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1. I n t r o d u c t i o n  

In the distributed implementation of recursive algorithms, one often has to contend 
with the problem of interprocessor delays. There have been several attempts to 
model and analyse such phenomena mathematically, the earliest perhaps being the 
work of Chazan & Miranker (1969) on linear iterations. A comprehensive survey of 
the work up to late eighties, along with an extensive bibliography, can be found in 
(Bertsekas & Tsitsiklis 1989), chapters 6 and 7. In these references, one observes that 
the distributed algorithms are shown to work as desired only under rather strong 
conditions, such as boundedness of delays and other algorithm-specific restrictions. 
On a different note, the recent work of Gharavi & Anantharam (1992) analyses the 
complex behaviour that can result under stationary delays even in linear iterations. 

The aforementioned works use a constant stepsize for deterministic algorithms. A 
tapering stepsize as in stochastic approximation theory by Benveniste et al (1990) is 
used only when there is a random 'noise' component and the aim there is to suppress 
the effect of noise on the asymptotic behavior of the algorithm. We argue here that 
the same scheme also suppresses the effect of delays. The main strength of our 
analysis is that we allow for very general delays, possibly unbounded, correlated and 
nonstationary, as long as a mild 'moment' condition is satisfied. Another important 
gain is that our analysis is not very algorithm-specific. It applies simultaneously to 
a large class of algorithms, viz., those whose continuous limit is a so called 'strict 
Liapunov system'. The latter subsumes a large number of gradient-like algorithms 
currently in vogue among the neural networks community (Hirsch 1987). 

The paper is organized as follows. The next section describes the mathematical 
formulation of the problem and the assumptions. It also defines a strict Liapunov 
system and gives several examples of such systems. The third section proves our 
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main result. The  last section concludes with some relevant remarks. 

P r o b l e m  d e s c r i p t i o n  

raider a recursive algorithm in R ~, d > 1, described by 

X ( n  + 1) = X ( n )  + a ( n ) F ( X ( n ) )  (1) 

here X ( n )  = [ X l ( n ) , . . . ,  Xa(n)] '  E R a with X(O) prescribed, and F( . )  - [FI(.), 
' - ,  Fd(.)]' : R d --+ R a is a bounded map satisfying the Lipsehitz condition: 

II F ( x )  - F ( y )  I1_< K 11 x - y II; ~ ,  v ~ R '~ 

for some K > 0 (Prime denotes transposition of a vector or a matrix).  {a(n)} is 
a prescribed sequence of strictly positive numbers. The i - th row of this vector 
i teration reads 

Xi (n  + 1) = Xi(n)  + a ( n ) F i ( X l ( n ) , . . . ,  Xd(n)).  (2) 

In our model of distributed computat ion with delays, we replace (2) by 

Xi (n  + l)  = Xi(n)  + a(n)Fi (Xl (n  - v / l ( n ) ) , . - . ,  Xd(n -- rid(n))) (3) 

where {rij(n), 1 < i , j  <_ d} are random delays encountered at the (n + 1) - st 
iteration. Our aim is to analyse the system (3) under the following assumptions: 
(A1) a ( n ) =  1 / n , n =  1 , 2 , . - . , a ( 0 ) =  1. 
(A2) The delays {7"ij (n)} satisfy: There exist b, C > 0 such that  

E[(TO(n))b /x(rn) ,m ~ n, Wpq(k),k < n, 1 ~ p,q ~ d] ~ C (4) 

with probabili ty one, for all i, j ,  n. 
(A3) The ordinary differential equation (ODE) described by 

~(~) = v(x(t)) (.~) 

is a 'strict Liapunov system' described later in this section. 
Some comments are called for regarding these assumptions. (A1) implies ~ a(n) 2 

< co, V~  a(n) = co, which is the condition used in stochastic approximation theory 
to suppress the effect of noise. Our choice of {a(n)} coupled with (4) will simplify 
our analysis considerably. This choice, however, is not very rigid. One could use 
other stochastic approximation-like tapering stepsize routines in conjunction with 
an appropriate modification of (4), as will become evident later. Note that  (4), in 
particular,  implies tha t  the conditional distributions of rij given the past are ' t ight '  
in probabili ty theory parlance. Finally, the Lipschitz condition on F implies that  
(5) has a unique solution for all t >_ 0. Later on we shall comment on the possibility 
of relaxing this condition. 

A continuously differentiable function V : R d ---, R + is said to be a Liapunov func- 
tion for (5) if V V . F  <_ 0 everywhere and a strict Liapunov function if in addition, 
V V . F  < 0 outside the set EF = {z [ F(z)  = 0}. Call (5) a strict Liapunov system 
if it has bounded trajectories, EF consists of isolated points and a strict Liapunov 
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function V exists. (The latter would imply bounded trajectories if V ( x )  ---* oe as 
II x II--* oo.) Some examples of such systems are: 

(i) Gradient system: Consider F = - a V f  where a > 0 and f : /~d __+ /~ is a contin- 
uously differentiable, proper function (i.e., f ( x )  -+ oo as II ~ I1~ oo) with bounded 
gradient and isolated critical points. V(.) = f ( . )  + m i n f ( z )  will do the job. 

(ii) Newtonian systems (Vidyasagar 1978): For f as above, consider 

~(t) + h(x(t))~(t) + aV f(x( t ) )  = o (6) 

where h : R d ~ R + is bounded Lipschitz. This is Newton's law in a potential field 
with position-dependent kinetic friction. This can be rewritten as 

~(t)  = y( t) ,  ~l(t) = - h ( x ( t ) ) y ( t )  - a V  f ( x ( t ) ) ,  

which conforms with (5). Assuming f >_ 0, thc ' total energy' l/(x, y) = 1 / 2 y 2 + a f ( x )  
serves as a strict Liapunov function as long as h > 0 outside/~,'f = {x i V f ( x )  = 0}. 
For constant h, (6) will be recognized as the continuous analog of 'gradient descent 
with a momentum term'  for mininfizing f .  For constant h, if we approximate f by a 
positive definite quadratic form near a local minimum of f ,  (6) looks like the familiar 
second order linear system of control systems (Ogata 1970) and ,nay be expected to 
behave like one locally. Tha t  is, if h is chosen to make ~he latter 'underdamped ' ,  it 
will quickly hit a local minimum and then oscillate around it before settling down. 
The oscillations may be quenched by making h position dependent, with low values 
away from Ef  and high values on E l .  Preliminary numerical experiments by the 
second author suggest that  this is a promising strategy for speed-up. 

(iii) Neural networks: The area of analog neural networks has several examples of 
strict Liapunov syst.ems (Hirsch 1987; Schurmann 1989). IJirsch (1987) describes a 
scheme for building more complicated systems from 'cascades' of simpler ones, while 
Cohen (1992) considers the 'inverse problem' of constructing a strict Liapunov sys- 
tern with a prescrib,.d equilibrium behaviour. 

(iv) Fixed point algorithms: Recall the norms tl. Ib,P ~ [1,0~], o n / e  d defined by: 
for  x = [Zl , .  - , x d ] '  c R ~, 

I1~11~ = I x,  I p , l _ < v < o o ,  
i = 1  

IIxl l~ = m a x f . i l .  
i 

Suppose F(a-) = G ( x )  - x where G satisfies: 

II c ( x )  -- a ( y )  l ip<  ~ II * - v lip, x,  y ~ R " ,  

for some c~ E (0, 1),p C [1, oo]. Then by the 'contraction mapping'  theorem (Bert- 
sekas & Tsitsiklis 1989), EF is a singleton {x*} (say). Then V ( x )  =11 x - x* Ib 
serves as a strict Liapunov function (Borkar & Soumyanath 1994). (One should 
note that  V is not differentiable everywhere for p = 1, oc, but this does not pose 
any problems, Borkar & Soumyanath  1994). 
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Our results will imply that  discrete time, distributed implementations of (i) - (iv) 
above will asymptotical ly track the continuous dynamics under (A1) - (A2). 

We conclude this section by recalling from Hirsch (1987) a result that  will be 
central to our analysis. For given T, 5 > 0, a (T, 5 ) -  per turbed trajectory of (5) is a 
(possibly discontinuous) function y : [0, oo) ---+ R a such that  the following conditions 
hold: There is an increasing sequence ~ ---+ oo and solutions xJ(t), t E [2~, Tj+I] of 
(5) such that  Tj+~ - 7) _> T for all j = 1, 2 , . . . ,  and 

I[ y(t) -- XJ(t) II < 5, Tj ~ t < ~/)+l, j  _> 1. 

T h e o r e m  1. Hirsch (1987) for a strict Liapunov system (5), for any T, e > O, these 
exists a 5o = 5o(T,e) > 0 such that ifO < 5 < 50, then any limit point of a (T, 5 ) -  
perturbed trajectory y(.) is within e of a point p E EF. Moreover, if  y(O) is in the 
domain of attraction of a stable equilibrium point q E EF, then for sufficiently small 
~, we can take p = q. 

The way we shall use this result is by showing that a suitably interpolated version 
of (3) is in fact a (T, 5 ) -  perturbed trajectory of (5). The details are carried out in 
the next section. 

3 .  M a i n  r e s u l t  

We shall proceed through a sequence of lemmas. Let T > 0 and define t ime se- 
quences {t .}  and {T~} as follows: 

to = 7b = O. 
~t 

6, = E l ~ i ,  n>_ 1. 
i = 1  

Tn = rnin{t. ,  I t m >  Z, -1  -l- T},  n > 1. 

Then Tn = tin(n) for a strictly increasing sequence {re(n)} and T,~ E [7~-1 + 
T, T,~-I + T + 1] for all n. Let I,~ = [T,. T~+,], n > 1. Let x(t), t E I,~, be a solution 
of (5) with x (T . )  = X ( m ( n ) )  and define y(t), t E I,,, by: 

y(T.) = x(T.) ,  

y(t,~(,~)+k+l ) = y(t,n(,O+k ) + F(y(tm(,O+k))(tm(n)+k+l -- tm(,)+k), 

with y(.) linearly interpolated on the intervals [tm(n)+k, tm(n)+k+l]. Let ( > O. 

Lemma 1. For sufficiently large n, 

sup it - y ( t )  I1< e. 

Proof. For t E I,~, let g(t) = max{tm(n)+~ [ tm(r~)+k <_ t}. 
Then for t E I~, 

t 

y(t )  = y ( T . )  + r ( y ( g ( s ) ) ) d , ,  
r~ 
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fT t x(t)  = x ( T , )  + F(x(s ) )ds .  
n 

Letting K, K '  be resp. the Lipschitz constant of and a bound on F,  we have 

I I ~ ( t ) - u ( t ) l l  < K 

< K 

~Tt t II ~(~) - y(~) II ds + K [ - -  II Y(~) - Y(g(~)) II ds 
J T n  

t rn(n+l) 
f ~  [I x ( s ) -  y(s) [Ids+ ft'Z;' ~ (1/k~), 

n k = m ( n )  

where we use the fact that  

II v(t)  - y(t+) I1< It" I t;+~ - t+ t for t c [t,, t~+~]. 

The claim now follows from the Gronwall lemma (Vidyasagar 1978, pp. 292) and 
the summabil i ty of ~ ( 1 / k 2 ) .  [] 

Next, write (3) as a vector iteration 

X(,~ + 1) = X(n)  + 1 Z ( n )  

with appropriately defined Z(n)  = [ Z l ( n ) , . . . ,  Zd(n)]' and set 

Z(n)  = E [ Z ( n ) / X ( m ) ,  m <_ n, vii(k), k < n, 1 <_ i , j  < d], n >_ O, 

where the conditional expectation is componentwise. Let 

M .  = 2 ( i ) ) , .  >_ 0 
i=1 

Lemma 2. {Mn} converges as n --~ o0, with probability one. 

Proof. {M,+} is seen to be a d-dimensional martingale (Neveu 1975) satisfying 

II Mn+t - Mn I1_< 2 K ' d / n .  

Thus, 
E[{ I M~+, - M ,  [[ 2 / M k ,  k <_ n] < K " / n  2 

for a suitable K "  > 0. Since the right hand side is summable, the claim follows 
from Proposition VII-2-3(c), pp.149-150 (Neveu 1975). n 

Lemma 3. There exist C, r > 0, N _ 1 such that  for all n > N, 

II F (X (n ) )  - Z(n) II< C /n , .  

Proof. Writing Z(n)  = [ Z l ( n ) , - . . ,  2a(n)] ' ,  we shall compare Fi (X(n ) ) ,  Zi(n),  for a 
f ixedi ,  I < i < d .  Let 1 > c > O .  We have 

I F i ( X ( n ) )  - Z i (n )  I 
< E[I Fi (X(n ) )  - Zi(n)  I Z{rij(n) < n e for all j } / X ( r n ) ,  m < n, rpq(k), 

k < n, 1 < p, q < d] + E[I F{(X(n) )  - Z{(n) t I { r u ( n )  > nc for some j } / X ( m ) ,  

m < n, rpq(k),k < n,1 <_p,q <_ d]. 
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The second term can be bounded by 2 K ' C d / n  b¢ in view of (4) and the Chebyshev 
inequality. Let ~ = the integer part  of n c. Let n be large enough so that  n > ~. 
Then for m < ~, 

n 1 

II X ( , , )  - X ( ~ ,  - m )  I1_< K' E k <- -K/nl-~ 
k=n- ' f f  

for a suitable constant K > 0. Thus the first term above may be bounded by 
K-Kd/n l -% The claim follows. [] 

Now define.X-(t),t >_ 0, by: X(t~) = X(n)  for n _> 0, with X( . )  defined by linear 
interpolation on each internal [ tn , t ,+ l ] ,n  > 0. For the next lemma, fix a sample 
point for which the conclusions of lemma 2 hold. 

Lemma 4. For sufficieatly large n, 

sup II x ( t )  - u~t) I1< '- 

Proof Let n > 1. For i > re(n), we have 

X( t /+ l )  = --X(ti) + 1F(-X(ti))  + 1(2(0- F(-X(ti)) + l (Z(i) - Z(i)). 

Define ~i = Mi - Mm(~), Xi+l = -f(t i+l) - ~i for i >_ re(n) with 2,~(n) = X(m(n) ) .  
(Thus ~m(n)-I = 0). Then 

= 2 i  + 1F(2~)  + 1(F(2~ + ~-1 )  - r ( 2 J )  + 1 ( 2 ( 0  -,- F(N(t~))). 2i+1  $ $ $ 

Also, 

y(ti+l) = y(ti) + ~F(y(t i)) .  

Thus for n sufficiently large, lemma 3 leads to 

K + K  C 
II 2~+1 - u(~+, )  I1< (1 + T )  II 2~ - y(t~)II i I~,-11 +i,+--;. 

Let 5 > 0. By lemma 2, for sufficiently large n, 

sup I~  1<5/2,  
i>m(rQ 

5 ~ 0 / i  ~+") < 7. 
i > n  

Thus for n sufficiently large, using the inequality 1 + ~ _< e K/n and iterating, one 
has 

sup II 27~ - y( t , )  I1< eK(T+~)(-C + K ( T  + 1))5. 
rn(n ) < i < m ( n +  l ) 

Since 
~up I1 x ,  - ~-(~,) I1< 5/2, 

,~,~)_<i<,~(.+x) 
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the claim follows on choosing 6 sufficiently small and observing that  X( . ) ,  y(.) are 
linearly interpolated from their values at {ti} .  0 

We are now ready to prove our main result. 

T h e o r e m  2. The iteration (3) converges with probability one to a single point in 
EF. Furthermore, the iterates visit the basin of attraction of a stable equilibrium 
point in EF infinitely often if and only if they converge to the same. 

Proof. From lemmas  1, 4 and theorem 1, it follows that  the limit points of the 
iteration (3) are in EF.  The fact that  the stepsize a(n) is monotonical ly  decreasing 
to zero ensures tha t  the set of limit points is connected. Since EF consists of isolated 
points, the set of limit points must  therefore be a singleton. The first claim follows. 
The  second claim follows from the second half  of theorem 1. rn 

Note that  the proper ty  of a point being in the basin of a t t ract ion of a stable equi- 
l ibrium point is gener icfor  strict Liapunov systems. Thus the behaviour described 
in the second half of the theorem is generic. 

4 .  C o n c l u d i n g  r e m a r k s  

We conclude by pointing out additional advantages of Our model and some possible 
generalizations. 

(i) Note that  our model does not require that  each value of i - t h  component  com- 
puted at some stage be t ransmi t ted  to the processor comput ing j - th component ,  
or that  the lat ter  use it even when he receive's it. The only requirements are tha t  (a) 
if computa t ion  of i - t h  component  requires the previous value of j -  th component ,  
then the lat ter  be t ransmi t ted  to i infinitely often, (b) tile receiv,'d value of the 
same, if used by i, be used without too much delay, i.e., such that  (A2) holds. Of  
course, this concerns only the convergence of (3), not the speed thereof, which is a 
far more delicate issue that  needs further study. 

(ii) Several-of our assumptions could be relaxed at the expense of addit ional tech- 
nicalities. We have already mentioned that  other choices of {a(n)} with ~,~ a(n)  = 
c~,~-~,, a(n) 2 < co, could be explored. Boundedness and Lipschitz conditions on 
F could be dropped to some extent. For example,  F being locally Lipschitz with 
a tmos t  linear growth will suffice for the global existence of a solution to (5). Al- 
ternatively, the condition tha t  V is proper will do. The use of Lipschitz condition 
in our proofs can be replaced by locally Lipschitz property if we show a priori the 
fact that  the iterates of (3) remain in a bounded set with probabil i ty one. Stochas- 
tic Liapunov arguments  may  help here. Finally, the proof of theorem 1 ill Hirsch 
(1987) seems to extend easily to the case when EF is not necessarily a collection of 
isolated points, but  contains connected sets of local min ima  any two or which are 
separated by an amount  exceeding a fixed A > 0. Hirsch (1987) does not deem 
this si tuation interesting because E y  being a Set of isolated points is generic from 
structural  stabil i ty point of view. Nevertheless, one does encounter the more general 
si tuation mentioned above in ' learning'  and ' identification'  applications because or 
overparametr ized model sets and therefore meri ts  attention. 

(iii) In stochastic approximat ion (Benveniste et al 1990), one studies i terations of 
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the type 
+ 1) = x ( n )  + (7) 

with a prescribed X(0), {a(n)} as above, and {((n)} (in the simplest ease) is a 
sequence of independent and identically distributed random variables, interpreted 
as 'noise'. Under mild conditions, one shows (Benveniste et al 1990)'that this 
iteration tracks the continuous dynamics (5) with F defined by 

Y(x) = / C,(x, y)~(@), 

/~ being the law of (1. If this F satisfies the conditions of this paper, our analysis 
extends to the distributed version of (7) with delays as in (3), satisfying (A2). This 
requires very minor modifications in the proof. An irnportant special case is when 
G(x, y) = - V J ' ( x  - t.I) with .f as in example (i) of section 2. If p has a density ~, F 
becomes 

P 

F(x)  = - J p(.r - y )V f ( y )dy .  (8) 

If F is a 'nice' i.e. sutficently smooth fimction, F may be viewed as a low pass 
filtered version of KTf, or equivalently, gradient of a low pass,filtered version of F.  
If F is jagged with several small, sharp valleys, it is not amenable for gradient- 
based methods and the right dose of low pass filtering may be expected to replace 
it by a better behaw'd fimction without significantly perturbing the location of 
Argmin (f) .  In this viewpoint, {(,~ } is not 'noise', but a benign randomization that  
may be deliberately introduced t.o achieve the same effect, as the computat ionally 
expensive convolution in (8). One may hope to flH't.her improve on the performance 
of this algorithm by progressively decreasing the extent of low pass filtering, e.g., 
by replacing the abow' algorithm by 

X(n  + 1) = X(,~) -t- a . ( n ) ( -Vf (X( r , )  - b(n)((n)))  

where {#(,7.)} are i.i.d., zero mean and {b(r~)} decrease to zero at a rate slower than 
that  of {a(n)}. This is closely related to a special case of a broad class of algo- 
r i thms studied by Getfand A Mitter (1992). These algorithms asymptoticMly track 
not an ODE as in (5), but a time-inhomogeneous stochastic differential equation. 
(In fact, the latter is precisely the Langevin algorithm of continuous time simulated 
annealing.) It would be interesting to extend our an'alysis to algorithms of this type. 
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