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Abstract 
We are interested here in the design of a very 
efficient Time-Map Manager, able to deal 
with a large knowledge-base of several thou­
sand time-tokens in demanding applications 
such as reactive planning and execution con­
trol. A system, called IxTeT, aiming at that 
goal is described. It uses an original represen­
tation of a lattice of time-points that relies 
for efficiency on a maximum spanning tree of 
the lattice together with a particular indexing 
of its nodes. 
The IxTeT system is sound and complete, it 
has the same expressive power as the restrict­
ed Interval Algebra that permits complete­
ness in polynomial time. Its average complexi­
ty is shown experimentally to be linear, with 
a low overhead constant, for both operations: 
retrieval in and updating of a set of temporal 
relations. 

1. Introduction 

Temporal knowledge is essential in several AI tasks, 
such as planning and reasoning on actions, on past and 
future events, and on dynamic situations. Temporal 
knowledge requires a specific representation if one wants 
to correctly grasp the notion of causality. As for other 
types of knowledge, this representation should be consis­
tent and complete, and should provide a good trade-off 
between expressive power and complexity. The efficien­
cy criteria is very important for real-time applications, 
such as those of reactive planning and execution control 
that motivated this work [Ghallab], where time is an 
object of representation and reasoning as much as a con­
straint. 
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A particular set of representations were found to 
have some nice properties: reified logic approaches pro­
posed in [McDermott] and [Allen 84] and formally stud­
ied in [Shoham] and [Tsang]. The common feature of 
these representations is the use of couples: <logical for­
mula Φ, temporal qualification of Φ>. They require a so-
called Time-Map Manager (TMM) that is in charge of 
retrieval in and updating of a knowledge base of tempo­
ral relations. In a typical application, a TMM will be 
put at a very low level and in heavy use, it has to be 
very efficient. 

Of the above set of representations, the Algebra of 
Temporal Intervals [Allen 83] is the most popular repre­
sentation: it is appealing for its expressive power and 
ease of implementation. It has however a major draw­
back: the consistency problem for a set of Interval Alge­
bra relations is NP-complete [Vilain]. But of resorting 
to exponential algorithms, this leads to the use of a tran­
sitive closure propagation algorithm that is defective 
because of: 
• a completeness problem: it may accept an inconsis­

tent set of relations as being consistent; and 
• a complexity problem: it runs in 0(n3), a too high 
complexity for a real application. 

As it was argued in [Vilain] one can solve the com­
pleteness problem by restricting the expressive power to 
a sub-class of Interval Algebra, that class equivalent to 
the Time Point Algebra. For those two representations 
the propagation algorithm is complete. 

This paper addresses the complexity problem. It 
describes a representation and a set of algorithms for a 
TMM, called Indexed Time Table (IxTeT), that has the 
following properties: 
• it relies on a particular Time Point Algebra that 

has the same expressive power as the restricted 
sub-class of [Vilain], 
it is guaranteed to be complete, 
it permits non-monotonic updatings of the knowl­
edge base, i.e. both addition and removal of rela­
tions, and 
it leads to a very efficient T M M that is shown 
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experimentally to be of linear time and space com­
plexity for both operations, retrieval and updating. 

The proposed representation and approach are 
described in the next section. Main algorithms are 
detailed and discussed in section 3. Extensive empirical 
results, that characterize the performances of the pro­
posed T M M and permit to favorably compare it to those 
described in the litterature, are summarized in section 4. 
Some extensions to this T M M for dealing with numeri­
cal constraints are finally considered. 

2. Representation 

2.1. Approach 
The role of a T M M in a temporal reasoning system is 
the achievement of the following two tasks: 
(i) retrieval: find whether two events in the knowl­

edge base are temporally related and how, and 
(ii) updating: add or remove events and temporal rela­

tions to the knowledge base while maintaining its 
consistency. 

As for other types of binary constraints, a natural 
representation for a set of temporal relations is a net­
work where nodes are time tokens (i.e. intervals or 
instants) and arcs are labeled by the constraints relating 
two nodes. Two directions can be pursued: 
• either using a complete graph where all possible 

relations between all pairs of nodes are propagated 
and explicitly maintained: this makes task (i) triv­
ial in 0(1), and requires a costly propagation algo­
rithm in 0(n3) for mono tonic updatings; 

• or using a network where the only arcs are those 
of the explicit knowledge of the problem: this 
simplifies task (ii) but requires for task (i) a cost­
ly search through possible pathes of the network. 

The approach proposed here is a trade-off between 
these two directions. It relies on the efficient combina­
tion of 2 principles: 

adding to the time-network a particular data struc­
ture, a maximal spanning tree with an adequate 
indexing scheme, that permits a very efficient com­
putation of ancestral information, this greatly sim­
plifies task (i), and 
restricting the propagation of new relations to a 
small subset of nodes in the network in order to 
perform task (ii) efficiently. 

2.2. Time lattice 
Of the two possible and equivalent representations that 
lead to a tractable polynomial problem, i.e. restricted 
interval algebra and time-point algebra, we choose the 
second one. Although this choice was motivated by effi­
ciency considerations, it has other advantages: 
• there is no simple characterization of the subset of 

relations that falls into the restricted interval 

algebra: input data has to be compared to the com­
plete list of 187 such relations compiled in 
[Granier]); but, for the user's convenience, one may 
provide intervals and some useful relations as 
primitives of the input language and translate 
them internally into time-points relations; 
the particular intervals and relations that are 
responsible for an inconsistency are difficult to 
locate even when the propagation algorithm 
detects the inconsistency; this is straightforward 
in the proposed representation; 
numerical constraints are more easily taken into 
account by the time-point representation; 

• it is easy to represent open intervals such as prop­
erties that become true at a known moment and 
remain until a contradiction is found ("persistance" 
in [Dean] ontology). 

In a time-point algebra 3 elementary relations, 
before, equal and after, and their S disjunctive combina­
tions relate a finite set of instants or time-points. 
Instead of a network with arcs labeled by relations, we 
use 2 different types of unlabeled arcs: 
• arc < standing for the relation (before or equal), 
and 

arc # meaning the relation (before or after). 
The 8 possible relations between 2 time-points are 

easily expressed as 0,1 or 2 arcs relating two nodes. 
A network of < and # arcs corresponds to a consis­

tent set of relations if no pair of nodes, connected by a # 
arc, are involved in a loop through ( arcs. Such a loop 
describes a set of identical time-points that should be 
collapsed to a single node. Individual events correspon­
ding to this set are kept distinct but their simultaneity 
is recorded by connecting all of them to the same node in 
the time-map. Arcs # do not require any propagation 
mechanism; they are looked for only when a collapsing 
decision has to be taken. For that reason we can keep arcs 
# implicit in the network representation. 

A consistent network where all possible collapsing 
operations have been performed contains only ( arcs and 
is loop-free. It thus defines a partial order over the set 
of nodes. Since we can always add for convenience an ori­
gin time-point, we endup finally with a network that is 
a rooted DAG, i.e. a time-lattice. Let us denote it 
L=(U,A) where U= {t0, u, v, w, ...} is the set of time-
points, t0 is the root of L; and A is the set of (arcs in L. 

Point u precedes temporally (is before or equal) 
point v if there is a path in L going from u to v. Let us 
denote u (( v this fact ( (( is the transitive closure of ( ). 
Thus relating 2 points requires a search of a path in L . 
How can we speed-up such a search? 

23 . Indexed Spanning Tree of the Time-Lattice 
It is well known that ancestral information can be com-
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puted in constant time for a tree correctly ordered, e.g. 
by preoder and postorder. To use such property 2 prob­
lems should be addressed: (a) how to map a time-lattice 
to a tree, and (b) classical orderings are not easily updat­
ed and maintained for a dynamically growing tree. 

We solve the first problem by extracting from L a 
maximum spanning tree T defined as follow: 

T is rooted at t^ and covers all nodes of L (it is 
not a free tree as is usually the case for a spanning 
tree); 

• T contains a maximal number of arcs. 
Let us denote by r(u) the rank of u in L, i.e. the 

length of the longest path in L from ^ to u: 

r(u)= 1 + max{r(v) IV (v,u) € A } , with ^ ^ = 0 . 
To compute T from L we first order the nodes in L 
according to their rank. This can be achieved by an 0(IAI) 
breadth first search in L: all successors of nodes of rank 
k have their rank set to k+1, which may change previous­
ly computed ranks if longer pathes are found (some sim­
ple additional tests speed-up the procedure). 

Let M be the maximal rank found in L. We start 
from any node z of rank M, put it in T, choose among its 
predecessors in L any node y of rank Ml and put in T 
the arc (ytz) and the node y as the parent node of z: 
p(z)=y. This is repeated for a predecessor x of y such as 
r(x)=r(y)-1; arc (x,y) and node x are added to T. We keep 
on moving up along a path of maximal length until the 
root t0 is put in T. 

The procedure is repeated starting from a node of 
maxima] rank among those not already in T. While pro­
cessing node u, if there is a choice between several of its 
predecessors, all at rank r(u)-l , we choose one not 
already in T and add it to T. If none remains, we choose 
among such predecessors one in T which has the least 
number of children in T, and attach a new path to the 
spanning tree. The procedure is repeated until all nodes 
of L are put in T. 

The generated tree has indeed a maximal number of 
arcs: in a spanning tree of L rooted at tb there is one and 
just one path from t0 to each node of L. Each such path 
in T goes through a maximal number of arcs. 

Let s(w) be the set of children of u in T, and §(u) the 
set of its descendants in T (transitive closure of s). Our 
goal is to be able to compute as efficiently as possible 
ancestral information in T, i.e. whether v e §(u) . This 
is achieved through a particular indexing of T. 

To each node u is attached as index a sequence: 
I(u)=[i1 i2. ... ij of one or more integers that is 

defined, while generating T, as follows: 
nodes of the path (t0, .... x, y, z) that was first 
put in T are indexed by their rank: I(z)=[M], 
I (y)=[M-l ] , I(x)=[M-2L..., I( t0)=[0]; 

if I(u)=[i1.i2. ...ik]and v G s(u) then: 

Nodes of the first path put in T can be indexed 
while they are added to T. The other nodes are not 
indexed until their path is attached to T: indexing pro­
ceeds by moving from the attachment parent (already 
indexed) down along the path. 

The addition or removal of a new node, as a leaf in 
the tree is straightforward; for an internal node, only 
some of its descendants will have to be reindexed. Prob­
lem (b) is thus correctly addressed. 

An example will illustrate the complete procedure: 
figure La gives a lattice L with the rank of each node 
shown. A corresponding maximal spanning tree is drawn 
in figure l.b where the index of each node follows its 
label (some of the arcs of L that do not belong to T are 
shown in broken lines) 

Thus, to relate 2 nodes u and v in T we first com­
pare their rank 

if r(u)=r(v) then u and v are not related in T; 
if r(u) < r(v) : either condition (1) is satisfied: v 
is a descendant of u, or they arc not related; 
if r(u) > r(v) : u and v are permuted before check­
ing condition (1). 

Notice that the rank of a node is given by its index : 

In the popular Dewey decimal notation k, the length 
of an index, grows while we go deeper in the tree, 

Ghallab and Alaoui 1299 



whereas in the proposed indexing scheme we try as much 
as possible to keep this length small and make the value 
of ik, the last element of an index, increases with the 
depth. This is because condition (1) is checked in 0(k), 
the length of the smallest index. 

In the worst case, all pathes wil l be attached to the 
root node: the maximum value of k can be proportional 
to the number of nodes at maximal rank in L. An unfa­
vorable case is that of a balanced tree where k < 
log(n+l), n being the total number of nodes (if T is bina­
ry there are -1 nodes, those at the maximum rank 
M arc indexed [M], [M-1 . 1], [M-2 . 2], [M-2 .1 .1], ... 
[0.1 1]). However the proposed procedure maximizes 
the depth of T while minimizing heuristically its 
breadth (by chosing as a parent a fatherless node or one 
with the least number of children in T). This keeps the 
average value of k smaller than the log(n) case. 

Let us remark that the complete procedure for 
extracting and indexing the maximal spanning tree, 
while efficient in 0(IAI+n), is not used by the TMM but 
at initialization time. 

2.4. Residue of the Time-Lattice 

A precedence relation in L, such as u « v , can be 
retrieved either 

through the spanning tree : this is 
checked easily; or 
through a path using some arcs of L not belonging 
toT. 

To take care of this last case, residue arcs are pro­
cessed by 2 operations: 

Eliminating redundant arcs: if (u,v) is an arc 
of L not belonging to T such as then this 
arc does not bring any useful information. It is 
redundant and can be eliminated. In figure 1 arcs 

are redundant 
• Propagating non redundant arcs: 2 nodes may be 

linked by a path that mixes in any order arcs from 
T and non redundant residue arcs. To avoid mixing 
the 2 structures and simplify the retrieval of prece­
dence relations we propagate recursively a non 
redundant arc (u,v) to the parent node of u in T, 
unless v is already a successor of p(u) in T, i.e. if 

then an arc from p(u) to v is added. 
This is the case of arc (q,w) in figure 1 .b. 

The exact procedure is described in section 3.2. It 
corresponds to the trade-off mentioned earlier between 
using a complete graph and keeping a minimal set of rela­
tions. 

Let us call residue arcs the set obtained after elimi­
nation and propagation. 

The important property here is that any residue arc 
(u,v) is such that r(u) < r(v). This is trivially true for 
arcs in L not belonging to T, it is also true for added 
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arcs since the propagation goes only upward in T. 

3. General algorithms 

The procedures required for the 2 tasks of a TMM, 
retrieval of precedence relations and updating the time-
map, using the proposed representation, are formally 
described in this section. Let us first summarize our 
main notations, and make clear the distinction between 
the part of the time-lattice L covered by the spanning 
tree T and the residue part. 

In T we speak of the parent p(u) of a node u, its 
children s(u), its descendants and its ascendants', 
I(u) is its index and r(u) its rank. Only s, p and / are 
kept as data structures. 

In the residue part, a(u) denotes the set of nodes 
linked to u by residue arcs . We wil l speak of the fol­
lowers and foregoers of a node for adjacency relations 
defined by such arcs. 
We reserve successors and predecessors for the com­
plete lattice. Notice that the successors 
of a node arc partitioned into its children and its follow­
ers. 

3.1. Retrieval: relating 2 points 
The proposed representation permits to characterize a 
precedence relation by the following conditions: 

The 3 first conditions come from the fact that u pre­
cedes v in L if v is a descendant of u in T or if it is a fol-
lower of u. The last one is due to the property of the 
upward propagation mechanism: 

all followers of a descendant of u are either the follow­
ers of u or its descendants', there cannot be a non descen­
dant node w of u linked to u through followers of a node 

that is not also linked to u through a(u). 
The comparison algorithm between two points u and 

vis thus: 



when the rank of w reaches that of v 

3.2. Updating: Adding new points and relations 
Updating should be done such as to keep all the proper­
ties of the representation. Let us first focus on the addi­
tion of points and relations in L (removal is considered 
in section 3.4). The additon of a point w and 2 relations 
u(w(v can be decomposed into 2 steps: 
• add w as a child of u and give it the right index ; and 
• add an arc between w and v and update the tree and 
residue arc if necessary. 

The first operation is straighforward, is is achieved 
by procedure Addpoint bellow. The second operation 
involves 3 steps: a test, and eventually a propagation and 
a reindexation. 

The test determines whether v « w, in this case, 
unless all points in every path from v to L can be col­
lapsed, the updating is impossible: w ( v cannot be 
inserted, it is inconsistent with the arcs in pathes 
between v l o w. Inconsistent arcs are returned as output 
for further analysis. 

The reindexation takes place if r(w) > r(v). In this 
case, to keep v on the longest path in the spanning tree, 
we give to v a new parent node w. Node v is removed 
from the children of p(v) and put as a follower of p(v); 
w becomes the new parent node of v; the descendants of 
v are reindexed. The reindexation algorithm computes 
the new index of each node according to the index of v, 
it then verifies if the followers of v have the right rank 
considering the new index of v, and, if not, it reindexes 
them. This is repeated recursively. 

If r(w) < r(v), v is put as a follower of w. This 
residue arc is propagated to the parent of w, and recur­
sively to its ascendants that are not found by Relate 
linked to v. Notice that if there is a reindexation, there 
will be propagation of the arc between the old parent of 
v and v: all the former ascendants of v have to know 
that they are still linked to it 

The reindex function reindexes all the descendants 
of v according to I(v). It then verifies that the ranks of 
the followers of v are not affected by the new index, if 
they are, they will be reindexed too. The algorithm is: 

As we saw before, residue arcs have to be propagated 
to the ascendants of u to keep a link between them and v 
if there is none. To propagate the relation u { v, the algo­
rithm will simply be: 
until 

add v in 
But in a special case, this algorithm stops before the 

propagation is complete: in the example of figure 2, 

propagation of the relation t6 < t9 will go on until t4. 

There we have and If we stop the 
algorithm, the propagation will be incomplete because 
we will not be able to Relate t2 and 

and no element of a(t2) has a link with t9. The 
propagation was stopped at t4 because there are two 

pathes from it to t9: one direct through t6 

and the other one through t7. In this case we have to con­
tinue the propagation to be sure that all ascendants of t6 

are really Related to t9. The relation is propagated to 
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all the ascendants until t0 while avoiding it for ascen­
dants already related to the destination node. The algo­
rithm proposed is then: 

The third step in this algorithm tests if there is a 
path from p(u) to v through residue arcs that contains a 
descendant of p(w). In this case we are in the conditions 
described previously. This test is described only in a 
mathematical formalism because its efficient implemen­
tation needs special care and some modifications in the 
Relate procedure that are of less interest here. 

This algorithm runs a maximum of r(u) comparisons 
in the worst case, but in fact, in many cases, it will stop 
sooner the algorithm stops as soon as p(u) is linked to 
v, this may happen very quickly, and then, the algorithm 
continues only if there is more than one path that links 
p(u) to v and if one of those pathes contains a descendant 
of p(u). This is a very strong condition that may seldom 
occur. 

3.3. Collapsing 2 points 
When the points of a loop can be made identical (i.e. 
there is no # arc between them), they are collapsed to 
one point This is done by keeping the point with the 
highest rank and linking it through all the relations han­
dled by the other points that are removed. This involves 
reindexing their successors, and modifying arcs and 
branches issued from their predecessors. 

3.4. Removing points and relations 
IxTeT enables removal of points and relations if needed. 
Removing a point u requires 2 operations: putting p(u) 
as parent of all the children of u and reindexing its 
descendants, and then, redirecting all the residue arcs 
pointing to u and to successors of u. 

For removing a relation that is a branch of the tree 
from u to v, we have to find the predecessor of v with 
the highest rank, and put it as p(v). If no predecessor 
remains, t0 is taken. Then, reindexation starts at v. 

If the relation removed is a residue arc from u to v, 
v is just removed from a(u), this has to be propagated to 
the ascendants of u until one of them is related to v by 

another path than the one that contains u. 
Notice that the reindexation used here is slightly 

different from Reindex: each step verifies if there is no 
predecessor with a higher rank than the new one, and in 
this case, changes the parent. 

4. Experimental results 

All the algorithms described in the previous section 
were implemented (on a Sun 4-260 in Sun Common 
Lisp), and tested [Mounir]. The workload for insertion 
of points and arcs in the lattice, and for retrieval or 
removal of relations between points were recorded. 

Tests were made on SO lattices, randomly generated, 
and growing in size up to 2000 points. Each lattice was 
generated by adding at each step one point and k relations 
(algorithms Addpoint and Addrelation). We experi­
mented on data for k=2 to S, without noticing a signifi­
cant change in performances. Average running times 
increased very slightly from k=2 to 3, then decreased fin­
ks^ and 5. Results reported are for k=2. Figure 3 plots 
20 average times, and 2 standard deviations, for retriev­
ing the relation between 2 random nodes. Each point is 
averaged over 2500 runs: 50 retrievals in 50 lattices. 

The same information concerning the insertion of one 
relation (procedure Addrelation) is given in figure 4. 

To summarize IxTeT performances, over 100000 
runs of updatings and retrievals support the following 
evidences: 
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the proposed TMM seems to be in average of lin­
ear complexity for both retrieval and insertion of 
relations; due to reindexation, the standard devia­
tion is however higher for insertion; indeed, if a 
relation is added near the root of the lattice, the 
part of the lattice to be reindexed may remain 
large despite the pruning heuristics, that are effi­
cient only in the average; 

• the linearity constant is very low: our non opti­
mized Lisp implementation required: 

about .1 second to insert a new relation in a 
2000 points lattice 

• less than 70 millisecond to compare 2 
points in a 2000 points lattice 

• the space complexity of IxTeT seems also to grow 
linearly; a 2000 points lattice required less than 
20000 memory units (cons cells). 

In parallel with these experimentations, the propaga­
tion algorithm of [Allen 83] was implemented. Howev­
er we could not manage graphs larger than 80 intervals 
(less than 160 points): this algorithm is in 0(n2) space. 
Insertion in a graph of 50 intervals required about 4 to 5 
seconds. Since insertion is in 0(n3) time, it would have a 
prohibitive cost for much larger graphs. 

Experimental results of Allen's algorithms are 
reported in [Koomen] without giving running time. To 
give an idea, a graph of 101 intervals and 450 relations is 

processed by TimeLogic through 11x105 calls to the 
basic constraint propagation function (performs some 
table lookups and unions of fixed length lists). If the 
graph is hierarchized 4.5x105 calls to this function are 
required. To our knowledge no work reported the appli­
cation of the transitive propagation algorithm for a 
graph of several hundred nodes. 

5. Conclusion 

IxTeT abilities for dealing with symbolic temporal 
knowledge can be extended to numerical quantitative con­
straints and to constant points (dates). All numeric 
relations and dates may be given with intervals precising 
earliest and latest possible occurrence or simply errors 
foreseen. Indeed it is easy to have in IxTeT an absolute 
referencing system by dates with qualitative relations. A 
point can be attached to a date. Arcs can be labeled by 
durations. The direct link that exists between durations 
and dates allows several deductions on the partial order 
of points. A lattice may have some nodes known as pre­
cise dates, others are variables linked with qualitative 
relations, and others have dates deduced from quantita­
tive relations. 

In conclusion this paper presented an original 
approach for designing a TMM that has some interesting 
properties: 

it relies on a Time-Point Algebra that gives the 

same expressive power as the restricted Interval 
Algebra which permits completeness in polynomi­
al time; 

• it makes use efficiendy of a maximum spanning 
tree of the lattice together with a particular index­
ing scheme for checking in constant time ancestral 
information and for reducing and pruning the prop­
agation and search; this data structure gives a pre­
cise and dynamic hierarchy for the temporal rela­
tions; 
it is shown experimentally to be of linear space 
and time complexity for both operations, retrieval 
and updating, thus bringing a significant improve­
ment over known algorithm; 
it permits removal of points and relations from 
the time-map; 
it can deal with numerical knowledge attached to 
time. 
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