharing,” Proc. Int’l Conf.
Supercomputing, pp. 31–40, June 2005.

[13] Intel Corp. “A New Era of Architectural Innovation Arrives with Intel
Dual-Core Processors,” Technology@Intel Magazine, May 2005.

[14] ITRS (Int’l Technology Roadmap for Semiconductors). 2005 Edi-
tion. http://public.itrs.net.

[15] R. Iyer. “CQoS: A Framework for Enabling QoS in Shared Caches
of CMP Platforms,” Proc. Int’l Conf. Supercomputing, pp. 257–266,
June 2004.

[16] L. Jin, H. Lee, and S. Cho. “A Flexible Data to L2 Cache Mapping
Approach for Future Multicore Processors,” Proc. ACM Workshop
Memory Systems Performance and Correctness, Oct. 2006.

[17] R. E. Kessler and M. D. Hill. “Page Placement Algorithms for Large
Real-Indexed Caches,” ACM Trans. Computer Systems, 10(4):338–
359, Nov. 1992.

[18] C. Kim, D. Burger, and S. W. Keckler. “An Adaptive, Non-Uniform
Cache Structure for Wire-Delay Dominated On-Chip Caches,” Proc.
Int’l Conf. Architectural Support for Prog. Languages and Operating
Systems, pp. 211–222, Oct. 2002.

[19] P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: A 32-Way
Multithreaded Sparc Processor,” IEEE Micro, 25(2):21–29, Mar.-
Apr. 2005.

[20] R. P. LaRowe and C. S. Ellis. “Experimental Comparison of Mem-
ory Management Policies for NUMA Multiprocessors,” ACM Trans.
Computer Systems, 9(4):319–363, Nov. 1991.

[21] C. Liu, A. Sivasubramaniam, and M. Kandemir. “Organizing the Last
Line of Defense before Hitting the Memory Wall for CMPs,” Proc.
Int’l Symp. High-Perf. Computer Arch., pp. 176–185, Feb. 2004.

[22] B. A. Nayfeh and K. Olukotun. “Exploring the Design Space for
a Shared-Cache Multiprocessor,” Proc. Int’l Symp. Computer Arch.,
pp. 166–175, Apr. 1994.

[23] B. A. Nayfeh, K. Olukotun, and J. P. Singh. “The Impact of Shared-
Cache Clustering in Small-Scale Shared-Memory Multiprocessors,”
Proc. Int’l Symp. High-Perf. Computer Arch., pp. 74–84, Feb. 1996.

[24] T. Sherwood, B. Calder, and J. Emer. “Reducing Cache Misses Us-
ing Hardware and Software Page Placement,” Proc. Int’l Conf. Su-
percomputing, pp. 155–164, June 1999.

[25] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B.
Joyner. “POWER5 System Microarchitecture,” IBM J. Res. & Dev.,
49(4/5):505–521, July/Sep. 2005.

[26] Standard Performance Evaluation Corporation.
http://www.specbench.org.

[27] S. P. VanderWiel and D. J. Lilja. “Data Prefetch Mechanisms,” ACM
Computing Surveys, 32(2):174–199, June 2000.

[28] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. “Operating
System Support for Improving Data Locality on CC-NUMA Com-
pute Servers,” Proc. Int’l Conf. Architectural Support for Prog. Lan-
guages and Operating Systems, pp. 279–289, Oct. 1996.

[29] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The
SPLASH-2 Programs: Characterization and Methodological Consid-
erations,” Proc. Int’l Symp. Computer Arch., pp. 24–36, July 1995.

[30] M. Zhang and K. Asanović. “Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip Multiprocessors,”
Proc. Int’l Symp. Computer Arch., pp. 336–345, June 2005.


