
Managing Dynamicity in SoS

Sara Bouchenak1(&), Francesco Brancati2,

Andrea Ceccarelli2, Sorin Iacob3, Nicolas Marchand1,

Bogdan Robu1, and Patrick De Oude3

1 Université Grenoble Alpes, Grenoble, France

sara.bouchenak@insa-lyon.fr,

nicolas.marchand@gipsa-lab.fr,

bogdan.robu@gipsa-lab.grenoble-inp.fr
2 Department of Mathematics and Informatics,

University of Florence, Florence, Italy

francesco.brancati@resiltech.com,

andrea.ceccarelli@inifi.it
3 Thales Netherlands B.V., Hengelo, The Netherlands

{sorin.iacob,patrick.deoude}@nl.thalesgroup.com

1 Introduction

SoS dynamicity refers to short-term changes in an SoS, which occur in response to

changing environmental or operational parameters of the CSs. These changes may have

different effects, such as SoS adaptation or the generation of emergent phenomena. This

chapter starts by recalling the MAPE approach in Sect. 2 before to introduce existing

monitoring approaches in Sect. 3. Finally, Sect. 4 overviews existing reconfiguration

techniques for SoS dynamicity management, related to Analyzis, Planning and Exe-

cution phases and illustrates through an examples the possible implementations of

dynamicity management with modelling and feedback control techniques.

2 Overall MAPE Approach

We follow the classical MAPE-K control loop for designing an autonomic manager

over managed elements (Fig. 1). This consists mainly in components to Monitor,

Analyze, Plan and Execute the reconfiguration plan. When an SLA (Service Level

Agreement) and its associated service level objectives are associated with the service of

a managed element, the MAPE control loop guarantees that those service level

objectives are met, and if it is not the case, a new plan is calculated and used to

reconfigure the system.

This work has been partially supported by the FP7-610535-AMADEOS project.

© The Author(s) 2016

A. Bondavalli et al. (Eds.): Cyber-Physical Systems of Systems, LNCS 10099, pp. 186–206, 2016.

DOI: 10.1007/978-3-319-47590-5_7

2.1 SoS Management Infrastructure

In this section we present how to exploit the AMADEOS SysML profile described in

Chap. 4 in order to build the infrastructure for MAPE purposes. To this end, we imple-

mented through the profile six MAPE architectural patterns. Thus, for each of the six

patterns, we realize a SysML block diagram built using the stereotypes defined in the

profile.

Each CS is represented as a block and it has an interface, either a RUMI or a RUPI

interface in order to enable the exchange of messages and physical entities respectively.

Each CS may implement the SoS management activities, namely monitoring, analysis,

planning and execution.

In the following we report the (1) Hierarchical Control, (2) Master/Slave,

(3) Regional Planner, (4) Coordinated control, (5) Information sharing, (6) Atomic

patterns and a conclusive analysis on their recursive inclusion in a SoS.

2.2 Hierarchical Control Pattern

In the hierarchical control pattern, we have a managed CS which is controlled directly

by a managing CS by means of their RUMI interfaces over which monitoring infor-

mation and the enacting actions are transmitted. As we can notice (Fig. 2), the

managing CS has been stereotyped with all the functions of the MAPE cycle. We

present below the UML representation of such pattern.

2.3 Master/Slave Pattern

In the master/slave pattern¸ a set of managing CSs shares part of the MAPE functions

(Fig. 3). In our instantiation, master CS (Managing_AP_CS) performs analysis and

planning activities and two slave CSs perform monitoring and execute functions

Fig. 1. MAPE control loop

Managing Dynamicity in SoS 187

(Managing_ME_CSx). The slave CSs send monitored_info to the master and they

receive planned info from the master CS. This information is exchanged through the

RUMI interfaces of slave CSs and the master CS. Finally, the slave CSs are in charge of

communicating each with a managed CS. The latter transmit monitored data to the slave

CS, which in turn forwards back the enacting actions as planned by the master CS.

2.4 Regional Planner Pattern

In the Regional Planner, a regional managing CS (Managing_P_CS_x) implements

only the Planning activity (Fig. 4). Instead, Analysis, Monitoring and Execution are

Fig. 2. Hierarchical control pattern

Fig. 3. Master-slave pattern

188 S. Bouchenak et al.

delegated to other managing CSs (Managing_MAE_CS_x). The regional managing CS

is responsible for a region of CSs and it exchanges with other peer CSs the information

on a regional basis. At the bottom level, each managed CSs (Managed_CS_x) send

monitoring information to its corresponding managing CS (Managing_MAE_CS_x),

which performs analysis activities and then forwards the results to the regional CS

(Managing_P_CS). The latter performs the Planning and forward enacting actions back

to the managing CS. Finally, the managing CS enacts such actions towards the man-

aged CSs.

2.5 Coordinated Control Planner

In the following, we present the implementation for the non-formal hierarchy pattern

Coordinated Control pattern (Fig. 5). The coordinated control pattern consists of a set

of CS implementing all the MAPE phases (Managing_CS_x) and exchanging through

their RUMIs the monitored, analysis, planned and execution information. Through

RUMIs, the managing CSs can collect monitoring info from the managed CS (Man-

aged_CS_x) and forward the actions to enact.

Fig. 4. Regional planner

Managing Dynamicity in SoS 189

2.6 Information Sharing Pattern

The information sharing pattern is another non-formal hierarchy pattern similar to the

coordinated control pattern (Fig. 6). The only thing that differentiates the corre-

sponding implementations is the nature of information which is exchanged through the

RUMIs of the managing CSs. In the sharing information pattern only monitored data

are exchanged while the rest of information is not shared among managing CSs

(Managing_CS_x).

Fig. 5. Coordinated control

Fig. 6. Information sharing

190 S. Bouchenak et al.

2.7 Atomic Pattern

In the following, we present the atomic pattern to enable the interaction of a CS with

the physical environment (Fig. 7). To this end, the managing CS (Atomic_CS) carries

out the MAPE cycle once it has received monitoring information through its RUPI

interface and it forwards physical signal over the same interface. Physical entities

received through the RUPI interface come from the afferent environment while the

outgoing flow of physical entities is forwarded to the efferent environment.

2.8 Recursive Inclusion of Patterns for SoS Design

At SoS level, the MAPE should be applied recursively. Each CS implementing part of

the MAPE may in turn be substituted recursively by another pattern which is realized

through a further set of CSs. This approach foresees the possibility to have several

nested levels of MAPE, each of them belonging to a different hierarchical level of the

SoS, or holarchical set of CSs. Distinct set of CSs are observed by a MAPE in which

the Adaptive Monitoring, the Analyzer and Planner, and the Reaction Strategies coexist

and cooperate.

Let us consider the scenario depicted in Fig. 8, in which several CS are represented

and controlled by an implementation of the MAPE-K cycle in which we have a

dedicated CS for Monitoring, another for Analysis and Planning and a third one for

Execution.

The Adaptive Monitoring (M) is able to detect events according to the QoS

specifications of the CS. The Cognitive and Predictive Models (AP) search for the

causes and the effects correlating data incoming from the Adaptive Monitoring. The

Reaction Strategies (E) perform the proper recovery action. The considered SoS can be

integrated in a more complex SoS; Fig. 8 gives a representation of the recursive

foreseen architecture.

Fig. 7. Atomic pattern

Managing Dynamicity in SoS 191

3 Monitoring/Analysis

In this section, we report on the broad topic of monitoring in SoSs. In particular,

focusing on observation and data analysis (i.e., the Monitoring and Analysis compo-

nents of the MAPE building block). We investigate basics on monitoring and detection

(Sect. 3.1) and main monitoring approaches (Sect. 3.2).

3.1 Basics on Monitoring and Detection in SoSs

It is very important to guarantee that an SoS behaves as expected. To this end, mon-

itoring activities control the SoS by means of verifying that system behavior and

performance comply with well-defined rules. Verification activities can be carried out

at two different stages either on-line, i.e., while monitoring data are collected, or

off-line i.e., after the collection process.

In monitoring literature, the system which has to be monitored is called target

system while the hardware component and the software application within the target

systems are called respectively target component and target application. In our case a

CS represents the target system while the target component and the target application

are represented by the physical and software part of the CS itself. We refer to the CS

which receives monitored information as monitoring CS.

Monitoring activities consists in observing behavior and performances of CS target

components in order to collect useful information to guarantee the correct SoS func-

tioning. Monitoring activities by themselves are not sufficient to guarantee the correct

behavior of an SoS, but they have to be integrated with techniques to diagnose the SoS

Fig. 8. Recursive view of the AMADEOS architecture

192 S. Bouchenak et al.

behavior in its execution environment. To this end, we have presented in deliverable

D3.1 [1] an SoS Management Infrastructure which complements Monitoring with

Analysis, Planning and Execution (MAPE) facilities. This section focuses on the

Monitoring (M), and partially also on the Detection of events (Analysis of data),

consequently addressing the MA letters of the MAPE loop. These two actions (MA) are

in fact often tightly bounded, because a monitoring system is usually conceived and

instantiated with the specific intention of detecting specific events or verifying that

certain conditions are met.

Let us now focus on the way monitoring activities are carried out. Essential objects

that are exploited to monitor the system behavior are the so called probes. Probes can

be inserted either inside or outside the target system and provide useful information on

how the system behaves. As an example Fig. 9 shows the probes inserted within the

target system which can also provide the system intermediate output (see Fig. 9-b) and

it shows the possibility of monitoring the system as a black box (see Fig. 9-a).

Probes can be hardware or software. In the first case hardware signals are moni-

tored, while in the second case, code is inserted within the target application to collect

internal information of the system (code instrumentation). Two rules have been defined

which have to be respected by probes:

• they should observe as much information as necessary to satisfy the objectives of

the monitoring activities,

• they should not compromise, or at least compromise as little as possible, the

behavior of the target system.

Fig. 9. Black box (a) and instrumented (b) monitoring of the target system

Managing Dynamicity in SoS 193

3.2 A General Approach to SoS Monitoring

Considering the complexity and heterogeneity of an SoS, it is necessary that a moni-

toring solution deals with the issue of where to deploy the monitoring and detection

system. It could be placed locally on each CS or globally at a higher level. Both

approaches have advantages and disadvantages with respect to the CS and/or the SoS,

as listed in the following:

• local solution pros: allows to perform a more precise detection activity on the single

CS due to the perfect knowledge of CS itself.

• local solution cons: could negatively affect the performance of each CS, thus

compromising the overall performance of the SoS.

• global solution pros: allows to improve detection accuracy, like detection of

detrimental emergence phenomena.

• global solution cons: requires a large amount of data to be transferred from each CS,

thus potentially affecting the network bandwidth in negative way.

To capture the pros of both the local and global solution, we envision the following

overall architecture.

Each CS describes the provided services to the other CSs through the RUI speci-

fication. The interface models are part of the RUI specification and must be based on an

agreed ontology explaining the meaning of the interface variables exchanged across the

RUI and must be compatible with each other. In order to establish the desired quality of

service (QoS), quality metrics must be expressed as well in the RUI specification. For

example, a Service Level Agreement (SLA) should be negotiated between the service

provider and requester. Thanks to the RUI specification, the monitoring and the

detection systems can ignore the intrinsic characteristics of the CSs, but they are aware

of its quality metrics and its SLA.

Each CS that is included in the SoS can be equipped with a Local Detection System

(LDS). The LDS (i) includes probes exposed through the RUI and that are necessary to

observe events; (ii) if necessary, implements the atomic pattern to manage the physical

environment of the CS itself. The knowledge of the LDS is limited to the CS: in other

words, the other connected CSs are ignored. The different detectors, relying on the

exposed probes, can be organized and coordinate following the different MAPE patterns.

At SoS level, a global detection system will be also deployed. It differs from the

ones deployed at a local level because it has an overall view of the SoS and conse-

quently it has the ability to observe and detect events as a combination of the outputs of

the individual LDSs. Furthermore, it may consider different and additional quality

metrics and indicators with respect to the LDSs. The global detection system fetches

data from the LDS or MAPE instantiations available in the SoS, and perform global

monitoring and analysis, acting according to the master/slave pattern.

Figure 10 shows a high level representation of the architecture of the envisioned

system. Specifically, the CSs composing the SoS are represented in different shapes, to

show that they are different one from the other. Each CS is able to communicate with

the others by means of the RUI interface, represented by the box labelled RUI. Finally,

the local detection systems, labelled LDS are also included in the representation of each

CS, in order to eventually detect anomalous events on the corresponding CS. At the top

194 S. Bouchenak et al.

of the figure, the Global Detection System is also shown, which observes the status and

the events that are happening at the SoS level.

Depending on the monitoring purposes, confidentiality and privacy issues may

need to be guaranteed through proper data security and anonymization. Especially,

while anonymization solutions can be executed locally, confidentiality requires that the

endpoint agrees on adequate secure communication protocols.

4 Analysis/Planning/Execution

4.1 Overview

The main challenges related to the dynamic adaptation of CPSoS stem from the dis-

tributed nature of the measurement and control infrastructure (MAPE).

Since the Monitoring and Analysis blocks have been discussed earlier, this section

focuses primarily on a potential design of the Planning and Execution blocks.

The M and A functions of the MAPE building block determine the values of the

CPSoS parameters, whereas the P and E functions close the control loop either by

generating control signals for the CS, or by adjusting the environmental parameters of

the CS, as depicted in Fig. 11.

All MAPE functions are instantiated for a particular CPSoS dynamicity model,

which specifies which state parameters need to be measured, what metrics have to be

used for combining or aggregating these parameters, how the control must be imple-

mented to achieve the desired effect, and how this control algorithm generates CS

control parameters. Obviously, this domain knowledge applies in a similar way for all

the composite MAPE patterns described in the AMADEOS deliverable D3.1 [1].

Fig. 10. Monitoring infrastructure in SoSs

Managing Dynamicity in SoS 195

To emphasize the control aspect, we redraw the MAPE control loop as in Fig. 12.

Although not fundamentally different from a traditional control loop, Fig. 13 empha-

sizes the potential difference between the input and output parameters (YðtÞ and XðtÞ,
respectively) toward the CPSoS and the monitoring and control parameters (lðtÞ, and
eðtÞ, respectively) toward the MAPE blocks. This is useful for CPS, since the moni-

toring and control of the RUPI-based interactions can also be executed through RUMI,

which adds flexibility to the definition of reaction strategies. The (⊕) blocks denote

some suitable transformations that map the external and control input vectors onto a

common metric space, and the ⊕ block combines these values in a single metric to

obtain the control value. Based on this value the Control block generates a vector rðtÞ

Managed CS
State Control

Monitor Analyze Plan Execute

Metrics Reaction

strategies

CPSoS dynamicity models

State

parameters

Control

parameters

CPSos or environment

Fig. 11. Close loop control involving a CS and a MAPE block

Managed CS

M A P E

CPSos or environment

X(t)

ε(t)

State selection

Y(t)

µ(t)

σ(t)

(⋅)

(⋅)

State Control
+

-

Fig. 12. Control and feedback parameters in MAPE-based control loops

196 S. Bouchenak et al.

whose elements show the mismatch between the current and desirable state parameters,

so a new state can be selected that compensates for this mismatch.

4.2 Example: Control Loop for Electrical Vehicle System

If the CS is a Charging Point (see AMADEOS use case [2, 3]) Y(t) in Fig. 13 can be a

state vector specifying the charging current, maximum allowed power phasor varia-

tions, and last kWh price. When an Electric Vehicle (EV) is connected to the CP, the

State includes, among other functions, a metering function which could generate the

monitoring vector lðtÞ as a sequence of messages at regular time intervals, containing

instantaneous measurements of the current drawn by the EV, and the maximum

available current for that CP. Similarly, XðtÞ could be the remaining charging time as

estimated by the EV, and e tð Þ could be a sequence of asynchronous (i.e.

event-triggered) messages containing a new value for the kWh price, and a new

maximum power rating for the CP.

Obviously, the summation block in Fig. 12 assumes an appropriate abstraction of

the two inputs (MAPE controls and external CPSoS inputs), which is achieved through

some mappings. In the example considered above both the remaining charging time

and the new kWh price could be mapped on some real value expressing the economic

efficiency of the CP.

To illustrate several reaction strategies, we construct a simple example derived from

the AMADEOS EV Charging use case. Assume that a Charging Station includes N

charging Points (see Fig. 13), has a total charging capacity Q, and a maximum charging

rate I:max. Each of the CP has a maximum charging rate ICPmaxICP, with

NI CPmax ¼ aImax, and a [1, which means that when all CPs are in use, not all of

Fig. 13. Simplified functional diagram for an electrical vehicle charging station

Managing Dynamicity in SoS 197

them can deliver the maximum charging rate. To compensate for this limitation, the CP

can influence the charging demand by increasing the energy unit prices. In general, the

energy unit price has to be agreed between the EV user and the CSO before the

charging operation starts, and should not be changed until the charging is complete. For

this reason, it is convenient to define a charging contract in terms of total requested

electric charge by user i, Qi, and the maximum charging duration ti. For simplicity, we

assume that the minimum charging times only depends on the maximum current that a

CP outlet can provide.

If the CSO chooses to guarantee a constant charging rate Ii, then the charging time

for EV i will be constant as well (within some uncertainty limits): ti ¼
Qi

Ii
. Although it is

both in the interest of the CSO and the user to minimize ti, this is not achievable

simultaneously for all the CPs.

A good pricing strategy should try to approach the maximum charging current of

the CSOðImaxÞ, without lowering the charge unit price below a given minimum. As an

example one could consider the following pricing function by the CSO, for user i:

pCSOi Qi; tið Þ ¼ p0
tmax � timin

ti � timin
1þ

1

Imax � I

� �

; tmin\ti � tmax; I\Imax ð1Þ

The minimum charging time tijmin is achieved for the maximum available charging

rate given the already committed capacity (I) for the CSO : timin ¼
Qi

Imax�I
. The third term

of the product in the above formula increases the price as the committed capacity

approached the maximum.

Overall, the price variation looks like the graph in Fig. 14.

At the same time, a user will always choose a shorter charging time, provided that

the price does not increase beyond a predefined personal limit pimax:

pi ¼ min pimax; pCSOið Þ

Of course, this is a naïve view, since Ij varies in time as other running charging

actions end (see Fig. 15), so a significant part of the charging capacity is not used. The

Fig. 14. Possible price adaptation as a function of requested charging time and available

198 S. Bouchenak et al.

total revenue for the CSO at any given time PðtÞ ¼
P

N

i¼1

piðtÞ. At the same time, the

instantaneous cost for the CSO is given by a component proportional to the total

current absorbed plus some constant cost value c0: C tð Þ ¼ c0 þ cIðtÞ. The profit made

by the CSO can thus be expressed as:

qCSO tð Þ ¼ P tð Þ � CðtÞ ð2Þ

By allowing a variable maximum charging current, the actual charging time results

shorter than the one calculated with the pricing model for constant charging current

used in this example. The statistics of charging times and new requests will require

pricing strategies that take into account the expected variations in the occupancy of

CPs.

4.3 Analytic Approaches

When the CPSoS behaves according to a known model expressed analytically, the

control can be defined in terms of this model. The pricing model in Eq. (1) allows the

CSO to set a dynamic price for a charging operation at constant current. However, this

model leads to unused capacity, so it may be advantageous for the CSO to deliver a

faster charge if there is unused capacity and other requests are expected to arrive soon.

An optimal control problem with infinite time horizon attempts to maximize some

cost or benefit function, such as the one in Eq. (2) [4]. A potential objective function

for the optimal control problem could attempt the simultaneous optimisation of the

following aspects:

• minimizing the agreed charging time for the already started charging operations.

• maximizing the price for the new charging contract.

The control parameters are the individual charge unit prices and the charging

currents for each user. The constraints are the total current for the CSO, the maximum

t

Ij

I
max

C
P

1
 C

P
2

C
P

N

C
h
a

rg
in

g
 a

c
ti
o

n
s

Fig. 15. Variation of the total charging current at CSO

Managing Dynamicity in SoS 199

current of each CP, and the committed charging time for the already started charging

actions.

The first term of the objective function defines how the charging current for user I

can be increased after the charging action for user j ends. This can be done for instance,

proportionally:

DI þi ¼ Ij
Ii

I
¼ Ij

Ii
P

k 6¼j Ik
ð3Þ

Whenever a new request comes at a time ti start after the adjustment of the charging

rates, the new charging current must be maximised by reducing the current for the still

running charge operations, down to the limit that would still allow the completion of

the charging within the remaining time according to the original contract for user i:

DI�i ¼
Qi �

R

tj start

ti start
Ii tð Þdt

ti end � tj start

ð4Þ

where ti start and ti end are the starting and ending times of the charging operation for

user i.

Equations (1) to (4) can be used for defining different control approaches, such as

Optimal (Stochastic) Control with infinite time horizon [4], Linear Quadratic Controls

[5], etc.

4.4 Machine Learning Approaches

In case when the dynamic behaviour of the CPSoS is unknown, or cannot be expressed

analytically, data-driven techniques can be used for obtaining an implicit “encoding” of

system behaviour. Such an encoding should be able to predict the outputs the system

will generate for a given input and contextual parameters.

Machine learning includes a set of techniques that use observations of a system’s

behaviour patterns to attempt predicting its future states. If we consider the predictive

or supervised machine learning approach the goal is to learn a mapping from input

values X to an output value y based on a set of input-output pairs called a training set.

The mapping can be represented as a function fH, with a set of parameters H, that can

be used, given an unseen before pattern Xi, to predict ŷi, i.e. ŷi ¼ fH Xið Þ. The function
fH is what we call a model that is parametrized with a set of parameters H. fH can be, in

fact, a simple linear function (regression), but generally is a complex algorithm that

maps inputs to output values. The goal of machine learning is to find the set of

parameters H of a chosen model based on a training data set D using a learning

algorithm. If the parameters H are properly learned then we will be able to estimate the

class label ŷi based on certain unseen input values xj 62D, where ŷj ¼ yj in the majority

of the cases.

Artificial Neural Networks (ANN) implement a machine learning technique

inspired by a simplified model of the working of the brain. The elementary operations

in an ANN are weighted summations of the inputs to obtain an output value. Different

200 S. Bouchenak et al.

output values are obtained by summing the same input with different weights. This

way, an input vector is mapped to an output vector. A multi-layer NN combines usually

two or more such mapping units. The training of an ANN attempts to adjust the weights

such that a particular output is consistently obtained for different input patterns

belonging to the same class. When this is achieved, the ANN is said to be able to

generalize. Another aspect of training attempts to adjust the weights such that different

output patterns are generated for input vectors belonging to different classes. When this

is achieved, the ANN is said to be able to discriminate. Training algorithms have been

developed that achieve a good trade-off between these two properties. One such

algorithm is called the back-propagation learning algorithm that uses an iterative

scheme, such as gradient descent [6], to optimize Θ in the learning equation described

earlier.

Returning to the EV charging example we want to estimate the best price for a new

user i by learning a model based on the following input variables:

• the number of charging points N;

• the requested electrical charge Qi by user i;

• the maximum charging duration timax requested by user i;

• the maximum charging durations of the other users jðj 6¼ iÞ;
• the current charging rates Ij of other EVs;

• the maximum charging rate for the CPs;

• the maximum charging rate of the CSO;

• the minimum charging time of EV i; timin;

• the expected number of users in the coming hour (based on historic data);

Let’s denote these input variables with xn. Based on xn we want to learn a model

from which the best price p̂i can be estimated for a new user i. In order to learn such a

model the following cost function will be used

J hð Þ ¼
1

2

X

N

n¼1

pni � p̂nið Þ2 ð5Þ

Where p̂ni is the estimated price by the model, pni is the price associated to the input

variables, N is the total number of training samples and n corresponds to the nth

training sample xn; pnið Þ2 D. In case an ANN is used as a model to learn the best price

the gradient descent back-propagation algorithm can be used as an iterative scheme to

optimize the model based on the cost function JðhÞ. By using this iterative scheme, the

parameters (i.e., the weights and bias term of each neuron in the ANN) are updated,

after applying the training set D, such that the cost function is minimized. When the

change of the parameter values are small enough that it can be assumed that the

parameters have converged and the model is learned.

The learned solution may not be optimal, since the back-propagation algorithm can

be trapped in a local minimum. This is due to the high nonlinear nature of the cost

function in the parameter space. Often better performance can be obtained by using a

pattern-by-pattern mode, also online mode, to learning the model. In this case the

weights of the ANN are updated at every time instance a new pattern is presented.

Managing Dynamicity in SoS 201

Additionally, it is also recommended to randomize the data sequence prior to using it

for learning. In practice it was shown that the pattern-by-pattern mode result in faster

convergence and better solutions [7].

4.5 Feedback Control Approach

In the following, we consider a SoS in which one of the CSs is a computing cluster

used to run compute-intensive and/or data-intensive business logic of the

cyber-physical system. In the following, we first illustrate the impact of environmental

changes and system configuration parameters on the performance and availability of

such CSs. We then present a possible implementation of the Analysis component of

MAPE through behavioural modelling and a possible implementation of the

Planning/Execution components of MAPE through feedback control.

MapReduce is a popular programming model and execution environment for

developing and executing distributed data-intensive and compute-intensive applications

[8]. However, the complexity of configuration of such systems is continuously

increasing. Although the framework hides the complexities of parallelism from the

users, deploying an efficient MapReduce implementation poses multiple challenges.

MapReduce’s ad-hoc configuration and provisioning require a high level of expertise to

tune [9]. Ensuring performance and dependability of MapReduce systems still poses

several challenges.

One of the most popular open source implementations of the MapReduce pro-

gramming model is Hadoop. It is composed of the Hadoop kernel, the Hadoop Dis-

tributed Filesystem (HDFS) and the MapReduce engine. Hadoop’s HDFS and

MapReduce components originally derived from Google’s MapReduce and Google’s

File System initial papers. HDFS provides the reliable distributed data storage and the

MapReduce engine provides the framework to efficiently analyse this data.

In the following, we consider a CS that is a MapReduce cluster that consists of

sub-CSs represented by N nodes. A MapReduce workload is defined as the number of

concurrent clients (C) that are sending requests to the central controller. Admission

control is a classical technique to prevent server thrashing. It consists of limiting the

maximum number of clients (MC) that are allowed to concurrently send requests to the

central controller.

The performance of MapReduce systems can be measured as the average time

(Rt) needed to process a request in a certain time window. Low client response time is a

desirable as it reflects a reactive system. The average Rt can, for instance, be calculated

at every 30 s, using a sliding window with period 15 min.

Rt s½ � ¼ avgðRt1;Rt2; . . .;RtNÞ ð6Þ

Availability (Av) refers to the accessibility of the system to users. MapReduce is

available if the user requests are accepted at the time of their submission. Availability is

instantaneous and concentrates on the fraction of time where the system is operational

in the sense of being accessible to the end user. Availability is measured as the ratio of

accepted MapReduce client requests to the total number of requests, during a period of

202 S. Bouchenak et al.

time. T here is the previously defined sliding time window size that is used to assign a

measurable dynamics to the system. Since T is constant for all experiments, we use

only the percentage (%) symbol as the availability measurement unit in all the plots to

simplify their understanding.

Av
%

T

� �

¼
NSuccessfulJobs

NSucessfulJobs þNRejectedJobs

� 100 ð7Þ

Furthermore, the service cost is a linear function of the MapReduce cluster size (N),

and can be inferred directly from N.

Finally, performance and availability metrics are part of the SLA of the MapReduce

system. The SLA specifies MapReduce service level objectives (SLOs) in terms of, for

instance, the maximum response time Rtmax, and the minimum availability Avmin to be

guaranteed by the MapReduce system.

Figures 16, 17, 18 show the impact of the variation of, respectively, the workload

exogenous variable, the MapReduce cluster size control variable, and the MapReduce

cluster’s admission control variable on performance and availability metrics. Thus,

there is no one-fits-all configuration; rather, a solution that meets a combination of

service level objectives as described below.

Example of a Behavioral Model. Capturing the complex behaviour of MapReduce

CSs is highly challenging. We propose a model that captures the dynamics of

MapReduce CSs, and renders their levels of performance and availability. The model is

Fig. 16. Impact of workload on MapReduce performance and availability with #Nodes = 20,

#MC = 10

Fig. 17. Impact of cluster size on MapReduce performance and availability with #Clients = 10,

#MC = 5

Managing Dynamicity in SoS 203

built as a set of difference equations - as for biological or economical systems - that

describe the impact of input variables’ variations on system’s output variables. We

apply a novel modelling approach that considers the MapReduce system as unknown

and derives a mathematical model based only on the impact of the input variations on

the system’s outputs. This technique is part of what we call system identification in

control theory. Roughly speaking, one provides known input variation functions (e.g. a

step or sinusoidal variation) to the system, and measures the system response to this

excitation. Using the output measurements an identification algorithm can approximate

the system’s internal dynamics. In most cases, without a loss in generality, 1st or 2nd

order polynomial difference equations capture the system behaviour sufficiently well.

Figure 19 describes the proposed model variables. The inputs of the model are:

exogenous input C that represents the number of clients accessing the underlying

MapReduce system, in addition to tunable parameters that can be used to control the

MapReduce system, namely the number of nodes N of the underlying MapReduce

cluster, and the maximum number of clients MC concurrently admitted in the

MapReduce system. In addition to input variables, the model has the following output

variables: the average response time Rt to a MapReduce client request, and the level of

availability Av of MapReduce to its clients. In the following, we describe the proposed

model through the formulas of its output variables.

Example of Feedback Control. A first attempt in controlling the response time of a

MapReduce system by adding and removing nodes was realized in [10] by using a PI

and a feedforward controller. We design MR� Ctrl, an optimal controller, able to deal

Fig. 18. Impact of admission control on MapReduce performance and availability with

#Nodes = 20, #Clients = 10

Fig. 19. System model inputs and outputs

204 S. Bouchenak et al.

with contradictory objectives. As our MapReduce model has two outputs, MR� Ctrl

will assure at the same time the response time and the availability specified in the SLA,

while minimizing resource utilization.

The complete schema of the control architecture is presented in Fig. 20. All the

variables used in the figure are defined in Table 1. More details regarding the imple-

mentation of the control framework can be found in [10]. As in Fig. 19, we consider

the MapReduce system having two inputs (concatenated in the two dimensional vector

u), one exogenous uncontrollable disturbance input C and two outputs (concatenated in

the two dimensional vector y). Vector u contains the number of nodes in the cluster N

and the max number of clients MC. While the y vector contains the response time Rt

and availability Av.

5 Conclusions

This chapter describes the overall approach for managing SoS dynamicity. Its main

intent is to associate a Service Level Agreement with SoS, and to provide SLA

guarantees in terms of dependability, security, performance, etc. The overall MAPE

Monitoring/Analysis/Planning/Execution approach is followed for SoS dynamicity

management. The approach is illustrated through different implementations and tech-

niques, e.g., a scalable monitoring, feedback control-based behavioural modelling and

reaction strategies.

Fig. 20. The control architecture

Table 1. Definition of control variables

yref ¼
Rtref
Avref

� �

Reference – response time and availability set in the SLA

y ¼
Rt

Av

� �

Measured system output – response time and availability

u ¼
N

MC

� �

System control input – number of nodes in the system and the maximum

number of clients

C Disturbance – number of clients trying to connect to the system

x̂ Reconstructed behavior of MapReduce

Managing Dynamicity in SoS 205

References

1. AMADEOS, Deliverable D3.1 - Overall Architectural Framework (2015)

2. AMADEOS, Deliverable D4.1 - Case study and use cases (2015)

3. AMADEOS, “Deliverable D4.2 - Case study realization,” (2016)

4. Kappen, B.: Stochastic optimal control theory, Lecture Notes, Radboud University Nijmegen

(2012)

5. Li, P.Y.: Advanced Control System Design, Ch. 6, Lecture Notes, University of Minnesota

(2012)

6. Dreyfus, S.E.: Artificial neural networks, back propagation, and the Kelley-Bryson gradient

procedure. J. Guidance Control Dyn. 13(5), 926–928 (1990)

7. Theodoridis, S.: Machine Learning: A Bayesian Optimisation Perspective. Elsevier, London

(2015)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:

USENIX Symposium on Operating Systems Design and Implementation (OSDI) (2004)

9. Lin, X., Tang, W., Wang, K.: Predator: an experience guided configuration optimizer for

Hadoop MapReduce. In: IEEE 4th International Conference on Cloud Computing

Technology and Science (CloudCom), Taipei, Taiwan (2012)

10. Serrano, D., Bouchenak, S., Marchand, N., Robu, B., Berekmeri, M.: IFAC World Congress

(2014)

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,

duplication, adaptation, distribution and reproduction in any medium or format, as long as you

give appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the work’s Creative

Commons license, unless indicated otherwise in the credit line; if such material is not included in

the work’s Creative Commons license and the respective action is not permitted by statutory

regulation, users will need to obtain permission from the license holder to duplicate, adapt or

reproduce the material.

206 S. Bouchenak et al.

http://creativecommons.org/licenses/by/4.0/

	Managing Dynamicity in SoS
	1 Introduction
	2 Overall MAPE Approach
	2.1 SoS Management Infrastructure
	2.2 Hierarchical Control Pattern
	2.3 Master/Slave Pattern
	2.4 Regional Planner Pattern
	2.5 Coordinated Control Planner
	2.6 Information Sharing Pattern
	2.7 Atomic Pattern
	2.8 Recursive Inclusion of Patterns for SoS Design

	3 Monitoring/Analysis
	3.1 Basics on Monitoring and Detection in SoSs
	3.2 A General Approach to SoS Monitoring

	4 Analysis/Planning/Execution
	4.1 Overview
	4.2 Example: Control Loop for Electrical Vehicle System
	4.3 Analytic Approaches
	4.4 Machine Learning Approaches
	4.5 Feedback Control Approach

	5 Conclusions
	References

