Managing Don’t Cares in Boolean Satisfiability

Sean Safarpour!

Abstract

Advances in Boolean satisfiability solvers have popularized
their use in many of today’s CAD VLSI challenges. Existing
satisfiability solvers operate on a circuit representation that
does not capture all of the structural circuit characteristics
and properties. This work proposes algorithms that take into
account the circuit don’t care conditions thus enhancing the
performance of these tools. Don’t care sets are addressed
in this work both statically and dynamically to reduce the
search space and guide the decision making process. Exper-
iments demonstrate performance gains.

1 Introduction

Advances in Boolean satisfiability (SAT) solvers [1] [2] [6]
[9] [10] [13] have made them attractive engines for solving
problems in the digital VLSI design cycle [2] [8] [14] [15].
Most modern SAT solvers are based on branch-and-bound
search algorithms enhanced with speed up reasoning mech-
anisms and robust data structures. However, in most prac-
tical VLSI cases, the circuit is “translated” into a Conjuc-
tive Normal Form (CNF) before being processed by the tool.
This process fails to keep the circuit’s structural information
which proves to be helpful in other branch-and-bound meth-
ods such as ATPG [3] [4]. For this reason, researchers in-
vestigate methods for which SAT solvers consider structural
circuit characteristics [1] [2] [6] [9] to improve performance.

To address these issues, we describe a new method that
allows existing SAT solvers to handle sets of don’t care condi-
tions derived from the circuit. Sets of don’t care conditions
are of great value because they provide various degrees of
freedom in logic synthesis, testing and verification [3] [4]. In
our context, don’t cares allow the SAT solver to prune the
search space. In this sense, we do not propose a new SAT
solver. Rather, we describe techniques to enhance existing
tools to take advantage of circuit properties and improve
performance.

The proposed work allows SAT solvers to take advantage
of these sets both statically and dynamically. In the first
case, the CNF formula is enriched with clauses that encode
the circuit’s don’t cares to indicate areas of the search space

1University of Toronto, Department of Electrical and Com-
puter Engineering, Toronto, ON M5S 3G4 ({ ssafarpo, veneris,
leejoa }@eecg.toronto.edu)

2University of Toronto, Department of Computer Science

3University of Bremen, Institute of Computer Science, 28359
Bremen (drechsleQinformatik.uni-bremen.de)

Andreas Veneris!»?

Rolf Drechsler? Joanne Lee!

with no solution. These clauses are computed during a pre-
processing step to enrich the CNF of the circuit. Don’t cares
are also handled dynamically by biasing the decision making
of the solver. In this case, the solver uses circuit information
“on the fly” to ignore variables (or circuit lines) that are not
relevant to the goal under consideration. Experiments show
significant speed-ups to a state-of-the-art SAT solver when
presented with the set of circuit don’t care conditions.

This paper is structured as follows. The next section con-
tains terminology. Section 3 defines sets of circuit don’t care
in the context of Boolean satisfiability and Section 4 de-
scribes algorithms to manage these don’t cares. Section 5
contains experiments and Section 6 concludes this work.

2 Preliminaries

We consider combinational circuits with AND, OR, NOT, NAND,
NOR, XOR and XNOR gates. These circuits are translated into
CNF using the procedure from [8]. CNF forms are expressed
as a logical AND (-) of clauses, each of which is the OR (4) of
one or more literals. A literal is an instance of a variable z
or its negation z’. We use the same letter to refer both to
the circuit line and the respective line variable in the CNF,
unless otherwise specified. Given a CNF formula, a SAT
solver finds a variable assignment that satisfies the formula
(SAT case) or it proves that the formula cannot be satisfied
(UNSAT case). In the remaining paper, we assume that the
reader is familiar with the terminology from [10] [13].

Line [dominates line I’ if all paths from [’ to any pri-
mary output go through I. As a base case, a line dominates
itself. Structural dominators are found in linear time with
algorithms such as the ones in [5]. For example, in Fig. 1,
line b dominates all the circuitry shown in the dotted area
including the gates that fan in to lines v and w. We call this
dotted area the dominating region of b. The thick incom-
ing arrows in this figure are circuit lines with one endpoint
at a gate(s) with an output in the dominated region and the
other endpoints at a gate(s) elsewhere. We call all these lines
(arrows) the support of the dominated region.

To utilize certain types of don’t care conditions, we par-
tition the circuit into fan-out free circuits referred to as
cones. The output of a cone is a primary output or a
stem line while the input of the cone are primary input or
branches (that is, output lines from other cones). Fig. 1 con-
tains such a cone with lines {l, &, f, e, d, g2, c1, c2, h}, inputs
{f,g2,c1,c2,h} and output line I. Finally, the controlling
value of an AND and a NAND (OR and NOR) gate is 0 (1).

3 Circuit Don’t Cares in SAT

The core of the proposed technique is the efficient manage-
ment of don’t cares. In this Section, we first define the don’t
care conditions addressed in this paper and provide the mo-
tivation. Our definitions are different to the ones commonly
used in literature [3] [4], i.e. they have been modified in ways
to reflect structural circuit properties. These properties are
examined during the search process of the SAT solver.

Sets of circuit don’t care conditions are classified as con-
trollability (or satisfiability) (CDC) and observability (ODC)
don’t care conditions. In particular, we address sets of don’t
care (DCs) conditions defined as follows:

Observability DCs: These are lines where value assignments
do not influence the outcome of the current SAT solver
goal. For example, when the SAT solver explores a
portion of the design space where d = 0 (Fig. 1), value
assignments for lines {k, e, f, g2, c1 } do not influence the
outcome of the search process. These lines may assume
values that are implied from other circuit lines (such as
stems ¢g and ¢) but the SAT solver does not need to
explicitly branch on them.

Controllability DCs: These are line values that cannot be
justified in the circuit under any primary input logic
value assignment. In Fig. 1, combination of logic values
(e =0,d = 0) is illegal under any primary input assign-
ment and it belongs to the CDC space of the design.
The SAT solver can benefit by discovering it early to
avoid unnecessary branching on these values and thus
backtracking later on.

Performance improvement using the above don’t cares is
achieved in the following two ways by the solver:

1. reduce the number of branches (and thus backtracks)
for variables that do not influence the current goal, and

2. pre-process the circuit to introduce extra clauses in the
CNF to prune the search space

In the section that follows we explain how observability
don’t cares materialize the first objective. Controllability
don’t cares (also in Section 4) are utilized for the second
objective.

4 Managing Don’t Cares
4.1 Observability DCs

ODCs are managed dynamically as the solver examines vari-
able assignments and it consults the circuit structure to de-
termine variables (circuit lines) that no longer influence the
outcome of the current goal during decision making.

Consider the circuit in Fig. 1 and let a = 0. Following this
assignment, any assignment on b and lines in its dominating
region are not observable at any primary output. Therefore,
the SAT solver does not need to consider (branch) these vari-
ables when the solution space is restricted to a = 0 since any
value assignment on them has no impact on the final outcome
of the goal.

Figure 1: Observability Don’t Cares

The overall procedure for ODCs is a generalization of the
one described above. Let [be the variable under considera-
tion at the current decision level. Let line [also be an input
to gate G in the circuit. If the solver assigns [a value which
is controlling for G then all other lines that are an input to
G as well as their dominated regions are marked as lazy. A
stem is declared lazy when all of its branches are marked
lazy. In the circuit in Fig. 1, stem g (and the circuitry domi-
nated by ¢) is marked lazy when both of its branches g; and
g2 become lazy, possibly from other distinct variable assign-
ments at different decision levels. Variables not marked as
lazy, are called free variables.

It is clear that the sets of lazy and free variables change
as different decisions/backtracks explore various parts of the
search space. Depending on the decision made, a variable can
be marked lazy and unmarked later if the solver backtracks
from this decision. Lazy variables are important because
the SAT solver does not need to branch on them in future
decision making steps. Under this operational framework,
the SAT solver always selects an unassigned free variable to
branch and enters the next decision level.

A similar idea where value assignments are used to exclude
dominating regions from the decision process is proposed in
[2]. However, the work in [2] uses these assignments to ex-
clude clauses from the CNF unlike this work that marks those
variables as lazy. In more detail, the computational gain of
this proposed method comes from the following observations:

e The solver declares SAT if it reaches a decision level
where no free variables are left unassigned. This may
occur even if some lazy variables are unassigned (don’t
care). The satisfying assignment consists of value as-
signments to all free variables at the point where SAT is
declared.

e When the solver declares UNSAT exclusion of lazy vari-
ables may produce conflicts earlier in the decision tree.
Backtracks, in this case, may occur early as the solver
ignores lazy variables by unnecessary branching on
them.

It should be noted, a variable may be marked lazy even if it
has already been assigned a value at an earlier decision level.
Given a SAT outcome for a problem instance, the final value
of a lazy variable may be different from the one assigned by
the solver. To see this, the final value of the lazy variable
is tmplied by value assignments of free variables in the SAT
solution. In other words, the values are found by simulating

the value assignment on the free variables. Therefore, logic
assignments on lazy variables for a SAT outcome can be ig-
nored. Note that if input signal are marked lazy, these lines
can be assigned X or implied values as in ATPG.

Example 1 Recall that line b and its dominator region (in
dotted circle) in Fig. 1 is marked lazy when a = 0. Assume
that at this decision level, the CNF' can be satisfied and that
all lines in the support of the dominated region remain free?.
Given the satisfying assignment (hypothesis), the values for
line b and all lines dominated by b, such as v and w, can
be determined from the set of logic values {0,1, X} with logic
stmulation of value assignments in the support (thick arrows)
of the region.

A different way to view the impact of lazy variables in the
decision making process is to consider the expanded truth ta-
ble of the family of circuits with k lines, including n primary
inputs 1, x2,...,xn, and m primary outputs yi,y2,...,Ym-
This table is shown in Fig. 2(a) and it has 2* rows as it con-
tains all possible value combinations for k variables. Note
that our definition and use of the expanded truth table is
different to the one presented in [11].

Given a specific circuit in the family of circuits with k lines,
one may shuffle the rows of the expanded table as follows.
The top part of the table contains all 2" valid combinations
of circuit line values for the complete input vector space. In-
tuitively, each row in the legal part of the table can be seen
as a snapshot of the circuit when simulated for the respec-
tive input vector. The bottom part of the table contains the
remaining rows, that is, invalid simulation snapshots of the
circuit under consideration. Some assignments in the valid
space of the circuit lead to SAT while any other part of the
valid space gives UNSAT depending on the goal at hand. How-
ever, the complete 2* space of the expanded truth table can
be intuitively seen as the solution space for any SAT solver.

When variables, such as v and w in Fig. 1, are marked lazy,
the SAT solver excludes them from the decision process. In
terms of the expanded truth table, it means that the columns
corresponding to these variables can be excluded leading to
a smaller table. This “compacted” truth table contains less
variables for the solver to branch, as shown in Fig. 2(b),
speeding up the overall performance. It should be noted
that the expanded truth table is not implemented as part
of the solver but we merely use it here to illustrate various
concepts.

Marking variables lazy has the additional benefit of un-
doing some “bad” decisions made earlier by the solver. To
illustrate this point, assume that the solver assigned w = 1
and v = 1 before it assigns ¢ = 0 and marks w and v as
lazy in Fig. 1. Also assume that there exist an indirect im-
plication [7] w =1 = v = 0 in the circuit. In other words,
a traditional solver would eventually conflict and backtrack
from decision a = 0 just to realize that w =1 and v = 1 is an
illegal combination and learn the implication w =1 = v = 0.

Clearly, the value assignments on w and v lead the solver
to search part of the invalid space of the design. However,
in the suggested configuration, when a gets assigned to 0 the
invalid decision on w and v is erased. This is because both

2If some of these lines are eventually marked lazy, a similar
argument can be made using the new support of those lines.

X Xplw g a v hly Ym
0 0/o 1 1... 0 OO 0| v
A
L
I
1 1f1 1 1... 1 01 1| D
I
1 of1 0o 1... 0 OO 0N
A%
A
L
I
1 0]1 1 1... 0 0|1 ol p

(a)

X, XplW g a V] hly, Ym
0 0 1 1. 0] O 0] v
A
L
I
1 1 1 1. 0] 1 1| b
I
1 0 0o 1. 0] O Of x
v
A
L
I
1 o | 1 1 |] o] 1 0| p

(b)
Figure 2: Expanded Truth Table

variables are marked as lazy and the solver is presented with
a new solution space, indicated by the table in Fig. 2(b),
where the variables that pertain to the implication do not
even exist. However, implications of lazy variables on free
variables may still cause the solver to backtrack.

We may conclude, that ODCs are useful because they re-
duce the search space dynamically. Experiments presented
later in this paper confirm this theoretical behavior. They
also indicate that the proposed method reduces the number
of backtracks to improve performance.

4.2 Controllability DCs

Controllability DCs are variable (line) assignments that can-
not be justified under any primary input test vector. For
instance, if implication w = 1 = v = 0 holds for the circuit
in Fig. 1, then value assignment (w = 1,v = 1) cannot be
justified. Intuitively, CDCs are combinations of logic values
that belong in the invalid portion of the expanded truth table
of the circuit in Fig. 2(a).

Obviously, this definition of CDCs results in numerous
combinations to be examined. In the proposed approach,
we consider CDCs at input of cones that partition the cir-
cuit. As explained earlier, stems (cone input) present an
increased complexity in digital VLSI due to their reconver-
gent property[3] [4]. In this work, cones and their respective
stems allow for a systematic view of CDCs; however, one
may consider alternate ways to handle CDCs.

CDCs are computed in terms of clauses for each cone in-
dependently in a pre-processing step. They are later added
to the CNF of the circuit under consideration. The pre-
processing step works as follows.

Given a cone with p inputs, pre-processing first extracts
all circuitry from the original circuit that fans-in to this cone
and create a new circuit with p primary outputs. For exam-
ple, in Fig. 3 the extracted circuitry of cone B is shown within
thick dotted lines. Following this extraction process, we run
a SAT solver on this new circuitry to identify combination
of values on these p lines that cannot occur.

To reduce the number of combinations needed to be ver-
ified, parallel logic simulation [4] is performed for a small
number of test vectors (usually less than 700 vectors). Com-
bination of logic values from simulation on the p inputs of
the cone are accumulated since they are guaranteed not to
be CDCs. We call these viable combinations. Viable combi-
nations are inserted as clauses in the CNF of the logic cone
where the literals take the inverted polarity of the simula-
tion value. This way the SAT solver is left with the space
of potential CDCs to prove. For example, if simulation of
some vector gives (b,¢,d) = (1,0, 1) for a cone with inputs
b,c and d, then clause (b’ + ¢ + d’) is inserted. For cones
with a large number of inputs (more than 7), the number of
viable combinations returned by simulation may be large. In
this case, we compress all viable combinations using BDDs
[3] into cubes. This has the desirable effect to minimize the
number of clauses inserted in the CNF.

Given the new CNF for the cone, the SAT solver is pre-
sented with a search space that represents a set of potential
CDCs. Every SAT solution from this space identifies for-
mally a viable combination. To reuse the computation, the
solver does not reset but every new viable combination is
added “on the fly” as a learned clause to force the solver to
backtrack and explore the remaining portion of the solution
space. Eventually, the solver will exhaust the solution space
and return UNSAT.

At that point, the set of CDCs for the particular cone
is known and they are later appended in the CNF of the
original circuit. It should be noted, CDCs are computed
only once for the circuit using the above pre-processing step
but they can be used many times since, in the digital VLSI
cycle, the same circuit usually undergoes multiple steps such
as synthesis, testing, optimization, etc.

In some cases, CDCs may be time consuming to prove. In
these cases, we limit the size of circuitry extracted. Instead
of extracting logic up to the primary input of the circuit, we
specify the number of cone levels to extract. For example,
when examining CDCs for cone D in Fig. 3, we may extract
circuitry that does not go past cone A or, equivalently, 2
cones of logic prior to D.

Clearly, if the solver proves a CDC using a set of cones that
do not reach the primary input, this combination of values
is not viable through the primary input as well. However,
the opposite statement is not true and potential CDCs can
be viable combinations using a small cone circuitry but they
may not be viable using the primary input. Therefore, this
heuristic acts as a trade-off between the amount of CDCs
one proves and the time allocated to prove them.

Finally, cones are examined moving from primary input
towards primary output. With respect to Fig. 3, this implies

CDC Computation
—

Figure 3: Controlability Don’t Cares

that CDCs for cone A are examined first, cones B and C
next, cone D, and so on. All CDCs proven by the tool are
inserted in the CNF of the circuitry for cones examined later.
This topological visit of the circuit and re-use of information
has been shown helpful when dealing with circuit-based SAT
instances [9].

5 Experiments

To evaluate the techniques described in Section 4, we imple-
mented them into the latest version of the SAT solver zChaff
[10]. Experiments are performed on a SunBlade 100 work-
station with 512MB of memory using benchmarks from the
ISCAS’85 family of circuits. The results are reported in the
following tables and expanded upon in the next paragraphs.
All CPU run-times are in seconds.

The performance of the enhanced solver is tested for both
UNSAT and SAT cases. UNSAT experiments are performed in
terms of logic verification: a circuit is either verified against
a duplicate copy of itself or against an optimized version of
itself using SIS [12] (script.rugged). Experiments of the
latter category have a letter “o0” following the circuit name.
In the SAT cases we test the performance of the proposed
techniques on some hard to detect stuck-at faults.

Performance gains for both cases are demonstrated against
the tool operating with no knowledge of don’t cares. For the
UNSAT cases, we evaluate the performance of the ODC and
CDC techniques both separately and together. In the tables
that follow, we do not include small benchmarks because the
original tool is fast enough (i.e., under one second) and does
not justify the overhead of the proposed approach.

Table 1 shows a snapshot of the CDC performance on a
set of benchmark circuits at a maximum user-specified cone
level of 8. Since the main contribution of CDCs is to prune
the search space by introducing new clauses, we indicate
how many potential CDCs are verified to be CDCs at pre-
processing in column 2. The third column shows the number
of potential CDCs still unproven at this cone level. The total
number of CDCs tested is the sum of these two columns.

The final three columns of the table show the CPU times
required for zChaff, the pre-processing time (that is, the time
required for vector simulation and verification of potential
CDCs), and the final solve time using the enhanced formula
with CDCs. The sum of columns 5 and 6 is the total time
required to solve the UNSAT problem. In the experiments it

75520

— #0of CDCs
—x CPU verify
6001 ---- CPU process | 3000
g "
<z o
<3
400 2500 Ay
E v
a &
200+ 42000
cone levels
(@)
35400
300} . {600
2 £
o 200 / 1400 2,
& 5
c >
100+

cone levels

(b)

Figure 4: Controllability DCs Statistics

was noticed that the most benefit occurred when only CDC
clauses with 5 or less literals were collected. We restrict
the number of CDC clauses added because too many may
degrade performance and provide little information. The
numbers in Table 1 indicate improvement in performance
when using CDCs.

For two circuits we study the CDC behavior in more detail.
Fig. 4 illustrates the general trend of a CDC incorporated
solver for circuits ¢75500 and ¢85400. It shows the time to
pre-process the CDCs, the number of proven CDCs, and the
time to verify the CDC enriched circuits versus the level of
cones. It is observed that a higher number of cone levels
increases the number of CDCs proved. Ideally all CDCs
are computed if the extracted region contains all circuitry
including primary input(s). The processing time tends to
increase with the number of cone levels.

The next few paragraphs elaborate on the performance
of ODCs. In addition to the theory developed in subsec-
tion 4.1, we bias the VSIDS [10] variable selection process
further as follows. In the original implementation, the unas-
signed literal that occurs most frequently is always selected
for branching. In the modified version, we consider a range
of the top 7 such literals and select the one that produces
the largest amount of lazy variables. We also experimented
with other heuristics that bias the variable selection process
such as setting variables to the controlling value of the gate
they fan-in first. However, those heuristics seem to degrade
tool performance when compared to the original/proposed
selection process.

Table 2 evaluates the ODC technique for the UNSAT cases.
The number of backtracks incurred by the solver is often used

ckt CDCs | CDCs CPU (sec)
name | proved | left | zChaff [process | proposed
1908 122 0 14 <0.1 2.7
¢19080 85 7 2.5 <0.1 3.9
2670 182 2 14 1.0 0.3
¢26700 208 3 7.2 1.3 0.2
¢3540 618 14 48.9 30.0 34.7
35400 511 24 158.4 8.4 87.8
5315 1170 30 69.2 14 59.4
¢53150 876 30 153.2 1.3 74.5
c7552 3150 34 177.1 6.6 49.3
c75520 | 2501 35 282.0 5.7 97.9
Avg 942 18 90.1 5.6 41.1

Table 1: Controllability DCs in UNSAT

ckt zChaff Proposed
name back- | CPU | back- | CPU
tracks | (sec) | tracks | (sec)
¢1908 5349 1.4 | 6953 1.9
c19080 | 6930 2.5 4807 2.1
c2670 4188 1.4 3307 1.5
c26700 | 11371 7.2 4223 3.3
¢3540 37396 | 48.9 | 37986 | 69.4
¢35400 | 80838 | 158.4 | 44125 | 102.3
cd315 60989 | 69.2 | 22235 | 22.3
¢b3150 | 99788 | 153.2 | 32275 | 36.6
¢7552 | 110950 | 177.1 | 33909 | 52.7
¢75520 | 151062 | 282.0 | 38516 | 72.9
Avg 56886 | 90.1 | 22834 | 36.5

Table 2: Observability DCs in UNSAT

as an indicator of its relative efficiency [13]. These numbers
are indicated in columns 2 and 4 for the original tool and the
one enhanced with ODCs, respectively. It is clear that the
number of backtracks is usually reduced by a factor of 2 for
the ISCAS’85 circuits. This is also the trend for the number
of decisions made but we omit the result due to lack of space.
The total solve times are presented in columns 3 and 5. We
observe that the total time is reduced proportionally to the
number of backtracks. This confirms the observation in [13]
that computation and backtracks are related. Clearly, ODCs
have more impact on large circuits where more variables are
marked lazy to reduce the number of backtracks/decisions
made.

The combined CDC and ODC results for UNSAT cases are
presented in Table 3. The number of backtracks and the
number of proven CDCs are given in columns 2 and 3, re-
spectively. For each circuit we use a fixed cone CDC level
of 7 in the pre-processing step. Process CDC times and ver-
ification times for the proposed approach are indicated in
the last two columns. With the exception of ¢1908, a rela-
tively small circuit where the additional overhead does not
compensate for the improved performance, the data in Ta-
ble 3 illustrate that the combined ODC and CDC methods
provide significant performance gain.

SAT cases are created by adding stuck-at faults. Since
most faults are relatively easy to detect (especially in small

benchmarks), both versions of the tool return a vector very
quickly (under one second). Therefore, we isolate circuits
and faults that dominate the test generation time and use
the dynamic ODC technique to evaluate the performance for
“hard” SAT cases. Results are presented in Table 4.

The number of variables that are marked lazy and are
unassigned by the time the solver returns a solution are il-
lustrated in Column 2. In terms of ATPG, these are similar
to the circuit lines assigned to a logic unknown X when a
vector is found. Note that in our case, the true value can
be one of 0,1 or X. The next column has the total num-
ber of variables in the circuit. It is interesting to notice
that a large fraction of the variables remain unassigned as
in ATPG. Columns 4 and 5 compare the average CPU times
per circuit for the original and new tool, respectively. The
benefit of the ODC technique is apparent as it provides a
considerable improvement for SAT cases.

6 Conclusions

Boolean satisfiability models various digital VLSI problems.
For this reason, efficient SAT solvers are of interest in the
research community as well as the industry. In this paper,
we presented a method where existing solvers use structural
circuit information to take advantage of a design’s don’t care
space. Experiments demonstrated that these techniques sub-
stantially improve the performance of an existing state-of-
the-art SAT solver.

References

[1] M. K. Ganai, L. Zhang, P. Ashar, A. Gupta and
S. Malik, “Combinational strengths of circuit-based
and CNF-based algorithms for a high-performance SAT
solver,” in IEEE DAC, pp. 747-750, 2002.

[2] A. Gupta, A. Gupta, Z. Yang and P. Ashar, “Dynamic
Detection and Removal of Inactive Clauses in SAT with
Application to Image Computation,” in IEEE DAC,
pp. 536-541, 2001.

[3] G.Hachtel and F. Somenzi, “Logic Synthesis and Verifi-
cation Algorithms,” Kluwer Academic Publishers, 1996.

[4] N. Jha and S. Gupta, Testing of Digital Systems, Cam-
bridge University Press, 2003.

[5] T. Kirkland and M. R. Mercer, “A Topological Search
Algorithm for ATPG,” in IEEE DAC, pp. 502-508,
1987.

[6] A. Kuehlmann, M. Ganai, and V. Paruthi, “Circuit-
based Boolean Reasoning,” in IEEE DAC, pp. 232-237,
2001.

[7] W. Kunz and D. K. Pradhan, “Recursive Learning: A
New Implication Technique for Efficient Solutions to
CAD Problems—Test, Verification, and Optimization,”
in IEEE Trans. on Computer-Aided Design, vol. 13,
no. 9, pp. 1143-1158 September 1994.

[8] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability,” in IEEE Trans. on CAD, vol. 11, no. 1,
pp. 4-15, Jan. 1992.

[9] F. Lu, L.-C. Wang, K.-T. Cheng and R. Y.-Y. Huang,
“A Circuit SAT Solver with Signal Correlation Guided
Learning,” in Proc. of IEEE DATE, pp. 892-897, 2003.

ckt back- | # of CPU (sec)

name | tracks | CDCs | zChaff | process | proposed
¢1908 14081 122 1.4 <0.1 3.7
¢19080 | 6479 85 2.5 <0.1 4.1
¢2670 474 182 1.4 0.9 0.4
c26700 | 638 208 7.2 2.8 0.7
c3540 | 24613 | 614 48.9 26.3 34.8
c35400 | 34425 | 507 | 158.4 0.9 1.7
cH315 8841 1162 69.2 1.7 9.5
c¢H3150 | 15875 | 868 153.2 1.7 15.5
c7552 | 28688 | 3150 177.1 8.5 44.8
¢75520 | 34903 | 2501 | 282.0 7.6 74.5
Avg 16902 940 90.1 5.1 26.4

Table 3: Combined results on UNSAT

ckt # lazy | # of total CPU (sec)
name | variables | variables | zChaff [proposed
3540 619 2092 25.7 1.4
¢35400 886 2796 77.6 39.5
5315 1551 3953 34.8 1.5
cH3150 1679 4681 92.3 4.7
c7552 1590 5399 57.1 1.3
c75520 1830 6578 67.7 1.3
Avg 1359 4250 59.2 8.3

Table 4: Results on SAT

[10] M.H. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and
S. Malik, “Chaff: Engineering an Efficient SAT Solver,”
in IEEE DAC, pp. 530-535, 2001.

[11] S. M. Reddy, “Complete Test Sets for Logic Func-
tions,” in IEEE Trans. on Computers, vol. C-22, no. 11,
pp. 1016-1020, Nov. 1973.

[12] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Bray-
ton, and A. Sangiovanni-Vincentelli, “Sequential Circuit
Design Using Synthesis and Optimization,” in IEEE
ICCD, pp. 328-333, 1992.

[13] J. P. M.-Silva and K. A. Sakallah, “GRASP — A Search
Algorithm for Propositional Satisfiability,” in IEEE
Trans. on Computers, vol. 48, no. 5, pp. 506-521, May
1999.

[14] P. Tafertshofer, A. Ganz and M. Henftling, “A SAT-
Based Implication Engine for Efficient ATPG, Equiva-
lence Checking and Optimization of Netlists,” in IEEFE
ICCAD, pp. 648-657, 1997

[15] A. Smith, A. Veneris and A. Viglas, “Design Diagnosis
Using Boolean Satisfiability,” in IEEE ASP-DAC, 2004.

