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Abstract—Memory controllers in modern GPUs aggressively
reorder requests for high bandwidth usage, often interleaving
requests from different warps. This leads to high variance in the
latency of different requests issued by the threads of a warp.
Since a warp in a SIMT architecture can proceed only when all
of its memory requests are returned by memory, such latency
divergence causes significant slowdown when running irregular
GPGPU applications. To solve this issue, we propose memory
scheduling mechanisms that avoid inter-warp interference in
the DRAM system to reduce the average memory stall latency
experienced by warps. We further reduce latency divergence
through mechanisms that coordinate scheduling decisions across
multiple independent memory channels. Finally we show that
carefully orchestrating the memory scheduling policy can achieve
low average latency for warps, without compromising bandwidth
utilization. Our combined scheme yields a 10.1% performance
improvement for irregular GPGPU workloads relative to a
throughput-optimized GPU memory controller.

I. INTRODUCTION

The energy efficiency of Graphics Processing Units
(GPUs) [28] and the development of high-level parallel pro-
gramming models such as CUDA [39] and OpenCL [29] have
led to the increasing adoption of the GPU for running data-
parallel workloads. The most recent energy-efficient supercom-
puters all rely heavily on general purpose GPUs (GPGPUs)
to scale up their parallel and floating point throughput [19].
Efforts to scale GPU performance and energy-efficiency are
critical to enabling the next-generation of Exascale supercom-
puters [5].

The data-parallel, SIMD nature of GPU architectures have
traditionally been optimized for dense, highly-structured work-
loads common in graphics applications. There has been con-
siderable effort in recent years, however, to develop GPU
implementations of a wide variety of parallel algorithms from
the High Performance Computing (HPC) and the enterprise
domains. Many of these applications are irregular and exhibit
control flow and memory access patterns that are not readily
amenable to the GPU’s architecture [12], [21], [34], [36]. In
particular, many of these new irregular applications demon-
strate significant Memory Access Irregularity (MAI) [11] that
leads to performance bottlenecks [9]. The memory accesses
in these programs are often data dependent, and they tend to
have less spatial locality compared to traditional graphics and
regular general-purpose GPU applications.

One source of MAI-induced performance degradation is the
Single-Instruction, Multiple-Thread (SIMT) execution model
of GPUs. In the GPU, each SIMT core runs a group of
threads (a warp) in lockstep. When a warp issues a load
instruction, the warp will block once an instruction dependent
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upon the load data becomes the next to issue. This warp is
unable to make progress until all the data for the constituent
load instructions is available. Given the SIMT architecture, a
single delinquent load can block forward progress of the warp.
This introduces the problem of memory latency divergence
– a warp can be stalled until the last memory request from
a vector load instruction is returned, potentially long after
other memory requests from the vector load have completed.
In many workloads, this load latency cannot be hidden by
executing other warps. Several studies have highlighted how
memory latency divergence can be a significant performance
bottleneck in GPUs [35], [45]. This problem of memory
latency divergence is not unique to GPUs and can also manifest
itself in other SIMD/vector architectures that support “gather”
load operations (e.g. [2]).

Memory latency divergence arises from several factors.
First, the cache hierarchy can service different requests at
different times due to hits and misses at various levels. Second,
current GPU memory controllers are primarily optimized to
support traditional, structured workloads with low degrees of
MAI. These modern GPU memory controllers will extensively
re-order incoming requests to maximize memory system band-
width with no explicit policy to manage the relative service
time of different requests from the same warp. The out-of-
order service can often delay a subset of the requests from
one warp while memory requests for other warps (and other
GPU functions) are serviced.

In this paper, we focus on reducing the latency divergence
arising from DRAM accesses due to the memory controller’s
scheduling decisions. We focus on the main memory system
because it is the source of the most significant portion of
memory latency divergence. While cache hits can cause some
requests to be serviced with relatively low latency, the concur-
rent execution of thousands of threads in a GPU causes caches
to have poor hit-rates. Consequently, several requests for a
warp will often be serviced at the memory controllers. Through
an opportunity analysis we show that if a system could
eliminate all main memory latency divergence, then overall
GPU performance improves by 43%. Consequently, the crux
of our proposals focus on enabling the memory scheduler to
ensure that different requests from a warp are serviced together,
or in quick succession, without interference from other warps.
To achieve this objective, we propose handling the requests
from a warp loosely as a single group (called a warp-group)
at the memory controller. We then use a novel prioritization
scheme between different warp-groups to reduce the average
memory-induced stall time for all warps (Section IV-B). We
also observe that a significant fraction of warps issue requests
to multiple memory channels. In a baseline GPU, each channel
operates completely independently and thus requests issued
by the same warp encounter different latencies at different
controllers. We show that if the memory controllers are ableSC14, November 16-21, 2014, New Orleans
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to exchange limited information to coordinate their scheduling
decisions, we can achieve further reductions in latency diver-
gence (Section IV-C). In essence, by exchanging information
between GPU cores and memory controllers, we are enabling
warp-aware memory controllers.

While reducing latency divergence is important for irregu-
lar GPGPU applications, bandwidth is still a first-order concern
for applications both with and without MAI. We address this
issue in two ways. First, the prioritization function described
in Section IV-B ensures that when warps exhibit row-locality
at the DRAM (as in regular GPGPU compute applications
and graphics applications), the proposed scheduler works at
least as well as a bandwidth-optimized baseline. Second, for
applications with MAI, we relax the requirement of servicing
all of a warp’s requests in perfect succession. We formulate a
policy (Section IV-D) that achieves high bandwidth utilization
and reduced average warp completion times by overlapping
row-hit requests from one warp with row-miss requests from
other nearly-complete warps. Finally, we augment our warp-
aware scheduler to also be aware of upcoming write drain
periods in the memory system (Section IV-E). Our combined
policies achieve a 10.1% performance improvement over a
throughput optimized baseline, and a 7.3% improvement over
a previously proposed SIMT-aware memory scheduler.

II. BACKGROUND

In this section, we take a brief look at the typical architec-
ture of a modern GPU and its DRAM scheduler.

A. GPU Cores

A GPU consists of a number of compute cores (Streaming
Multiprocessor or SM in NVIDIA parlance) each of which
is assigned one or more groups of warps to execute. Each
SM consists of multiple SIMD lanes (we model 32 lanes) and
threads in a warp are run on these lanes in lockstep. On a
load instruction, each lane generates a memory request and
the warp is blocked till all the requests are serviced by the
memory.

B. Memory System

The SMs have private L1 caches and are connected to
different memory partitions through a crossbar interconnect.
Each memory partition consists of a slice of the shared L2
cache and a GDDR5 channel (we model 6 memory channels
for our studies). Each GDDR5 [23] channel is typically 64-bits
wide with the command and address bus running at 1.5 GHz.
The data bus runs at 3 GHz and is DDR. Each GDDR5 chip
has 16 banks and we consider two x32 GDDR5 devices per
channel that are operated in tandem as one rank. The GDDR5
chip architecture is specialized for high bandwidth. It has
higher bank counts, the banks are organized into bank-groups
that accommodate lower bank-conflict delays between different
bank groups, a higher I/O frequency, and a more robust power
delivery network that allows more frequent row-activations
compared to DDR3 (i.e., enabling a lower tFAW). We model
all of these aspects in our simulations (Section V).

Fig. 1. Baseline GPU Memory Controller

C. Baseline Memory Controller Organization

Memory controllers in throughput processors are optimized
to provide high bandwidth. Fig. 1 shows the components of a
typical GPU memory controller (GMC) that we model as the
baseline for our studies.

The Read Queue 1 and the Write Queue 2 buffer the
read and write requests received from the interconnect along
with associated information such as address, requester (SM
id), and arrival timestamp. As requests arrive, they are sorted
by their bank and row addresses, and entered into the Row

Sorter 3 . The row sorter may have (say) eight entries per
bank, representing pending requests to different rows in that
bank. Each new request is merged with an existing entry (to
form a stream of row-hit requests) or creates a new entry in the
row sorter. The Transaction Scheduler 4 picks requests from
the row-sorter and enqueues the commands required to com-
plete the request in the corresponding Command Queue 5 .

The transaction scheduler picks a row-hit stream from the
row sorter to service in each bank and interleaves requests to
different banks, thus exploiting row-buffer locality and bank-
level parallelism. To limit latency, the transaction scheduler
also attempts to prevent the starvation of older row-miss
requests by using an age-based prioritization threshold, as well
as a maximum row-hit streak limit.

Write requests to DRAM are the result of write-backs
from the last level cache and are not on the critical path for
program execution. Writes are buffered in the write queue and
are drained when the write queue occupancy rises above a
high water mark or when there are no requests in the read
queue [14], [48]. The write requests are typically drained
until the write queue occupancy reaches a low water mark.
This mechanism ensures that the bus does not frequently
alternate between reads and writes, thus reducing the DRAM
bus turnaround penalties (tWTR).

The Command queues are maintained on a per-bank basis
(since most GPUs only have a single rank on a channel)
and store the DRAM commands (e.g., ACT, PRE, COL RD,
COL WR) for transactions that have been scheduled by the
transaction scheduler. The Command Scheduler 6 is respon-
sible for issuing the DRAM commands to the GDDR5 chips.
The command scheduler enforces low-level command timing
restrictions and tracks the state of the different DRAM banks.
It iterates over the different queues to interleave requests to
different ranks/banks so as to leverage bank-level parallelism.
However, within a bank, it issues commands in queue order to



Fig. 2. Coalescing efficiency.

avoid disrupting the scheduling decisions taken by the transac-
tion scheduler. The bank-group architecture of GDDR5 has the
advantage of lower inter-command delays when commands are
issued to different bank groups [23]. The command scheduler
thus tries to interleave requests between different bank groups
first and then within each bank group through a multi-level
round-robin policy.

In GPUs, the address mapping policy is designed to harvest
spatial locality in the access stream and high parallelism across
channels, ranks, and banks. First, consecutive cache lines are
mapped to the same row in the same bank to promote row
buffer locality. To exploit bank- and channel-level parallelism,
blocks of consecutive cache-lines are interleaved across the
memory channels and banks at a granularity of 256 bytes.
In addition, to prevent pathological channel camping, where
unusual access strides lead to excessive contention on one
or few of the six simulated channels, the channel address is
formed by XOR-ing a subset of higher-order bits with some
lower order bits to provide a better spread across the channels
as follows:

channel address =

{addr[47:11]:(addr[10:8] XOR addr[13:11])} % 6

Similarly, to prevent strided accesses from camping on the
same bank, the bank address is formed by XOR-ing the bank
address bits with a portion of higher-order address bits from
the cache set index [53].

III. MOTIVATION

A. Architectural Influences on Memory Latency Divergence

In this section we look at the architectural features in GPUs
that affect memory latency divergence (besides the obvious
SIMT execution model) and those that try to mitigate latency
divergence.

Memory Coalescing: A common architectural technique that
reduces memory bandwidth demand in SIMD architectures is
memory coalescing. In this technique, the individual requests
from a warp are combined, based on their target address, to
form as few cache-line sized (128B) requests as possible. Coa-
lescing is primarily designed to reduce bandwidth requirements
by eliminating redundant accesses to the same cache line.
However, it also reduces the opportunity for memory latency
divergence by minimizing the number of distinct memory
requests per warp. Coalescing is not effective, however, if
the data touched by the threads in a warp are not spatially
colocated, as is commonly the case in irregular applications.
Based on our simulations, we found that the coalescer is

extremely effective for traditional compute workloads from the
CUDA SDK [39], but its effectiveness falls short for workloads
with irregular memory accesses. Fig. 2 shows that 56% of
loads (the black bar) issued by irregular programs result in
more than one memory request and that on average each load
generates 5.9 memory requests after coalescing (benchmarks
and evaluation techniques explained in Section V). This shows
that innovations beyond the coalescer are needed to handle
memory divergence for irregular applications.

GPU memory schedulers: A warp’s requests arrive at the
memory controller within short intervals of each other. So, at
a first glance, it might seem that a scheduler that processes
requests in arrival order would have the effect of servicing
a warp’s requests (a warp-group) together. However, in prac-
tice, the requests from different SMs arrive at the memory
controller through the interconnect after L1 and L2 lookups.
Thus, memory accesses from different warps intermingle at
the read queue and this interleaving renders a simple First-
Come, First-Serve (FCFS) policy ineffective. Also, while the
transaction scheduler may process a warp-group in a roughly
FCFS manner, the individual requests will get placed in per-
bank queues that may have different occupancies. As a result,
the warp’s requests do not complete within short intervals
of each other under the FCFS policy. Further, a naive FCFS
policy leads to extremely poor bandwidth utilization. A simple
First-Ready First-Come-First-Served (FR-FCFS [42]) or the
state-of-the-art GMC scheduler will be much more bandwidth
efficient, but will aggressively re-order requests to maximize
requests to open DRAM rows. If all the requests from a warp
are targeted to the same row in the same bank, a FR-FCFS or
GMC policy will naturally yield most of the benefits of a warp-
aware policy. We observed, however, that warps in irregular
GPGPU programs often issue requests to different rows, banks,
and channels of DRAM. On average, a warp touches 2 banks
and out of its requests, only 30% belong to the same DRAM
row. This was also observed by Lakshminarayana et al. in a
previous study [32]. These request characteristics require an
effective warp-aware scheduler to consider bank occupancies,
memory intensity of warps, and write queue drain policies
to reduce latency divergence and simultaneously maintain
good bandwidth utilization for regular compute and graphics
workloads.

Multithreading: GPU SIMD cores leverage thread-level par-
allelism to hide memory access latency. The effect of long
divergence-induced stalls can be mitigated if there are enough
ready warps in the system to hide the latency of the slowest
request. Previous studies [18], [27] have shown, however, that
in spite of having a large number of thread contexts to choose
from, a GPU SIMD core will frequently sit idle as all the
warps are stalled on pending memory accesses. For instance,
recent NVIDIA GPUs support at most 48 to 64 warps within
a compute unit [1], while main memory latencies have been
measured to exceed 400 cycles [22]. Thus, it is clear thread-
level parallelism cannot always completely hide main memory
access latency [7].

Caches: Average memory latency can be improved with
caching. Requests from a warp that hit in a cache can be
returned sooner. Furthermore, the corresponding reduction
of traffic that would otherwise be serviced at the memory
controller allows other requests to be serviced with reduced



Fig. 3. Extent of memory latency divergence.

queuing latency and contention for DRAM resources. For
memory latency divergence to be meaningfully addressed with
caches, a substantial fraction of warps must be able to serve
all of their memory requests with cache hits. Otherwise, the
cache misses for a warp-group will be serviced by the memory
controller, and face issues described above. Schemes that
exploit better utilization of the cache space [43], [44] may
provide synergistic benefits with the memory-controller-based
proposals in this work.

B. Quantifying Memory Latency Divergence

The performance penalties associated with memory latency
divergence have been documented in recent work [35], [45]. In
this section, we further analyze the impact of DRAM latency
divergence, particularly on workloads that exhibit MAI.

Main Memory Latency Divergence. To assess the scope of
main memory latency divergence, we measure the average gap
between the first and last request served by the main memory
for each warp (Fig. 3, showing results only for benchmarks
that generate more than one memory request on average per
load after coalescing). This provides an estimate of the main
memory latency divergence in each benchmark. We see that
on average, the last request’s latency is 1.6× the latency
of the first request. This is the latency as seen by the SM
and includes arbitration, interconnect, L2 lookup, and queuing
delays at the memory controller. The latency of a DRAM
request is dependent on the memory controller’s scheduling
policy. The GMC scheduling policy is optimized to increase
throughput and save power. It does not currently service the
requests from a single warp together or in quick succession.
If a subset of the memory requests belonging to a warp are
de-prioritized by a scheduler (e.g., because they caused row-
buffer misses), then the warp’s progress is hampered. A warp
with a high number of row-buffer hit requests can unduly stall
a warp with fewer, but low-locality requests. Also, interleaving
requests from two different warps can increase the stall-time of
the last request from both warps. This increases the average
effective memory latency experienced by both warps. If the
requests from one of the warps could finish in close succession
with little interference from the other, then the overall average
memory-related stall time for the system would be reduced.
The situation is made worse if requests from a warp are sent
to different memory controllers. The memory controllers take
scheduling decisions independent of each other based on their
local load and request characteristics. Fig. 3 shows that each
warp touches 2.5 memory controllers on average and motivates
the need for coordination between the memory controllers to

Fig. 4. Room for improvement.

Fig. 5. Avoiding Inter-Warp Interference to Reduce Average Effective
Memory Stall Time

reduce latency divergence.

Performance Impact of Memory Latency Divergence. To
estimate the impact of memory latency variation, we look
at two hypothetical systems. In Fig. 4, the first bar (Perfect
Coalescing) shows the performance improvement that could be
achieved if every warp generated exactly one memory access
per load instruction. This leads to a 5× speedup over the
baseline system. This is obviously an unrealizable system. The
second bar (Zero Latency Divergence) shows the performance
improvement that can be obtained if all memory requests
from a warp could be returned to the SM in close succession
without any gaps between them after the first request has
been serviced - in essence, if there was no main memory
latency divergence. The 43% improvement demonstrated by
this experiment represents the upper bound of the improvement
that can be obtained by eliminating memory latency divergence
in GPUs. It is important to note that this model abstracts away
the bank conflicts for all but one request for each warp, but
still faithfully models DRAM bus bandwidth and contention.
Thus, while a real-world warp-aware main memory system
is unlikely to achieve these ideal benefits, the results are
encouraging as they indicate significant opportunity for warp-
aware management of DRAM.

IV. WARP-AWARE MEMORY SCHEDULING

A. Key Idea

The key idea behind the warp-aware scheduling schemes
is illustrated in Fig. 5. It shows two warps A and B issuing
N requests each to the memory system, with each request
requiring a T-cycle service time from memory. If the requests
are processed in an interleaved manner, then the final requests
for warps A and B are returned at cycle (2N-1)*T and 2N*T,
respectively, leading to an average stall time of (2N- 12 )*T



cycles. On the other hand, if warp A could get all its requests
back before B, then the average memory stall time is 1.5N*T
cycles. Our warp-aware scheduling scheme tries to achieve this
effect by reducing inter-warp interference and services requests
from a warp as close together in time as possible. At a high
level, the proposed scheduling policy attempts the following:

• Return all of a warp’s requests in close succession. This
will also require the schedulers in different channels to
coordinate their scheduling decisions.

• Favor shorter warps to reduce the average warp-
completion time, possibly at the cost of increased latency
for some other requests.

• Maintain high bandwidth utilization and low overall
memory latency by exploiting row hits and bank-level
parallelism.

To achieve this, we first make a fundamental change in
the GMC memory controller. As discussed in Section II,
the GMC’s row-sorter creates streams of row-hit requests.
Each stream might consist of requests from different warps.
Instead, we form batches of requests from a single warp
and each such group is called a warp-group. Instead of
selecting a row-hit stream to service, the transaction scheduler
picks a completed warp-group and schedules its requests
before scheduling requests from other warp groups. To aid
the transaction scheduler, priorities are assigned to different
warp-groups based on the controller’s occupancy, and the state
of the DRAM banks. The priorities are dynamically updated
when the state changes in response to the scheduling of new
requests by the controller. In addition, we update the priority of
a warp-group when requests from the same warp are serviced
in a different memory controller.

B. Warp-Aware Scheduling: Single Controller

First we discuss a warp-group scheduling scheme that
bases decisions solely on the information available in a single
controller (referred to as WG). In essence, this is a shortest-
job-first (SJF) scheduler that arbitrates between the different
warp-groups of memory requests with the aim of minimizing
the average service time across all warp-groups. The service
time for a warp-group is the latency of the last-served request
for that warp. It is well-known that SJF can reduce the average
wait time of enqueued tasks, but in a DRAM system, true SJF
can only be achieved by being cognizant of the state of the
DRAM system. Simply considering the number of requests in
a warp-group to determine the shortest job is not adequate.
Due to locality and load on the different banks accessed by a
warp, a warp-group with few row-miss requests may have a
long service time, and stall a warp-group with more requests,
all of which are row-hits. Also, only one row-miss request from
a warp may be pending on a bank with many pending row-
hits, even though all of the warp’s other requests have been
returned from memory. The priority scheme in WG accounts
for the locality and bank-level parallelism of the requests in
the group (besides the total number of requests), the state of
the DRAM banks and bank groups, and the occupancy of
each of the bank-level command queues. The scoring system
effectively calculates the total service time of each completely
formed warp group. The warp-group with the lowest score is
prioritized for servicing and the requests from this warp-group
are serviced together.

Fig. 6. Warp-Aware Memory Controller

1) Scheduling Policy: The “smarts” of the WG scheduler
is in the technique used to rank warp-groups for scheduling.
The scores assigned to each warp-group reflect the completion
times of the warp-groups and are thus inversely related to the
warp-group’s priority. The WG transaction scheduler looks for
a new warp to schedule after the current warp’s requests have
been sent to the command queues and picks the warp-group
with the smallest score (the shortest job). In the case of a tie,
the warp with the highest number of row-hits is picked because
row-hits help minimize DRAM power consumption.

Determining the score of the warp-group requires estimat-
ing the completion latency of the warp-group based on the type
of requests in the warp-group (i.e., row hit/miss), the bank-
level parallelism of the requests in the warp-group, and also
the state of the DRAM banks (number of queued requests, and
active row address). The final score of the warp-group is the
maximum score of its requests.

To determine the score of a particular request, it is impor-
tant to know if it will be a hit or miss in the bank when it
is finally scheduled, i.e., whether the last request scheduled in
that bank has a matching row-address. If the request is a hit,
we assign a score of 1 to it, and if it is a miss, a score of
3 is assigned. The rationale for this is that servicing a row-
miss incurs a delay of 36 ns (tRP+tRCD+tCAS) compared to 12ns
(tCAS) for a row-hit. After assigning the DRAM array access
latency score to a warp-group’s request, we add a queuing
latency score. This is determined by adding the total score of
all the requests pending in the corresponding bank’s command
queue. The scores for a warp-group are updated when new
requests are added, and also when a request is scheduled to a
bank’s command queue.

2) Implementation Details: Fig. 6 shows the microar-
chitecture of the WG controller. Relative to the baseline in
Fig. 1, we see that the Row Sorter structure has been replaced
by a Warp Sorter and Bank Table. The Row Sorter in the
baseline may have 128 entries, each representing a different
<bank,row> tuple. Similarly, the Warp Sorter 3 could
be a 128-entry structure, each entry representing a different
<SM-id, Warp-id> tuple, i.e., a warp-group. Each entry tracks
the different addresses that belong to that warp-group. The
Transaction Scheduler 5 pulls out an entire warp-group
and places the requests and their commands in the respective
Command Queues 5 . The Transaction Scheduler pulls out a
warp-group based on its assigned score. The Bank Table 7
is used to estimate these scores and is described next.

The Bank Table has an entry per bank. The entry for each



bank tracks the pending warp-groups and memory requests
to that bank. For each pending warp-group, a bank score is
maintained, which represents the expected delay to drain that
warp-group. The score is updated as each request is received
from the read/write queues. The score is also updated every
time a warp-group is pulled out by the Transaction Scheduler,
i.e., each bank score is incremented based on the requests
that have just been scheduled to that bank. The Transaction
Scheduler reads these scores every cycle. For a given warp-
group, the maximum bank score represents the warp-group’s
completion time. Among the warp-groups that have been
fully transferred from the SMs to the GMCs, the Transaction
Scheduler picks the warp-group with the smallest score and
sends it to the Command Queues. This requires a mechanism
to determine when a warp-group has been fully transferred
from the SMs – this is done by tagging the last request from a
warp-group to a GMC. Note that the interconnect between the
SMs and GMCs does not re-order requests from a single SM,
even though it can interleave requests from different SMs.

C. Warp-Aware Scheduling: Multiple Memory Controllers

As shown in Fig. 3, in irregular benchmarks, a single warp
often generates requests to multiple memory controllers. The
single channel warp-aware scheduling scheme (WG) can only
ensure that a warp-group is serviced as a unit from a single
channel. However, different warp-groups belonging to the same
warp will have different completion times across the different
controllers. To mitigate this issue, we present a mechanism
that tries to reduce the latency divergence across channels with
coordinated scheduling across the channels.

Overview. We augment the WG scheme so that the priority
of a warp-group in a memory controller is determined not
only by the state of its channel, but also by whether requests
from the same warp have already received service in other
controllers. In this scheme (referred to as WG-M), memory
controllers exchange information over a dedicated point-to-
point interconnect (distinct from the crossbar connecting the
memory partitions and SMs). When a warp-group is selected
for service at a memory-controller, a coordination message,
comprising of the selected warp-id and the score of that warp-
group in the memory controller is broadcast to the other five
memory controllers. The score represents the expected comple-
tion time of the warp-group in the source memory-controller.
Every cycle, a controller checks its five receiver ports on the
coordination network and matches the received warp-group-
ids against the warp-groups in its tracking structures. On a
match, the score of the warp-group may be decreased if the
current controller is deemed to be delaying the warp’s requests
significantly. For this, the received remote completion time,
represented by the remote score (RC), is compared against the
local completion time or score (LC). If RC is greater than
LC, no action is taken. If LC is greater, then the local score
of the warp-group is decreased by (LC-RC) to prioritize the
warp-group.

The primary overhead for this design is a narrow all-to-
all network. We assume a network that has 30 16-bit links.
When a warp-group is selected by a transaction scheduler, a
32-bit message consisting of the SM id, warp id, and local
completion time is sent to the other five memory controllers.

Banks MERB

1 31
2 20
3 10
4 7
5 5

6-16 5

TABLE I. MERB TABLE FOR GDDR5

D. High-Bandwidth Warp-Aware Scheduling

The warp-aware memory scheduling algorithms described
so far target warp-group service time, without concern for
effects on bandwidth utilization. The prioritization of warp-
groups by these schemes can interrupt streaks of row-hit traf-
fic, introducing more frequent row-misses and more DRAM-
timing induced idle cycles on the interface. This reduction in
effective bandwidth results in additional latency in servicing
requests due to increased queuing delays in the memory con-
troller. This increased latency reduces the effectiveness of the
inter-controller coordination mechanisms that are attempting
to minimize warp-group service latency.

To address this challenge, we augment the WG-M policy
with a DRAM request scheduling strategy (called WG-Bw)
that carefully chooses when a row-miss request can be intro-
duced without adversely impacting the delivered bandwidth.
This is achieved by maximizing the overlap of a row-miss
access in one bank with row-hit accesses in other banks. Thus,
the overheads of precharging and activating in one bank are
“hidden” with data transfers from the other banks.

Central to this scheduling scheme is a metric called the
Minimum Efficient Row Burst (MERB). This metric is simply
the number of data transfers required to other DRAM banks
in order to hide the costs of a row-miss in a given bank.
This metric is a function of DRAM timing parameters and
the number of other banks with requests pending to an open
row.

To determine the number of requests needed to hide the
overheads of a row-miss request, we consider the sequence of
commands to transfer data from a given DRAM row. First, an
activate command fetches the data from the DRAM bank’s ar-
rays to its row buffer. After sufficient time has passed (tRCD), a
read command can be issued to read out the data from a portion
of the row buffer. The data is delivered over multiple (tBURST)
cycles. Several read commands can be issued consecutively to
stream out a number of row-hit requests. Finally, a precharge
command can be issued only after sufficient time has elapsed
since the last activate (tRAS) and the last read (tRTP) commands.
This precharge command closes the row so that a subsequent
activate can be issued to that bank after a delay (tRP). It can
be seen from this sequence of operations that the read-to-
precharge delay (tRTP), the precharge-to-activate delay (tRP),
and the activate-to-read delay (tRCD), determine the overhead
to switch from servicing row-hits in a given bank to handling
a row-miss request.

Thus, the MERB value when multiple banks have pending
work is simply the number of bursts required to cover this
overhead divided by the number of other banks with pending
work. Note, however, that another pair of DRAM timing



parameters, the activate-to-activate delay (tRRD) and the four-
activate-window (tFAW), limit the rate at which activates can
rotate among banks. If enough banks have pending requests,
the overhead that needs to be hidden is this period between
activates among the different banks.

Thus, depending on the number of banks with pending
requests, (b), the MERB value is:

MERB =

{

max( tRTP+tRP+tRCD
(b−1)∗tBURST

,
max(tRRD, tFAW

4
)

tBURST
) b > 1

31 b = 1

In the case where only a single DRAM bank has pending
work, there is no way to hide the overheads of a row-miss. If
there are a sufficient number of row-hit requests per activate
command, such that (tRCD + tBURST*n + (tRTP-tBURST+tCK)) ≥

tRAS, then the bandwidth utilization is given by:

utilization =
tBurst ∗ n

tRCD + tBurst ∗ n+ (tRTP − tBurst+ tCK) + tRP

Substituting GDDR5 values, if there are 2 or more read
requests per activate to a single bank, the utilization is:

utilization =
1.33 ∗ n

(1.33 ∗ n) + 25.33

Thus, we set the MERB value to 31 (the limit of a 5-bit
per-bank counter), which delivers up to 62% utilization in the
single bank case.

This simple table of MERB values, shown for GDDR5
timings in Table I, is indexed by the number of banks with
pending traffic, and can be computed at boot-time or loaded
from the boot ROM of a given product. These MERB values
are used by the memory transaction scheduler to decide how
many row-hit requests should be scheduled before allowing a
row-miss request from an older warp. This simple accounting
scheme requires the memory controller to maintain only a
small 5-bit counter per DRAM bank and the small pre-
computed MERB table. The per-bank counters keep track of
the number of row-hit requests that have been serviced since
the row was activated. When a higher-priority row-miss wants
to be serviced on a given bank and some row-hits are pending
for that bank, the counter is examined and if it is less than
the current MERB value (selected from the table given the
number of other banks that have work pending), the row-
miss is postponed. The additional row-hits are serviced, each
incrementing the counter, until the row-hits are exhausted or
the MERB threshold is met. If the MERB threshold is met,
the number of remaining row-hit requests is examined. If only
one or two row-hit requests remain, then these requests are also
serviced before allowing the row-miss request to be serviced.
This “orphan control” policy prevents a row-miss request from
leaving behind only one or two requests to a row, which itself
would likely lead to poor bandwidth utilization.

This MERB-based scheduling scheme (WG-Bw), therefore,
will try to schedule a number of transfers to each bank so
that precharge/activate timings can be hidden. By holding off
scheduling a row-miss until a given bank has serviced its
minimum efficient row burst of data transfers (plus preventing

Fig. 7. Latency Divergence and Bandwidth Impact of Schedulers (not to
scale)

leaving behind one or two orphan requests), this scheme
ensures that, on average, most row-miss overheads will be
hidden by data transfers in other banks.

In order to keep bandwidth utilization high, this MERB-
based scheduling scheme may introduce a bounded additional
latency to a higher-priority row-miss to allow up to MERB+2
row-hits to be serviced. Since each of these additional row
hit requests can be serviced with 2*(tCK) additional latency,
the total additional latency is bounded at (MERB+2)*2*(tCK).
For the case where only 1 bank has work pending this is
44ns with our GDDR5 timings. A more typical case, where
there are at least 4 banks with pending requests, this is 12ns.
This is a small amount of additional worst-case latency for
these row-miss requests, particularly when considering that a
typical warp-load request sees ∼500ns of total latency. This
small incremental latency to one request enables more effective
bandwidth utilization, thereby reducing average queuing delays
for all requests in the memory controller.

E. Warp-Aware Write Draining

As mentioned in Section II, writes are buffered and drained
in batches in the DRAM controller to avoid frequent bus-
turnarounds (tWTR) [14]. The reads stalled by a write-drain
can experience significant queuing delays [14], [50]. We pro-
pose the WG-W policy, an extension of the WG-Bw policy,
that monitors the write-queue drain and changes the read
scheduling policy before the write-drain is triggered. WG-W
prioritizes warp-groups that have only one request (regardless
of their score), once the write-queue occupancy gets within
eight entries of its high water mark.

F. Summary

Fig. 7 shows how we navigated the latency divergence
vs. bandwidth utilization space to develop the warp-aware,
bandwidth-optimized scheduling schemes starting from the
baseline GMC.

V. METHODOLOGY

We use GPGPU-Sim version 3.1.2 [3], [8], which has been
verified against real hardware for a range of different ker-
nels [4], to model a GPU similar to the NVIDIA GTX-480.The
salient features of the GPU are listed in Table V. We integrate
the DRAM timing model from the USIMM [13] DRAM
simulator after modifying USIMM to model GDDR5 timing
and the GMC-model described in Section II-C. We model a



GPU System Configuration

No. of Compute Units 30
Warp Size 32

Max Threads/Core 1024
L1 cache/Core 32KB, 128B cache-line size

8-way assoc. LRU
Number of DRAM channels 6
L2 cache/Memory partition 128KB, 128B line-size

16-way assoc, LRU
DRAM device Hynix GDDR5 H5GQ1H24AFR [23]

6 64-bit Channels
DRAM 2 x32 Chips/Channel

Configuration 16 Banks/Chip
4 Banks/Bank Group

GDDR5 Pin Bandwidth 6.0 Gbps
GDDR5 Clk period (tCK) .667ns

DRAM Read Queue 64 entries per controller
DRAM Write Queue 64 entries per controller

High/Low Watermarks 32/16
tRC=40ns, tRCD=12ns, tRP=12ns

GDDR5 tCAS=12ns, tRAS=28ns, tRRD=5.5ns
Timing tWTR=5ns, tFAW=23ns, tWL=4 tCK

Parameters tRTP=2ns, tBURST=2 tCK
tRTRS=1 tCK

tCCDL=3 tCK, tCCDS=2 tCK

TABLE II. SIMULATION PARAMETERS.

Suite Benchmarks (abbreviations)

Rodinia Breadth-First Search(bfs), CFD Solver(cfd)
Needle-ManWunsch(nw), Kmeans Clustering(kmeans)

MARS PageViewCount(PVC), SimilarityScore(SS)
LonestarGPU Survey Propagation(sp), Barnes-Hut(bh),

Single-Source Shortest Paths (sssp)
Parboil Sparse Matrix Dense-Vector Multiplication(spmv),

Sum of Absolute Differences(sad)

TABLE III. WORKLOADS

Hynix 1Gb GDDR5 DRAM part [23] and the timing con-
straints that were modeled are listed in Table V.To evaluate our
proposals we use benchmarks from Parboil [47], Rodinia [15],
Mars [20] and Lonestar [11] suites. Because our proposals
are targeted at irregular GPGPU workloads with MAI, we
selected those benchmarks that are sensitive to memory system
performance and demonstrate memory access divergence (i.e.,
produce more than a single uncoalesced memory access per
load instruction on average). These applications are listed in
Table V. While warp-aware scheduling is targeted at these
irregular benchmarks, in Section VI-A, we discuss the effect
of our proposals on benchmarks that are memory sensitive, but
not memory divergent. We run each benchmark for 1 billion
instructions or to completion, whichever is earlier.

In GPGPU-Sim, TLB misses, and page-walks are not
simulated, because in modern GPUs (which use fairly large
page sizes), TLBs have virtually 100% coverage. In the future,
if TLB misses become important [41], then our schemes will
perform better than the baseline GMC-controller. If a subset
of memory requests from a warp are stalled on a TLB miss,
then our schedulers will not waste precious DRAM bandwidth
to service the other requests for that warp. On the other hand,
the MERB scheme can handle the sparse memory requests
generated by page-table pointer lookups more efficiently by
overlapping them with row-hit streams of other warps.

Fig. 8. Performance normalized to the GMC-baseline

Fig. 9. Effective main memory latency experienced by warps

VI. EVALUATION

In this section, we analyze the performance impact of the
following four scheduling schemes against the baseline GMC.

• Warp-group scheduling per controller (WG)
• Warp-group scheduling across multiple controllers (WG-

M)
• Bandwidth optimized warp-group scheduling for multiple

controllers (WG-Bw)
• Warp-aware write-drain applied to WG-Bw (WG-W)

We also show the benefits of our proposed schedulers over
two other previously proposed GPU memory scheduling
schemes [32], [51]. We finally analyze the impact of our
schemes on regular compute workloads which show no mem-
ory divergence and are typically aided only by throughput
optimizations.

Fig. 8 shows the performance improvement in terms of the
IPC (normalized to the baseline GMC scheduler). The best
performing scheduler (WG-W) obtains a 10.1% improvement
in throughput over the GMC-baseline across the irregular
applications. The performance benefits from the different
scheduling optimizations are largely additive. Fig 9 shows how
the average DRAM induced stall-time for warps (i.e., the time
to service the last request for the warp) is improved by the
different scheduling mechanisms.

The major fraction of the benefit obtained by WG-W comes
from reducing or eliminating the latency divergence for a
warp across the main memory system. We see that the WG-M
scheduler provides a 6.2% average improvement in IPC. When
warp-aware scheduling is contained within each individual
controller (WG), then the average improvement in performance
is limited to 3.4%. The impact of the shortest-job-first policy
imbued in the priority scheme of WG and WG-M scheduling
is reflected in the reduction of the average effective latency of



Fig. 10. DRAM Latency Divergence with Different Schedulers

Fig. 11. Bandwidth Utilization of Different Schedulers

warps. The effective latency of a warp is the time taken for all
of the warp’s requests to be returned by the memory system.
We see in Fig. 9, that the average effective latency is reduced
by WG and WG-M by 9.1% and 16.9% respectively.

To further understand how the two different warp-aware
scheduling schemes impact individual applications, we plot the
average difference in the latency of the first and last request
for a warp under the different scheduling schemes in Fig 10.
This is a measure of the latency divergence for warps. With the
two warp-aware scheduling schemes WG-M and WG, lower
the latency divergence for a warp, lower is the memory stall
time for that warp. The WG-M scheme is more effective than
WG in reducing divergence for warps that spread their requests
across multiple controllers. Applications cfd, spmv, sssp, and
sp thus see higher performance with WG-M than WG as they
touch 3.2 memory controllers on average. On the other hand,
the WG scheme is effective in reducing the latency divergence
for applications sad, nw, SS, and bfs that touch fewer than 2
controllers on average with every warp, and there is no further
improvement for these applications with WG-M.

The benefit of the warp-aware scheduling scheme WG-M is
further enhanced by incorporating the bandwidth optimization
afforded by the MERB policy (WG-Bw). This is especially true
for applications bfs, PVC, and bh where the reduction in band-
width utilization with WG-M (see Fig. 11) negates some of the
benefits of reduced latency divergence. The WG-Bw scheme
improves bandwidth utilization of WG-M by more than 14%
by overlapping row-misses with row-hits in other banks. Also,
by servicing the row-miss from a warp shortly after its other
requests are served, but not in strict succession, the WG-Bw
scheme disrupts the latency divergence savings obtained by
WG-M only marginally. In fact, the WG-Bw scheme achieves
the best of both latency and bandwidth utilization and improves
performance across all the benchmarks by 8.4% over the GMC.

Fig. 12. Write Intensity

The WG-W mechanism ensures that long latency write-
drains do not stall small warp-groups or partially served warp-
groups and improves performance by 10.1% over the GMC.
In Fig. 12, we plot the write-intensity i.e., the percentage
of DRAM traffic that is composed of writes, and also the
fraction of warp-groups stalled on a write-drain that are unit-
sized, or contain orphaned requests. WG-W offers the largest
improvements in applications where both these metrics are
high e.g., nw, and SS. The warp-aware write-drain mechanism
has no negative impact on the bandwidth utilization and only
helps improve the average stall time for warps, thus improving
WG-Bw further.

A. Impact on Non-divergent Applications

While the percentage of GPGPU applications with MAI
are increasing, thanks to the deployment of the GPU in non-
traditional arenas, it is important to ensure that legacy GPGPU
applications, as well as applications that show little or no mem-
ory divergence are not impacted negatively by the new schedul-
ing algorithms. We evaluated the impact of our proposals on a
set of applications which are sensitive to DRAM performance,
often being bandwidth-bound, and have structured data access
patterns with significant intra-warp spatial locality. We looked
at the following applications from Rodinia, MARS and Parboil
suites for this purpose : streamcluster, SRAD2 , Backprop-
agation (bp), HotSpot , InvertedIndex, and PageViewRank.
These applications are sensitive to memory bandwidth, but
have streaming memory access patterns that coalesce into one
memory request in the common case. This is similar to the
memory access patterns demonstrated by graphics applications
as well. We see that with WG-W algorithm, there is a modest
1.8% performance improvement over the GMC-baseline for
this set of benchmarks with no application suffering any
slowdown. This result is not surprising. The scoring system
for ranking warp-groups naturally favors streams of row-hit
requests over row-misses and will thus work very similar to
the GMC-baseline when there is only one request per warp
(or few spatially colocated requests from each warp). This
indicates why there is no degradation. The modest benefits
are the result of the efficient row-miss scheduling under the
WG-Bw policy and also from intelligent scheduling of write-
drains.

B. Power and Energy Impact

The WG-W scheme has a 16% lower row-buffer hit rate
compared to the GMC-baseline. We estimate the impact of
this change on GDDR5 power consumption through a version



of the Micron power calculator [37] modified with current
and voltage values from the simulated GDDR5 datasheet [23].
Since most of the power in GDDR5 chips is spent at the
I/O drivers that drive the high-speed interface, the increased
DRAM array access power due to increased row-misses in-
creases the GDDR5 power by only 1.8%. In addition, com-
pared to a GPU that consumes upwards of 200W of power, the
memory controller consumes very little power. For example,
a complex, programmable memory controller with 128KB of
storage and multiple ALU-like pipelined paths [10] has been
shown to consume only 152mW. Our proposals are signifi-
cantly simpler than the PARDIS controller and hence will not
have any noticeable effect on system power consumption. Once
the improvement in system-throughput from our proposals
is taken in account, there is a net improvement in energy
consumption of the system.

C. Comparison with Other Memory Scheduling Mechanisms

1) Single-Bank Warp-Aware Scheduling (SBWAS): Laksh-
minarayana et al. proposed a SIMT-aware scheduling [32]
for GPUs that incorporates information about the source of
memory requests viz., warp id, and the available TLP in
the issuing SM, to prioritize requests. The scheduler uses a
potential function [46] to decide between issuing a row-hit
request to a bank, and a row-miss request from a warp that
has the fewest requests remaining. A parameter α controls the
bias towards the latter of the two choices, and is determined
empirically for different workloads.

Qualitatively, the four scheduling techniques and opti-
mizations we propose have some fundamental differences
with SBWAS. First, we prioritize warp-groups based on the
shortest completion time and not the shortest request count. As
discussed in Section III-B, this is important for irregular appli-
cations. Second, the MERB scheme can dynamically determine
when to schedule a row-miss request from the selected warp
so that it overlaps with row-hits in other banks. In SBWAS,
the value of α is derived by profiling applications. Third,
the algorithm in SBWAS applies only to a single bank. We
manage the scheduling of requests of a warp across different
banks of a channel (WG), and also across different memory
channels (WG-M). Fourth, writes are interleaved with reads
in SBWAS. We assume a more commonly used write-draining
model which is higher performance and devise a mechanism
to address warp-awareness during write-drain. Finally, the po-
tential function in SBWAS requires a combination of complex
calculations. The BASJF scheme and its derivatives require
simple addition and comparison operations to select a warp-
group.

We compare the WG-W scheme against against SBWAS
for the workloads in Table V. For each benchmark, we deter-
mined the value of α by profiling (possible values being 0.25,
0.5, and 0.75). We found that on average, SBWAS provides
an improvement of 2.51 % compared to the baseline GMC-
baseline. The applications which generate requests to multiple
banks and controllers (e.g., spmv, sp, ssp, cfd) show little
improvement with SBWAS. bfs shows the most improvement
with SBWAS as it touches fewer banks than other benchmarks
(3.8 %). On the other hand, although the application sad
generally touches one or two banks per warp, the high number

of writes erode the benefits of SBWAS when interleaved with
reads.

2) Warp-Aware First-come First-served (WAFCFS): Yuan
et al. [51] proposed complexity-effective memory scheduling
where the interconnect between the SMs and the memory
partitions does not interleave requests from different SMs.
The expectation was that this would expose enough intra-warp
spatial locality for the memory controller to use only a simple
FCFS policy to harvest it. We model this policy using the
WAFCFS scheduler which warp-groups in completion order.
We observe that this leads to a 11.2% performance degrada-
tion compared to the GMC. While the WAFCFS scheduler
can simplify scheduling for regular applications, in irregular
applications, simple in-order servicing of requests from a warp
can hardly achieve any row-hits.

3) CPU memory schedulers: Many ideas have been pro-
posed for efficient memory scheduling in the CPU space.
However, these techniques do not lend themselves to adoption
for GPUs. For example, GPU workloads have lots of threads
and warps with very similar memory demands. Thread Cluster
Memory scheduling [31], that leverages the differences in
memory intensities of threads, would not be as effective be-
cause distinguishing among warps is difficult based on memory
demands alone.

PAR-BS: The PAR-BS scheme [40] forms batches of requests
in a CPU’s memory controller and issues requests from a
batch to the memory system. The express motivation behind
the batch-formation is fairness and as a result, a batch in
PAR-BS will include requests from many threads and have
different batches for different banks. Our batching scheme does
exactly the opposite and groups requests from a warp together
to reduce the latency divergence of a warp. In addition, we
arbitrate between batches based on a bank-aware shortest job
first policy to reduce wait time for warps while PAR-BS uses
MLP to decide priorities.

ATLAS: The ATLAS scheduler [30] was proposed to promote
fair-scheduling across channels in a multi-memory-controller
CPU-chip. After a long time quanta, information is exchanged
between the different memory controllers and a central arbiter
to identify the threads that received the least service in the last
quanta. These threads are prioritized in the next epoch. The
ATLAS scheme uses long time quantas for scalability, whereas
we need memory-controllers to co-ordinate at the granularity
of warps. We avoid the complexities of sending requests to a
central arbiter which has to maintain state for all controllers,
by implementing a decentralized score update mechanism
requiring little state information. In addition, none of the
schemes described above mitigate the impact of the write-
drain policy. Our warp-aware write-drain scheme provides
significant benefits in many benchmarks.

VII. RELATED WORK

A. Memory Scheduling

A large body of work has looked at memory scheduling
techniques for multi-core systems [14], [30], [31], [38], [40],
[42]. Staged-Memory-Scheduling [6] aims to improve the
bandwidth utilization of the DRAM channel in a heterogeneous
CPU+GPU system by forming batches of row-hit requests



from each source and then arbitrating between these requests.
Jeong et al. propose a QoS aware policy that allows the GPU
to consume only the bandwidth that is absolutely necessary
to maintain a certain QoS [24] and prioritize CPU requests to
provide the latency sensitive CPUs with low latency. Recently,
Jog et al. have proposed scheduling algorithms to better
handle the fair allocation of the memory bandwidth between
multiple concurrently executing kernels on different SMs [25].
However none of the proposed techniques have looked at
the importance of incorporating warp-level ideas to reduce
memory divergence. Prior work in the area of vector memory
access mechanisms [17], [33] have shown that being cognizant
of vector memory access patterns can lead to performance
boosts. These proposals were motivated by erstwhile problems
such as limited command and addressing bandwidth and their
solutions (such as overlapping accesses from different vector
loads in different banks, reordering requests from different
vectors) are part of modern controllers that we improve upon.

B. Memory Divergence Mitigation in GPUs

Instead of utilizing warp-level multi-threading to hide the
memory divergence latency, Meng et al. [35] advocate intra-
warp latency hiding. This is accomplished through dynamic
warp subdivision - a technique that allows some threads in
a warp to make progress while the others are stalled on
memory accesses [49]. This requires a single warp to be able
to occupy multiple slots in the warp-scheduler and thus incurs
at least double the cost and complexity in the scheduling
hardware in each core. Several software optimizations have
been proposed to tackle memory divergence. These include
data herding [45] to force all threads in a warp to load from the
same memory block through a compiler framework, a runtime
system that tries to optimize the memory layout to reduce
memory divergence [52] as well as techniques to improve
memory coalescing [16]. Recently other techniques have been
proposed to reduce effective memory latency [26], [27], [43].

VIII. CONCLUSIONS

To leverage the energy-efficiency of SIMT parallel-
processors for executing parallel applications from diverse
domains, it is important to reduce the effects of memory
latency divergence. In this paper, we quantified the impact
of DRAM latency divergence on irregular GPGPU workloads
and proposed scheduling schemes that can maintain bandwidth
while reducing divergence to boost performance by 10.1%.
This paves the way for other memory scheduling techniques
that are cognizant of the intricacies of the SM cores - for
example, prioritizing warp-groups that contain blocks of data
that are shared by multiple warps.
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