
Managing Efficiently Temporal Relations
Through Indexed Spanning Trees

Malik GHALLAB and Amine MOUNIR ALAOUI
ratoire d'Automatique et d'Analyse des Systemes du CNRS
7, avenue du Colonel Roche, 31077 Toulouse, France

Abstract
We are interested here in the design of a very
efficient Time-Map Manager, able to deal
with a large knowledge-base of several thou­
sand time-tokens in demanding applications
such as reactive planning and execution con­
trol. A system, called IxTeT, aiming at that
goal is described. It uses an original represen­
tation of a lattice of time-points that relies
for efficiency on a maximum spanning tree of
the lattice together with a particular indexing
of its nodes.
The IxTeT system is sound and complete, it
has the same expressive power as the restrict­
ed Interval Algebra that permits complete­
ness in polynomial time. Its average complexi­
ty is shown experimentally to be linear, with
a low overhead constant, for both operations:
retrieval in and updating of a set of temporal
relations.

1. Introduction

Temporal knowledge is essential in several AI tasks,
such as planning and reasoning on actions, on past and
future events, and on dynamic situations. Temporal
knowledge requires a specific representation if one wants
to correctly grasp the notion of causality. As for other
types of knowledge, this representation should be consis­
tent and complete, and should provide a good trade-off
between expressive power and complexity. The efficien­
cy criteria is very important for real-time applications,
such as those of reactive planning and execution control
that motivated this work [Ghallab], where time is an
object of representation and reasoning as much as a con­
straint.

Acknowledgement: This work was supported by the EEC under
the ESPRIT project P1560 (SKIDS) and by the French National
Research Program GRECO/PRC-IA

A particular set of representations were found to
have some nice properties: reified logic approaches pro­
posed in [McDermott] and [Allen 84] and formally stud­
ied in [Shoham] and [Tsang]. The common feature of
these representations is the use of couples: <logical for­
mula Φ, temporal qualification of Φ>. They require a so-
called Time-Map Manager (TMM) that is in charge of
retrieval in and updating of a knowledge base of tempo­
ral relations. In a typical application, a TMM will be
put at a very low level and in heavy use, it has to be
very efficient.

Of the above set of representations, the Algebra of
Temporal Intervals [Allen 83] is the most popular repre­
sentation: it is appealing for its expressive power and
ease of implementation. It has however a major draw­
back: the consistency problem for a set of Interval Alge­
bra relations is NP-complete [Vilain]. But of resorting
to exponential algorithms, this leads to the use of a tran­
sitive closure propagation algorithm that is defective
because of:
• a completeness problem: it may accept an inconsis­

tent set of relations as being consistent; and
• a complexity problem: it runs in 0(n3), a too high
complexity for a real application.

As it was argued in [Vilain] one can solve the com­
pleteness problem by restricting the expressive power to
a sub-class of Interval Algebra, that class equivalent to
the Time Point Algebra. For those two representations
the propagation algorithm is complete.

This paper addresses the complexity problem. It
describes a representation and a set of algorithms for a
TMM, called Indexed Time Table (IxTeT), that has the
following properties:
• it relies on a particular Time Point Algebra that

has the same expressive power as the restricted
sub-class of [Vilain],
it is guaranteed to be complete,
it permits non-monotonic updatings of the knowl­
edge base, i.e. both addition and removal of rela­
tions, and
it leads to a very efficient T M M that is shown

Ghallab and Alaoui 1297

experimentally to be of linear time and space com­
plexity for both operations, retrieval and updating.

The proposed representation and approach are
described in the next section. Main algorithms are
detailed and discussed in section 3. Extensive empirical
results, that characterize the performances of the pro­
posed T M M and permit to favorably compare it to those
described in the litterature, are summarized in section 4.
Some extensions to this T M M for dealing with numeri­
cal constraints are finally considered.

2. Representation

2.1. Approach
The role of a T M M in a temporal reasoning system is
the achievement of the following two tasks:
(i) retrieval: find whether two events in the knowl­

edge base are temporally related and how, and
(ii) updating: add or remove events and temporal rela­

tions to the knowledge base while maintaining its
consistency.

As for other types of binary constraints, a natural
representation for a set of temporal relations is a net­
work where nodes are time tokens (i.e. intervals or
instants) and arcs are labeled by the constraints relating
two nodes. Two directions can be pursued:
• either using a complete graph where all possible

relations between all pairs of nodes are propagated
and explicitly maintained: this makes task (i) triv­
ial in 0(1), and requires a costly propagation algo­
rithm in 0(n3) for mono tonic updatings;

• or using a network where the only arcs are those
of the explicit knowledge of the problem: this
simplifies task (ii) but requires for task (i) a cost­
ly search through possible pathes of the network.

The approach proposed here is a trade-off between
these two directions. It relies on the efficient combina­
tion of 2 principles:

adding to the time-network a particular data struc­
ture, a maximal spanning tree with an adequate
indexing scheme, that permits a very efficient com­
putation of ancestral information, this greatly sim­
plifies task (i), and
restricting the propagation of new relations to a
small subset of nodes in the network in order to
perform task (ii) efficiently.

2.2. Time lattice
Of the two possible and equivalent representations that
lead to a tractable polynomial problem, i.e. restricted
interval algebra and time-point algebra, we choose the
second one. Although this choice was motivated by effi­
ciency considerations, it has other advantages:
• there is no simple characterization of the subset of

relations that falls into the restricted interval

algebra: input data has to be compared to the com­
plete list of 187 such relations compiled in
[Granier]); but, for the user's convenience, one may
provide intervals and some useful relations as
primitives of the input language and translate
them internally into time-points relations;
the particular intervals and relations that are
responsible for an inconsistency are difficult to
locate even when the propagation algorithm
detects the inconsistency; this is straightforward
in the proposed representation;
numerical constraints are more easily taken into
account by the time-point representation;

• it is easy to represent open intervals such as prop­
erties that become true at a known moment and
remain until a contradiction is found ("persistance"
in [Dean] ontology).

In a time-point algebra 3 elementary relations,
before, equal and after, and their S disjunctive combina­
tions relate a finite set of instants or time-points.
Instead of a network with arcs labeled by relations, we
use 2 different types of unlabeled arcs:
• arc < standing for the relation (before or equal),
and

arc # meaning the relation (before or after).
The 8 possible relations between 2 time-points are

easily expressed as 0,1 or 2 arcs relating two nodes.
A network of < and # arcs corresponds to a consis­

tent set of relations if no pair of nodes, connected by a #
arc, are involved in a loop through (arcs. Such a loop
describes a set of identical time-points that should be
collapsed to a single node. Individual events correspon­
ding to this set are kept distinct but their simultaneity
is recorded by connecting all of them to the same node in
the time-map. Arcs # do not require any propagation
mechanism; they are looked for only when a collapsing
decision has to be taken. For that reason we can keep arcs
implicit in the network representation.

A consistent network where all possible collapsing
operations have been performed contains only (arcs and
is loop-free. It thus defines a partial order over the set
of nodes. Since we can always add for convenience an ori­
gin time-point, we endup finally with a network that is
a rooted DAG, i.e. a time-lattice. Let us denote it
L=(U,A) where U= {t0, u, v, w, ...} is the set of time-
points, t0 is the root of L; and A is the set of (arcs in L.

Point u precedes temporally (is before or equal)
point v if there is a path in L going from u to v. Let us
denote u ((v this fact (((is the transitive closure of ().
Thus relating 2 points requires a search of a path in L .
How can we speed-up such a search?

23 . Indexed Spanning Tree of the Time-Lattice
It is well known that ancestral information can be com-

1298 Knowledge Representation

puted in constant time for a tree correctly ordered, e.g.
by preoder and postorder. To use such property 2 prob­
lems should be addressed: (a) how to map a time-lattice
to a tree, and (b) classical orderings are not easily updat­
ed and maintained for a dynamically growing tree.

We solve the first problem by extracting from L a
maximum spanning tree T defined as follow:

T is rooted at t^ and covers all nodes of L (it is
not a free tree as is usually the case for a spanning
tree);

• T contains a maximal number of arcs.
Let us denote by r(u) the rank of u in L, i.e. the

length of the longest path in L from ^ to u:

r(u)= 1 + max{r(v) IV (v,u) € A } , with ^ ^ = 0 .
To compute T from L we first order the nodes in L
according to their rank. This can be achieved by an 0(IAI)
breadth first search in L: all successors of nodes of rank
k have their rank set to k+1, which may change previous­
ly computed ranks if longer pathes are found (some sim­
ple additional tests speed-up the procedure).

Let M be the maximal rank found in L. We start
from any node z of rank M, put it in T, choose among its
predecessors in L any node y of rank Ml and put in T
the arc (ytz) and the node y as the parent node of z:
p(z)=y. This is repeated for a predecessor x of y such as
r(x)=r(y)-1; arc (x,y) and node x are added to T. We keep
on moving up along a path of maximal length until the
root t0 is put in T.

The procedure is repeated starting from a node of
maxima] rank among those not already in T. While pro­
cessing node u, if there is a choice between several of its
predecessors, all at rank r(u)-l , we choose one not
already in T and add it to T. If none remains, we choose
among such predecessors one in T which has the least
number of children in T, and attach a new path to the
spanning tree. The procedure is repeated until all nodes
of L are put in T.

The generated tree has indeed a maximal number of
arcs: in a spanning tree of L rooted at tb there is one and
just one path from t0 to each node of L. Each such path
in T goes through a maximal number of arcs.

Let s(w) be the set of children of u in T, and §(u) the
set of its descendants in T (transitive closure of s). Our
goal is to be able to compute as efficiently as possible
ancestral information in T, i.e. whether v e §(u) . This
is achieved through a particular indexing of T.

To each node u is attached as index a sequence:
I(u)=[i1 i2. ... ij of one or more integers that is

defined, while generating T, as follows:
nodes of the path (t0, x, y, z) that was first
put in T are indexed by their rank: I(z)=[M],
I (y)=[M-l] , I(x)=[M-2L..., I(t0)=[0];

if I(u)=[i1.i2. ...ik]and v G s(u) then:

Nodes of the first path put in T can be indexed
while they are added to T. The other nodes are not
indexed until their path is attached to T: indexing pro­
ceeds by moving from the attachment parent (already
indexed) down along the path.

The addition or removal of a new node, as a leaf in
the tree is straightforward; for an internal node, only
some of its descendants will have to be reindexed. Prob­
lem (b) is thus correctly addressed.

An example will illustrate the complete procedure:
figure La gives a lattice L with the rank of each node
shown. A corresponding maximal spanning tree is drawn
in figure l.b where the index of each node follows its
label (some of the arcs of L that do not belong to T are
shown in broken lines)

Thus, to relate 2 nodes u and v in T we first com­
pare their rank

if r(u)=r(v) then u and v are not related in T;
if r(u) < r(v) : either condition (1) is satisfied: v
is a descendant of u, or they arc not related;
if r(u) > r(v) : u and v are permuted before check­
ing condition (1).

Notice that the rank of a node is given by its index :

In the popular Dewey decimal notation k, the length
of an index, grows while we go deeper in the tree,

Ghallab and Alaoui 1299

whereas in the proposed indexing scheme we try as much
as possible to keep this length small and make the value
of ik, the last element of an index, increases with the
depth. This is because condition (1) is checked in 0(k),
the length of the smallest index.

In the worst case, all pathes wil l be attached to the
root node: the maximum value of k can be proportional
to the number of nodes at maximal rank in L. An unfa­
vorable case is that of a balanced tree where k <
log(n+l), n being the total number of nodes (if T is bina­
ry there are -1 nodes, those at the maximum rank
M arc indexed [M], [M-1 . 1], [M-2 . 2], [M-2 .1 .1], ...
[0.1 1]). However the proposed procedure maximizes
the depth of T while minimizing heuristically its
breadth (by chosing as a parent a fatherless node or one
with the least number of children in T). This keeps the
average value of k smaller than the log(n) case.

Let us remark that the complete procedure for
extracting and indexing the maximal spanning tree,
while efficient in 0(IAI+n), is not used by the TMM but
at initialization time.

2.4. Residue of the Time-Lattice

A precedence relation in L, such as u « v , can be
retrieved either

through the spanning tree : this is
checked easily; or
through a path using some arcs of L not belonging
toT.

To take care of this last case, residue arcs are pro­
cessed by 2 operations:

Eliminating redundant arcs: if (u,v) is an arc
of L not belonging to T such as then this
arc does not bring any useful information. It is
redundant and can be eliminated. In figure 1 arcs

are redundant
• Propagating non redundant arcs: 2 nodes may be

linked by a path that mixes in any order arcs from
T and non redundant residue arcs. To avoid mixing
the 2 structures and simplify the retrieval of prece­
dence relations we propagate recursively a non
redundant arc (u,v) to the parent node of u in T,
unless v is already a successor of p(u) in T, i.e. if

then an arc from p(u) to v is added.
This is the case of arc (q,w) in figure 1 .b.

The exact procedure is described in section 3.2. It
corresponds to the trade-off mentioned earlier between
using a complete graph and keeping a minimal set of rela­
tions.

Let us call residue arcs the set obtained after elimi­
nation and propagation.

The important property here is that any residue arc
(u,v) is such that r(u) < r(v). This is trivially true for
arcs in L not belonging to T, it is also true for added

1300 Knowledge Representation

arcs since the propagation goes only upward in T.

3. General algorithms

The procedures required for the 2 tasks of a TMM,
retrieval of precedence relations and updating the time-
map, using the proposed representation, are formally
described in this section. Let us first summarize our
main notations, and make clear the distinction between
the part of the time-lattice L covered by the spanning
tree T and the residue part.

In T we speak of the parent p(u) of a node u, its
children s(u), its descendants and its ascendants',
I(u) is its index and r(u) its rank. Only s, p and / are
kept as data structures.

In the residue part, a(u) denotes the set of nodes
linked to u by residue arcs . We wil l speak of the fol­
lowers and foregoers of a node for adjacency relations
defined by such arcs.
We reserve successors and predecessors for the com­
plete lattice. Notice that the successors
of a node arc partitioned into its children and its follow­
ers.

3.1. Retrieval: relating 2 points
The proposed representation permits to characterize a
precedence relation by the following conditions:

The 3 first conditions come from the fact that u pre­
cedes v in L if v is a descendant of u in T or if it is a fol-
lower of u. The last one is due to the property of the
upward propagation mechanism:

all followers of a descendant of u are either the follow­
ers of u or its descendants', there cannot be a non descen­
dant node w of u linked to u through followers of a node

that is not also linked to u through a(u).
The comparison algorithm between two points u and

vis thus:

when the rank of w reaches that of v

3.2. Updating: Adding new points and relations
Updating should be done such as to keep all the proper­
ties of the representation. Let us first focus on the addi­
tion of points and relations in L (removal is considered
in section 3.4). The additon of a point w and 2 relations
u(w(v can be decomposed into 2 steps:
• add w as a child of u and give it the right index ; and
• add an arc between w and v and update the tree and
residue arc if necessary.

The first operation is straighforward, is is achieved
by procedure Addpoint bellow. The second operation
involves 3 steps: a test, and eventually a propagation and
a reindexation.

The test determines whether v « w, in this case,
unless all points in every path from v to L can be col­
lapsed, the updating is impossible: w (v cannot be
inserted, it is inconsistent with the arcs in pathes
between v l o w. Inconsistent arcs are returned as output
for further analysis.

The reindexation takes place if r(w) > r(v). In this
case, to keep v on the longest path in the spanning tree,
we give to v a new parent node w. Node v is removed
from the children of p(v) and put as a follower of p(v);
w becomes the new parent node of v; the descendants of
v are reindexed. The reindexation algorithm computes
the new index of each node according to the index of v,
it then verifies if the followers of v have the right rank
considering the new index of v, and, if not, it reindexes
them. This is repeated recursively.

If r(w) < r(v), v is put as a follower of w. This
residue arc is propagated to the parent of w, and recur­
sively to its ascendants that are not found by Relate
linked to v. Notice that if there is a reindexation, there
will be propagation of the arc between the old parent of
v and v: all the former ascendants of v have to know
that they are still linked to it

The reindex function reindexes all the descendants
of v according to I(v). It then verifies that the ranks of
the followers of v are not affected by the new index, if
they are, they will be reindexed too. The algorithm is:

As we saw before, residue arcs have to be propagated
to the ascendants of u to keep a link between them and v
if there is none. To propagate the relation u { v, the algo­
rithm will simply be:
until

add v in
But in a special case, this algorithm stops before the

propagation is complete: in the example of figure 2,

propagation of the relation t6 < t9 will go on until t4.

There we have and If we stop the
algorithm, the propagation will be incomplete because
we will not be able to Relate t2 and

and no element of a(t2) has a link with t9. The
propagation was stopped at t4 because there are two

pathes from it to t9: one direct through t6

and the other one through t7. In this case we have to con­
tinue the propagation to be sure that all ascendants of t6

are really Related to t9. The relation is propagated to

Ghallab and Alaoui 1301

all the ascendants until t0 while avoiding it for ascen­
dants already related to the destination node. The algo­
rithm proposed is then:

The third step in this algorithm tests if there is a
path from p(u) to v through residue arcs that contains a
descendant of p(w). In this case we are in the conditions
described previously. This test is described only in a
mathematical formalism because its efficient implemen­
tation needs special care and some modifications in the
Relate procedure that are of less interest here.

This algorithm runs a maximum of r(u) comparisons
in the worst case, but in fact, in many cases, it will stop
sooner the algorithm stops as soon as p(u) is linked to
v, this may happen very quickly, and then, the algorithm
continues only if there is more than one path that links
p(u) to v and if one of those pathes contains a descendant
of p(u). This is a very strong condition that may seldom
occur.

3.3. Collapsing 2 points
When the points of a loop can be made identical (i.e.
there is no # arc between them), they are collapsed to
one point This is done by keeping the point with the
highest rank and linking it through all the relations han­
dled by the other points that are removed. This involves
reindexing their successors, and modifying arcs and
branches issued from their predecessors.

3.4. Removing points and relations
IxTeT enables removal of points and relations if needed.
Removing a point u requires 2 operations: putting p(u)
as parent of all the children of u and reindexing its
descendants, and then, redirecting all the residue arcs
pointing to u and to successors of u.

For removing a relation that is a branch of the tree
from u to v, we have to find the predecessor of v with
the highest rank, and put it as p(v). If no predecessor
remains, t0 is taken. Then, reindexation starts at v.

If the relation removed is a residue arc from u to v,
v is just removed from a(u), this has to be propagated to
the ascendants of u until one of them is related to v by

another path than the one that contains u.
Notice that the reindexation used here is slightly

different from Reindex: each step verifies if there is no
predecessor with a higher rank than the new one, and in
this case, changes the parent.

4. Experimental results

All the algorithms described in the previous section
were implemented (on a Sun 4-260 in Sun Common
Lisp), and tested [Mounir]. The workload for insertion
of points and arcs in the lattice, and for retrieval or
removal of relations between points were recorded.

Tests were made on SO lattices, randomly generated,
and growing in size up to 2000 points. Each lattice was
generated by adding at each step one point and k relations
(algorithms Addpoint and Addrelation). We experi­
mented on data for k=2 to S, without noticing a signifi­
cant change in performances. Average running times
increased very slightly from k=2 to 3, then decreased fin­
ks^ and 5. Results reported are for k=2. Figure 3 plots
20 average times, and 2 standard deviations, for retriev­
ing the relation between 2 random nodes. Each point is
averaged over 2500 runs: 50 retrievals in 50 lattices.

The same information concerning the insertion of one
relation (procedure Addrelation) is given in figure 4.

To summarize IxTeT performances, over 100000
runs of updatings and retrievals support the following
evidences:

1302 Knowledge Representation

the proposed TMM seems to be in average of lin­
ear complexity for both retrieval and insertion of
relations; due to reindexation, the standard devia­
tion is however higher for insertion; indeed, if a
relation is added near the root of the lattice, the
part of the lattice to be reindexed may remain
large despite the pruning heuristics, that are effi­
cient only in the average;

• the linearity constant is very low: our non opti­
mized Lisp implementation required:

about .1 second to insert a new relation in a
2000 points lattice

• less than 70 millisecond to compare 2
points in a 2000 points lattice

• the space complexity of IxTeT seems also to grow
linearly; a 2000 points lattice required less than
20000 memory units (cons cells).

In parallel with these experimentations, the propaga­
tion algorithm of [Allen 83] was implemented. Howev­
er we could not manage graphs larger than 80 intervals
(less than 160 points): this algorithm is in 0(n2) space.
Insertion in a graph of 50 intervals required about 4 to 5
seconds. Since insertion is in 0(n3) time, it would have a
prohibitive cost for much larger graphs.

Experimental results of Allen's algorithms are
reported in [Koomen] without giving running time. To
give an idea, a graph of 101 intervals and 450 relations is

processed by TimeLogic through 11x105 calls to the
basic constraint propagation function (performs some
table lookups and unions of fixed length lists). If the
graph is hierarchized 4.5x105 calls to this function are
required. To our knowledge no work reported the appli­
cation of the transitive propagation algorithm for a
graph of several hundred nodes.

5. Conclusion

IxTeT abilities for dealing with symbolic temporal
knowledge can be extended to numerical quantitative con­
straints and to constant points (dates). All numeric
relations and dates may be given with intervals precising
earliest and latest possible occurrence or simply errors
foreseen. Indeed it is easy to have in IxTeT an absolute
referencing system by dates with qualitative relations. A
point can be attached to a date. Arcs can be labeled by
durations. The direct link that exists between durations
and dates allows several deductions on the partial order
of points. A lattice may have some nodes known as pre­
cise dates, others are variables linked with qualitative
relations, and others have dates deduced from quantita­
tive relations.

In conclusion this paper presented an original
approach for designing a TMM that has some interesting
properties:

it relies on a Time-Point Algebra that gives the

same expressive power as the restricted Interval
Algebra which permits completeness in polynomi­
al time;

• it makes use efficiendy of a maximum spanning
tree of the lattice together with a particular index­
ing scheme for checking in constant time ancestral
information and for reducing and pruning the prop­
agation and search; this data structure gives a pre­
cise and dynamic hierarchy for the temporal rela­
tions;
it is shown experimentally to be of linear space
and time complexity for both operations, retrieval
and updating, thus bringing a significant improve­
ment over known algorithm;
it permits removal of points and relations from
the time-map;
it can deal with numerical knowledge attached to
time.

References

Allen, J. F. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832-
843, November 1983

Allen, J. F. Towards a general theory of action and
time. Artificial intelllience 23:123-154, 1984

Dean, T.L. and McDermott, D. V. Temporal database
management. Artificial intelligence 32:1-55, 1987

Ghallab, M., Alami, R. and Chatila, R.Dealing with
time in planning and execution monitoring. Robotics
Research 4,R. Bolles, MIT Press, 1988

Granier,T. Contribution k T6tude du temps objectif
dans le raisonnement. Rapport UF1A RR 716-1-73,
Grenoble, February 1988

Koomen, J. A. G. M. The TIMELOGIC temporal rea­
soning system in common lisp. Technical report TR
231, Rochester University, November 1987

McDermott, D. V. A temporal logic for reasonning
about processes and plans. Cognitive Sci. 6:101-155,
1982

Mounir Alaoui, A. IxTeT: un systfemc de gestion de
treillis d' instants. Rapport LAAS 88.154, Labora-
toire dAutomatique et d'Analyse des Systemes I
CNRS, Toulouse, June 1988

Shoham, Y. Temporal logics in AI : semantical and onto-
logical considerations. Artificial intelligence 33: 89-
104, 1987

Tsang, E. Time structure for AI . in Proceedings of
the tenth IJCA1:456-461, 1987

Vilain, M. and Kautz, H. Constraint propagation algo­
rithms for temporal reasoning, in Proceedings of the
fifth national conference on artificial intelligence
(AAA/-86):377-382, August 1986

Ghallab and Alaoui 1303

