
Managing Incentives

in Social Computing Systems with PRINGL

Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
{oscekic,truong,dustdar}@dsg.tuwien.ac.at

Abstract. Novel web-based socio-technical systems require incentives
for efficient management and motivation of human workers taking part
in complex collaborations. Incentive management techniques used in
existing crowdsourcing platforms are not suitable for intellectually-
challenging tasks; platform-specific solutions prevent both workers from
comparing working conditions across different platforms as well as plat-
form owners from attracting skilled workers. In this paper we present
PRINGL, a domain-specific language for programming complex incentive
strategies. It promotes re-use of proven incentive logic and allows com-
posing of complex incentives suitable for novel types of socio-technical
systems. We illustrate its applicability and expressiveness and discuss its
properties and limitations.

Keywords: rewards, incentives, social computing, crowdsourcing.

1 Introduction

Human participation in web-based socio-technical systems has overgrown con-
ventional crowdsourcing where humans solve simple, independent tasks. Emerg-
ing systems ([1, 2, 3]) are attempting to leverage humans for more intellectually
challenging tasks, involving longer lasting worker engagement and complex col-
laboration workflows. This poses the problems of finding, motivating, retaining
and assessing workers, as well as making the virtual labor market more com-
petitive and attractive to workers. Paper [4] highlights a number of important
research areas that need to be investigated in order to build such systems. In-
centive management has been identified as one of the important parts of this
initiative. However, contemporary incentive management in social computing
systems usually imply a hard-coded and completely system-specific solution [5].
Such approach is not portable, and prevents reuse of common incentive logic.
That hinders cross-platform application of incentives and reputation transfer.

Motivation. Our ultimate goal is to develop a general framework for auto-
mated incentive management for the emerging social computing systems. Such
an incentive management framework could be coupled with different workflow
or crowdsourcing systems, and, based on monitoring data they provide, would
perform incentivizing measures and team adaptations. In this way, incentive
management could be offered as a service in the cloud.

B. Benatallah et al. (Eds.): WISE 2014, Part II, LNCS 8787, pp. 415–424, 2014.
© Springer International Publishing Switzerland 2014

416 O. Scekic, H.-L. Truong, and S. Dustdar

Activity 1 Activity 2

Web-centric
Business Process

Incentive Management

Team Provisioning

team A' team A'' team B
incentivize
motivate
adapt Monitoring

metrics'
A'

metrics"
A"

Fig. 1. Operational context of incentive management systems

Figure 1 visualizes the context in which an incentive management framework
is supposed to operate: A complex business process execution employs crowd-
sourced team(s) of human experts to perform various workflow activities. The
teams are provisioned by a dedicated service (e.g., SCU [6]) that assembles teams
based on required elasticity parameters, such as: worker skills, price, speed or
reputation. However, choosing appropriate workers alone does not guarantee the
quality of subsequent team’s performance. In order to monitor and influence the
behavior of workers during and across activity executions an incentive scheme
needs to be enacted. This is the task of the incentive management framework. It
enacts the incentive scheme by applying rewards or penalties in a timely manner
to induce a wanted worker behavior, thus effectively performing runtime team
adaptations (e.g., Fig. 1: A′ → A′′).

Contribution. In [7] we presented a framework for low-level incentive manage-
ment – princ. Although princ allowed monitoring of metrics and application
of basic incentive mechanisms for social computing systems, it lacked a com-
prehensive, human-readable way of encoding incentive strategies, motivating us
to design pringl1 – a novel domain-specific language (DSL) for modeling in-
centives for socio-technical systems. In this paper we illustrate how real-world
incentive mechanisms for social computing systems can be modeled in pringl.

Paper Organization. Section 2 gives an overview of pringl’s design and in-
tended usage. Section 3 introduces some of pringl’s basic language constructs,
describes the implemented language metamodel and discusses the advantages
and limitations of the proposed approach. Section 4 presents the related work.
Section 5 concludes the paper.

1 PRogrammable INcentive Graphical Language

Managing Incentives with PRINGL 417

Execution Model

Visual/Textual Representation

 Incentive Elements (Complex Types)

Incentive Mechanism

Inc.LogicFilter Action

Basic Types & Operators

Set

Time
Temporal
Specifiers

Structural

Aggregate

Primitive types

 Socio-technical System

Abstraction Interlayer

Model
Manipulation API

 System Model

Event/Metric Mappings

incentive
designer

incentive
strategy

PRINGL program

 executable incentive
operator

incentive
library

C#

e.g.

generated
code

reward worker

PR
IN

G
L

bu
sin

es
s

lo
gi

c
e.

g.
, P

RI
N

C
abstraction stack actorsartifacts implementation technology

arbitrary

Visual Studio
.pringl Project

Visual Studio
C# Project

.NET assembly

VS
Modeling

SDK

PRINGL
metamodel

domain
expert

Fig. 2. Overview of PRINGL’s architecture and usage

2 PRINGL Overview

Designing an incentive scheme is itself a challenging task usually performed by
domain experts for a particular work type or company. However, as shown in
[5, 8] most real-world incentive strategies used in social computing environments
can be composed of modelable and reusable bits of incentive logic. pringl is a
domain-specific language intended to be used by two types of users (Figure 2): a)
incentive designers – domain experts that design and implement incentive strate-
gies for different organizations (in particular crowdsourcing and socio-technical
platforms); and b) incentive operators – members of the organizations respon-
sible for managing the every-day running and adaptation of the scheme. While
incentive designers may need to concern themselves with implementation details
of the underlying system in order to adapt general incentive mechanisms for it,
incentive operators want to manage the incentive scheme by using a simple and
intuitive user interface without knowing implementation internals.

Figure 2 shows an overview of pringl’s architecture and usage. An incentive
designer models an incentive scheme using pringl’s visual system-independent
syntax. The pringl-encoded scheme gets translated into a system-specific ex-
ecutable able to exchange monitoring and incentive events with a social com-
puting system through an abstraction interlayer. We use the term abstraction
interlayer to denote any middleware sitting on top of a socio-technical system,
exposing to external users a simplified model of its employed workforce and

418 O. Scekic, H.-L. Truong, and S. Dustdar

allowing monitoring of the workers’ performance metrics. In [7] we presented an
abstraction interlayer prototype, as part of the princ framework. For this paper,
we re-use parts of the then implemented functionality (workers’ structure model
and timeline) to simulate an underlying social computing system (Section 3.2).

In order to build a language attractive for the targeted user types, pringl’s
design was guided by the following requirements: a) Usability – Provide an in-
tuitive, user-friendly interface for incentive operators; b) Expressiveness – Pro-
vide an environment for programming complex real-world incentive strategies
for incentive designers; c) Groundedness – Allow the use of de facto estab-
lished terminology, components and methods for setting up incentive strategies;
d) Reusability – Support and promote reuse of existing incentive business logic;
e) Portability – Support system-independent incentive mechanisms, agnostic of
type of labour or workers, and of underlying systems.

To meet the specified requirements pringl was conceived as a hybrid visual/-
textual programming language, where incentive designers can encode core incen-
tive elements, while incentive operators can provide concrete runtime parameters
to adapt them to a particular situation. The language supports programming
of the real-world incentive elements described in [5, 8] and allows composing
complex incentive schemes out of simpler elements. Such a modular design also
promotes reusability since the same incentive elements with different parameters
can be used for a class of similar problems, stored in libraries and shared across
platforms. pringl allows incentive designers to model natural-language, realistic
incentive strategies (i.e., business logic) into a platform-independent specification
through a number of incentive elements represented by a visual syntax (graphi-
cal elements with code snippets). The designer programs new incentive elements
or reuses existing ones from an incentive library to compose new, more complex
ones. Once the entire incentive scheme is specified, pringl translates it into a
platform-specific code in a common programming language that can be further
compiled into executable or library assemblies. The assemblies can then be used
by incentive operators to execute and manage incentive enactment (Figure 2).

3 Modeling Incentives with PRINGL

The incentive elements are the basic functional units of a pringl program.
Due to space constraints a detailed, conventional description of pringl’s visual
syntax and programming model cannot be presented here. Instead, in this section
we briefly describe the functionality of the principal language constructs. The
interested reader is encouraged to visit the pringl homepage2 containing the
full pringl specification, as well as other useful links and documents.

3.1 PRINGL Language Constructs

Incentive Logic. These constructs encapsulate different aspects of business
logic related to incentives in reusable bits. They can be thought of as library-
storable functions with predefined signatures allowing only certain input and

2 http://dsg.tuwien.ac.at/research/viecom/PRINGL

http://dsg.tuwien.ac.at/research/viecom/PRINGL

Managing Incentives with PRINGL 419

output parameters. They are invoked from other pringl constructs, including
other IncentiveLogic elements. Implementation is dependent on the abstrac-
tion interlayer, but not necessarily on the underlying socio-technical platform,
meaning that many libraries can be shared across different platforms, promoting
reusability of proven incentives, uniformity and reputation transfer. The De-
signer is encouraged to implement incentive logic elements as small code snip-
pets with intuitive and reusable functionality. Depending on the intended usage,
incentive logic elements have different subtypes: Action, Structural, Temporal,
Predicate, Filter. The subtype prescribes different input parameters and allows
pringl to populate some of them automatically (marked with auto). Similarly,
different subtypes dictate different return value types. These features encourage
high modularization and uniformity of incentive logic elements. Incentive logic
elements are denoted by a diamond shape surrounding the letter indicating the
subtype, e.g., T and P in Fig. 3, bottom.

Worker Filter. Its function is to identify, evaluate and return matching work-
ers for subsequent processing based on user-specified criteria. The criteria are
most commonly related (but not limited) to worker’s past performance and team
structure. The workers are matched from the input collection of Workers that is
provided by the pringl environment at runtime. By default, all the workers in
the system are considered. The output is a collection of matching workers. We
use a right-pointed shape F to denote filters (Fig. 3, top left). A Composite-

WorkerFilter definition consists of graphical elements representing instances of
previously defined WorkerFilters (Fig. 3, top right).

ReferralFilter

n:NewlyEmployed g:GoodWorkers

<<initial>> <<final>>

 // return k (k=months) PoiTs
representing last days of k past months.

T
name: PastMonths
params: int months
output: Collection<PoiT> P

 return RMod.getEvent(evtName,_w,_time) != null;

name: Pred2
params: Worker _w (auto),

PoiT _time (auto),
string evtName

output: bool

P

T

Pred2

PastMonths NewlyEmployed

time_rest: PastMonths

temp_spec: FIRST

auxiliary: null

predicate: Pred2

params:
- int time_rest.months
- string predicate.evtName

 12
 "EMPLD"

Fig. 3. A CompositeWorkerFilter for referral bonuses

Example: A company wants to introduce employee referral process3 in which an
existing employee can recommend new employee candidates and get rewarded if
the newly employed candidates spend a year in the company having exhibited
satisfactory performance. In order to pay the referral bonuses the company needs

3 http://en.wikipedia.org/wiki/Employee_referral

http://en.wikipedia.org/wiki/Employee_referral

420 O. Scekic, H.-L. Truong, and S. Dustdar

to: a) identify the newly employed workers; and b) asses the worker performance
of those workers. Let us assume that the company already has the business logic
for assessing the workers implemented, and that this logic is available as the
library filter GoodWorkers. In this case, we need to define one additional simple
filter NewlyEmployed, and combine it with the existing GoodWorkers filter. In
Figure 3 we show how the new composite ReferralFilter is constructed. The
F instance n:NewlyEmployed makes use of: a) T PastMonths returning time
points representing end-of-month for the given number of months (12 in this
particular case); and b) predicate P Pred2 checking if the employee got hired
12 months ago. Pred2’s general functionality is to check whether the abstraction
interlayer (RMod) registered an event of the given name at the specified time.

Rewarding Action. Its function is to notify the abstraction interlayer that a
concrete action should be taken against specific workers at a given time, or that
certain specific actions should be forbidden to some workers during a certain
time interval. In order to perform the action, the runtime environment needs
to know to which workers the action applies, so a worker filter needs to be ap-
plied. In some cases, the workers that are rewarded/punished may be the same
as initially evaluated ones. In that case we can reuse the original filter used for
evaluation. In other cases, workers may be rewarded based on the outcome of
evaluation of other workers (e.g., team managers for the performance of team
members). The runtime also needs to determine the timing for action application.
We use temporal specifiers (see pringl specification4) to determine the exact
time moment(s). The output of a RewardingAction is a Collection<Worker>

containing affected workers, i.e., those to which the action was successfully ap-
plied. To execute the action pringl needs to invoke the appropriate action in the
abstraction interlayer which will then send out a system-specific message to the
underlying system. We use a trapezoid shape A to denote RewardingAction

elements (Fig. 4, bottom right). Similarly to composite filters, a CompositeRew-

ardingAction definition consists of graphical elements representing instances of
previously defined RewardingActions (Fig. 4, bottom left).

Example: Consider a company that wants to reward workers either with free
days or with a monetary reward. The choice is left to the worker. Free days
are offered first. Only workers that refuse the free days will be given monetary
rewards. We define a new composite rewarding action BonusOrDays (Figure 4)
that, for the sake of demonstration, assumes the existence of a RewardAtEnd-

Project action to award monetary bonuses, as well as a newly-defined action
FreeDays to award free working days to the workers. The output of a:FreeDays
is the set of workers who accepted the 3 free days offered. However, due to a
complement edge (�) connecting a and b, the output set of a is subtracted from
the original input set. Therefore, the input of b:RewardAtEndProject are only
those workers who declined to accept working days as award, and want to be
evaluated at the end of project and paid a bonus according to their performance.

Incentive Mechanism. This is the main structural and functional incentive
element used to express complex incentive schemes. It combines the previously

Managing Incentives with PRINGL 421

A

AwardFreeDays

FreeDays

 filter: null

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int action_logic.amount

 delay: (auto)

 action_logic: AwardFreeDays

Aw

FreeDays

 filter: null

 exec_cond: null

 exec_times: null

 temp_spec: null

params:

+ int action_logic.amount

 delay: (auto)

 action_logic: AwardFreeDays

 2

… Collection<Worker> result …
if (RMod.Notify(_w, MSG_FREEDAYS, amount))
 result.Add(_w); //affected workers
return result;

… Collection<Worker> result …
if (RMod.Notify(_w, MSG_FREEDAYS, amount))

 result.Add(_w); //affected workers
return result;

A
name: AwardFreeDays
params: Worker _w (auto),

int amount
output: Collection<Worker>

BonusOrDays

<<initial>>

a:FreeDays

<<final>>
30

b:RewardAtEndProject

params:
+ int action_logic.amount 3

Fig. 4. A CompositeRewardingAction letting the workers choose one of the rewards

defined constructs (incentive elements) to select, evaluate and reward workers.
As a self-sufficient and independent unit, it does not have any inputs or outputs.
It can be stored and reused through instantiations with different runtime pa-
rameters. It also has dedicated GUI elements for definition and instantiation, as
well as a shorthand notation – IM. Due to spatial restrictions, a full example of
design and usage of incentive mechanisms is provided in supplement materials4.

3.2 Implementation

Figure 2 (Section 2) shows the overview of implemented components. pringl’s
language metamodel prototype was implemented4 in Microsoft’s Modeling SDK
for Visual Studio 2013 (MSDK). MSDK allows defining visual DSLs and trans-
lating them to an arbitrary textual representation. Using MSDK we generated a
Visual Studio plug-in providing a complete IDE for developing pringl projects.
In it, an incentive designer can create a dedicated Visual Studio pringl project
and implement/model real-world strategies using the visuo-textual elements in-
troduced in this paper (see Figure 5). The graphical elements provided in the
implemented Visual Studio pringl environment, although not as visually ap-
pealing as those presented in this paper, functionally and structurally match
them fully. pringl models are stored in .pringl files that get automatically
transformed to the corresponding C# (.cs) equivalents. The generated code can
then be used in the rest of the project as regular C# code or compiled in .NET as-
semblies (e.g., libraries or executables).

4 Source code, screenshots and additional info available at:
http://dsg.tuwien.ac.at/research/viecom/PRINGL/

http://dsg.tuwien.ac.at/research/viecom/PRINGL/

422 O. Scekic, H.-L. Truong, and S. Dustdar

Fig. 5. Screenshot. Implementing a realistic incentive scheme using pringl Visual
Studio environment.

Figure 5 shows a screenshot of the implementation of the rotating presidency
example4 using the VS pringl IDE. The entire scheme was modeled using the
generated pringl tools, demonstrating the feasibility of the proposed architec-
tural design. The C# code obtained from the implemented model can be used to
produce arbitrary incentive management applications, using princ as the acting
interlayer (see Section 2).

3.3 Discussion

Advantages. In case of a conventional social computing platform (cf. [8]), the
business logic necessary for enacting a platform-specific incentive scheme would
likely need to be implemented and tested anew; subsequent changes would re-
quire changing the source code. With pringl, however, the incentive designer
is likely to implement and test the basic incentive elements only once. pringl
encouraging a modular design of incentive schemes composed of many small, eas-
ily testable components. With the basic elements available, composing complex
ones can be done in a matter of minutes by visual modeling, copy-pasting and
simple editing of fields and parameters. Once defined, the incentive elements can
be stored in libraries and shared across different social-computing platforms pro-
moting reusability and portability. pringl’s composite actions enable the incen-
tive designer to create tailored rewarding actions for different personality types
or worker roles by combining a number of available rewarding mechanisms. As
an additional benefit, by using standardized pringl incentive elements, compar-
ing incentives across different social computing platforms becomes much easier.
This is one of the fundamental requirements necessary to establish fair working

Managing Incentives with PRINGL 423

conditions and sustainable virtual careers of crowdsourcing workers [4]. pringl’s
programming model was designed to support modeling of real-world incentive
strategies from [5], thus addressing the desired Groundedness and Expressiveness
requirements from the Section 2.

Limitations. So far pringl has been tested only in simulation environment
with simple provisioning engines. However, it is important to point out that our
goal is not to invent novel incentive mechanisms, nor to compare or improve
existing ones. Rather, the focus is on functionally validating pringl’s design
and expressiveness in modeling documented, existing incentive mechanisms, thus
not requiring evaluation with human subjects. As there are no known similar
languages, a comparative qualitative evaluation was not possible. Also, at this
moment pringl is limited to supporting worker-centric incentives only. Incentive
adaptations currently require human intervention.

4 Related Work

Previous research on incentives for socio-technical systems is dispersed and
problem-specific. It can be roughly categorized in two groups. One group seeks to
find optimal incentives in formally defined environments through precise math-
ematical models [9]. Although successfully used in microeconomic models, these
incentive models do not fully capture the diversity and unpredictability of hu-
man behavior that becomes accentuated in socio-technical systems. The other
group examines the effects of incentives by running experiments on existing cro-
wdsourcing platforms and rewarding real human subjects with actual monetary
rewards. For example, in [10] the authors examine the effects of incentives by
running experiments on existing crowdsourcing platforms and rewarding real
human subjects with actual monetary rewards. In [11] the authors compare the
effects of lottery incentive and competitive rankings in a collaborative mapping
environment. In [2] the focus is on pricing policies that should elicit timely and
correct answers from crowd workers. The major limitation of this research ap-
proach ([12]) is that the findings are applicable only for a very limited range
of simple activities, such as image tagging and text translation. Two surveys of
commonly used incentive techniques today can be found in [5, 8]. To the best of
our knowledge, there have been no previous attempts of formalizing a general
approach to incentive management for socio-technical systems.

5 Conclusions and Future Work

In this paper we introduced a domain-specific language named pringl for pro-
gramming incentives for socio-technical systems. pringl allows the incentives
to stay decoupled of the underlying systems. It fosters a modular approach in
composing incentive strategies that promotes code reusability and uniformity of
incentives, while leaving the freedom to incentive operators to adjust the strate-
gies to their particular needs helping cut down development and adjustment

424 O. Scekic, H.-L. Truong, and S. Dustdar

time and creating a basis for development of standardized but tweakable incen-
tives. This in turn leads to more transparency for workers and creates a basis for
an incentive uniformity across companies; a necessary precondition for worker
reputation transfer. In future, we plan to include support for artifact-centric
incentives, and integrate princ into a general programming model for Hybrid
Collective Adaptive Systems (HDA-CAS).

Acknowledgements. This work is supported by the EU FP7 SmartSociety
project under grant №600854.

References

1. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming
environment for structured social computing. In: Proceedings of the 24th Annual
ACM Symposium on User Interface Software And Technology, UIST 2011, vol. 53
(2011)

2. Barowy, D.W., Curtsinger, C., Berger, E.D., McGregor, A.: Automan: A plat-
form for integrating human-based and digital computation. SIGPLAN Not. 47(10),
639–654 (2012)

3. Minder, P., Bernstein, A.: CrowdLang: A Programming Language for the System-
atic Exploration of Human Computation Systems. In: Aberer, K., Flache, A., Jager,
W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 124–137.
Springer, Heidelberg (2012)

4. Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J.,
Lease, M., Horton, J.: The future of crowd work. In: Proceedings of the 2013 Con-
ference on Computer Supported Cooperative Work, CSCW 2013, p. 1301 (2013)

5. Scekic, O., Truong, H.L., Dustdar, S.: Incentives and rewarding in social computing.
Communications of the ACM 56(6), 72 (2013)

6. Dustdar, S., Bhattacharya, K.: The social compute unit. IEEE Internet Comput-
ing 15(3), 64–69 (2011)

7. Scekic, O., Truong, H.-L., Dustdar, S.: Programming incentives in information sys-
tems. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908,
pp. 688–703. Springer, Heidelberg (2013)

8. Tokarchuk, O., Cuel, R., Zamarian, M.: Analyzing crowd labor and designing in-
centives for humans in the loop. IEEE Internet Computing 16(5), 45–51 (2012)

9. Laffont, J.J., Martimort, D.: The Theory of Incentives. Princeton University Press,
New Jersey (2002)

10. Mason, W., Watts, D.J.: Financial incentives and the “performance of crowds”. In:
Proceedings of the ACM SIGKDD Workshop on Human Computation, HCOMP
2009, pp. 77–85. ACM, New York (2009)

11. Ramchurn, S.D., Huynh, T.D., Venanzi, M., Shi, B.: Collabmap: crowdsourcing
maps for emergency planning. In: Proceedings of 5th ACM Web Science Confer-
ence, Paris, France, pp. 326–335 (May 2013)

12. Adar, E.: Why i hate mechanical turk research (and workshops). In: Proc. of CHI
2011 Workshop on Crowdsourcing and Human Comp. ACM, Vancouver (2011)

	Managing Incentivesin Social Computing Systems with PRINGL
	1 Introduction
	2 PRINGL Overview
	3 Modeling Incentives with PRINGL
	3.1 PRINGL Language Constructs
	3.2 Implementation
	3.3 Discussion

	4 Related Work
	5 Conclusions and Future Work
	References

