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Managing Latency and Fairness in Networked

Games

Jeremy Brun, Farzad Safaei and Paul Boustead

Smart Internet Technology Cooperative Research Center,

University of Wollongong, Australia

Email: farzad@uow.edu.au, {jeremy,paul}@titr.uow.edu.au

Introduction

Networked games can be viewed as forerunners of participatory entertainment applications

delivered over the Internet. In these games, physically dispersed players are immersed in a

common virtual environment and interact in real time. When one user performs an action,

other users should become aware of this. Otherwise, there will be a discrepancy between the

perceptions of participants about the state of the virtual world. This may lead to undesirable

and sometimes paradoxical outcomes. In particular, the First Person Shooter (FPS) category,

and to a lesser extent Role Playing Games (RPG), have stringent constraints on responsiveness

and consistency.

Consequently, deploying these applications over a large-scale infrastructure presents a

significant challenge. As the geographical distances between the participants increase, the

unavoidable propagation delays between the participants may render the game unresponsive

and sluggish even when there is abundant processing and network resources available. Fur-

thermore, the differences in game responsiveness to user inputs can provide some players

with unfair advantages.

To limit the impact of these problems, most games are currently deployed as independent

virtual worlds for localized areas and served by machines dimensioned for peak hour demand.

However, the true power of these applications is to enable people to work and play together

irrespective of physical separation. Confining games to small localities is analogous to having

a telephone network that can only handle local calls. Nevertheless, geographical scaling of

network games is non-trivial and involves much more than providing network connectivity

August 12, 2006 DRAFT



2

and bandwidth.

This article presents an overview of various factors that can affect the quality of the game

experience in terms of playability and fairness. In software, different methods for synchro-

nization and lag compensation can reduce the perceptual impact of latency. Furthermore, it

is demonstrated that careful selection and organization of game servers can be of significant

value in improving playability and fairness.

Anatomy of network games

At any time, the virtual world of the game is fully described by a set of parameters

called the game state. Such parameters include, but are not limited to, the position and

states of avatars and other in-game objects. Players perceive and react to the game through

their terminal, a networked computer or game console which renders the virtual environment

based on game state updates. Authoritative modifications of the shared game state are done

by decision points located either on dedicated servers or on (a subset of) players’ machines.

There are two main architectures for making decisions about the game state: central or

distributed decisions points. Most current networked games use a central server architecture,

where a single machine is the unique decision point. In distributed architectures, two or more

decision points coexist and must synchronize their game state with each other.

The need for synchronization in the distributed architecture introduces additional com-

plexity and if extra dedicated hardware is required, it adds to the running cost for the game

provider. On the other hand, distributed architectures, such as mirrored servers and peer to

peer games, provide more flexibility for load balancing and may improve player’s experience

if the decision points are located close to participants.

Playability and fairness

Geographical distance between decision points and/or terminals may cause their respective

states to become somewhat inconsistent with each other because of the latency involved in the

transmission of information. Two classes of inconsistencies can be identified: inconsistencies

between a terminal and its relevant decision point(s) and inconsistencies between different

decision points. The latter only applies to the distributed architecture where there is more

than one decision point.

One example of inconsistency caused by the propagation delay between a terminal and its

decision point is the response time. The response time represents the delay between the time
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of the issuance of an action order by a player and the rendering of the action results on the

player’s terminal. A perceptible response time is frustrating for users and beyond a certain

threshold the game may not be playable. A second example is the presentation inconsistency

[10] which is due to the fact that the game state update reaching a terminal is already outdated

to some degree because the real game state may have varied while the update packet was

on its way. Hence, what the player perceives is slightly inconsistent with the real game state

at the decision point. This may cause a player to see other avatars at incorrect locations, for

example.

The distributed architecture may help reducing response time by bringing decision points

closer to players. However, it introduces inter-decision point inconsistency, that is, discrep-

ancies between different decision points with respect to the ‘current’ game state. This can

cause some decision points to evaluate actions out of order, possibly violating causality and

taking incompatible decisions. A paradox is a decision made by an inconsistent server which

is incompatible with the decision it would have made if it was consistent. Paradoxes arise

only due to the discrepancy between decision points and cannot happen in the central server

model. If causality is to be maintained, paradoxical game states have to be healed by rolling

back to an earlier time point. This is called a roll back in time, also referred to as a Timewarp

[5].

A game can be considered to be playable, provided the users find the performance of

the game acceptable in terms of the perceptual impact of different inconsistencies. Whereas

playability is a game attribute for each individual player and varies depending on the incon-

sistencies that the player experiences from his/her terminal or decision point, fairness is a

game wide property concerned with relative playability amongst the participants [3]. In other

words, variations in playability between players may give unfair advantages to some over

others. If these variations are significant, the game may be considered to be unfair. A fair

game, on the other hand, would provide all users with the same level of handicap.

Aside from artistic design and originality, the quality of online game experience critically

depends on the network aspect of playability and fairness. This is why management of

network related inconsistencies in the supporting game infrastructure becomes crucial when

scaling to wide geographical areas. Different techniques to achieve this outcome are presented

next.
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Tuning the game infrastructure

The infrastructure supporting a networked game can be divided into a software component

including the synchronization scheme and lag compensation techniques, and the hardware

infrastructure which is the topology of the game decision points over the underlying network

platform. The other parameters that also influence players’ experience, namely the underlying

network topology itself and the location of players, are not controllable. Therefore, a game

provider can manage playability and fairness at two different levels:

• Trading inconsistencies within the software component. For a given topology of decision

points, the network delay between entities is bounded. However, it may be possible to

trade one type of inconsistency with high perceptual impact for another that has a lower

impact. This may result in an overall improvement of game’s quality from the users’

viewpoint.

• Selecting the decision point topology. This way, the latency constraints which depend

on the location of the decision point can be altered to influence participants’ playability

and fairness.

Trading Inconsistencies

The artifacts of inconsistencies, such as long response time or a large number of rollbacks,

have different perceptual impacts on users. For example in the Unreal Tournament first person

shooter game, Quax et al. [8] conclude that a round trip delay (response time) above 60ms

seriously disturbs players. Likewise, it is reasonable to assume that roll backs also degrade

playability.

While the latency between terminals and decision points are bounded by the propagation

delay constraints of the given topology, it may however be possible to trade one type of

inconsistency for another. For example, to reduce the response time, terminals can use co-

simulation to anticipate the decisions made by the decision points. For actions originated by

the player, this is referred to as client-side prediction [1] and reduces the perceived response

time. The state of other avatars may be anticipated by dead reckoning [7] using knowledge

about the previous values of a given parameter, such as location and direction of movement

of other avatars, and physics of the virtual universe.

In both cases above, if the predicted parameters are the same as the authoritative updates

received from the decision point, then the perceived response time or presentation consistency

are significantly improved. There is a probability, however, that the authoritative decisions
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would have to revoke the local predictions if they were incorrect. The revocation may be

perceived by the player as a local roll back. In essence, these techniques trade improved

response time and presentation consistency for an increased probability of revocation. This

trade-off may or may not be appropriate depending on the context of the game and the percep-

tual impact of each inconsistency type. The above methods, referred to as lag compensation

techniques, are concerned with hiding the impact of inconsistency between terminals and

decision points and apply to both central and distributed topology.

The distributed architecture introduces inter-decision point inconsistency and the possibility

of paradoxes. One may adopt a conservative synchronization scheme between the decision

points which eliminates the probability of paradoxes altogether. Examples include conser-

vative local lag [5] or lock-step synchronization [4]. Such schemes, however, would affect

the game’s responsiveness, negating some of the benefits of using distributed architecture.

On the other hand, a more optimistic synchronization scheme may be used. In this approach

some level of inconsistency between the decision points is allowed and it may be essential

to heal a paradoxical game state using roll backs. Once again this approach trades one

type of inconsistency for another. For example, Figures 1 illustrates how inter-decision point

inconsistency can be traded for an increase in response time by adding local lag, assuming

no packet loss or jitter. Partial local lag can also be used to reduce, without fully eliminating,

the duration of the inter-decision point inconsistency. The longer this duration, the higher

the probability of paradox. Hence, it might be worthwhile to set the local lag such that the

optimal balance between the perceptual impact of response time and roll backs is attained.

Different parameters of the virtual world may represent totally different in-game concepts

which may have different consistencies and synchronization requirements [2] [9]. As an

example, in most online RPG, an error in the avatar’s position would not typically affect the

actions of other participants due to limited acceleration and speed. Yet, players would want

to see their avatars reacting quickly once they have decided to move. On the other hand,

a paradox on an avatar’s life state -dead or alive- may have significant negative impact on

the game playability. Therefore, actions affecting avatar’s positions could use less local lag

than actions affecting avatar’s life state. In general, it could be more effective to tailor the

synchronization parameters for each action type rather than binding the whole game state to

the same synchronization fate.

It is always possible to increase the level of inconsistencies in a game by artificially

delaying information. This technique enables the equalization of inconsistencies amongst
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players effectively improving the game fairness at the cost of overall playability.

Selecting the decision point topology

The physical topology of telecommunication networks is generally static. However, if we

assume having access to a network of processing locations, this would provide a pool of

possible decision points to choose from [6]. Under such circumstances, the position of the

unique decision point for a central server model could be selected to best suit the current

connected players. This selection could be based on different objectives, such as optimizing

the average playability, the global fairness or a trade off between the two.

Alternatively, a distributed decision point architecture composed of a subset of carefully

selected processing locations tuned with suitable synchronization parameters could provide

even a better trade off over a central server solution.

In any game, the worse off player in terms of playability could be a major contributor to the

game’s average response time and unfairness. The response time of this player is denoted as

the critical response time. We have developed an iterative heuristic which converges towards a

set of servers with close to optimal playability for the worse off player in the game, therefore

providing a balanced solution between overall playability and fairness. The synchronization

scheme considered by this heuristic is a fully conservative local lag, assuming no jitter

or packet loss, which implies that the response time is a good indicator of playability. An

absolute lower bound for the critical response time can always be calculated, giving a measure

of the quality of the obtained solution. After running this heuristic for one hundred times

over a simulated Internet-like network topology composed of 600 nodes with 48 randomly

position players, the average gap between the final solution and the lower bound is found

to be around 5% and the number of decision points in the solution required for the final

solution is about 7.5 on average.

Figure 2 shows one representative instance of the iterative evolution of the heuristic solution

in terms of critical response time compared to the lower bound and the critical response time

of two other selection strategies:

• Best central server in terms of average response time which purely optimizes the overall

game playability.

• Best central server in term of critical response time which finds a balance between

playability and fairness.
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As described in Table 1, at each step the heuristic finds the worse off player and searches

for the best new decision point to be added to the current server list that would reduce his/her

response time. When further improvement of this critical response time is no longer possible,

the heuristic ends. As can be seen, the critical response time of the heuristic, even for only

6 distributed decision points is very close to the lower bound and is significantly better

than even the best central server solution. In other words, a properly designed distributed

architecture is likely to outperform the current central server models under a wide range of

conditions.

Figure 3 presents the performances of the three decision point topology selection strategies

in the same simulated network. The horizontal and vertical axes represent the level of

playability and fairness respectively; the closer to the origin the better. Each of the 100

simulations of three selection strategies generated solutions that are represented as a single

point on the Figure. The combination of these points creates distinct clouds. The fourth

cloud, labeled Average Central Server, represents the expected playability and fairness of a

randomly chosen central server for comparison.

The central server solution chosen for optimal playability provides consistently low re-

sponse time with a high level of unfairness. The outcome of the balanced central server

solution is more variable: sometimes close to best playability and other times with inferior

response time but an improved fairness. The distributed solution from the heuristic is consis-

tently better than the other two strategies in terms of fairness at the cost of a slight increase

in response time compared to the optimal playability server. All these selection strategies

offer a considerable improvement over the expected playability and fairness of a randomly

chosen central server.

Conclusion

Trading inconsistencies and tuning the decision point topology are the two available

strategies to manage playability and fairness in online games. Ideally, all these techniques

should be implemented in real-time to constantly adapt to the dynamics of the game and

players’ connections.

However, current software and hardware platforms provide little support for cost effective

deployment of these capabilities on large scale. This is the reason why most games currently

use a fixed central server approach in combination with some form of latency compensation,

leaving room for improvement in the future.
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NOTES FOR THE EDITOR(S)

Description of the heuristic (to be put in a table if necessary)

Caption: “The heuristic starts from an initial two-server solution optimized for the two most

distant players. This solution is then expanded at each iteration to minimize the response time

of the worse off player by adding a new server. The process ends when no more improvement

is possible.”

• Initialisation:

– Create a restricted players list composed of the two most distant players in the

network.

– Initialize the initial server list solution with the two servers providing the best critical

response time to the game restricted to these two players alone.

• Step 1:

– Test the current server list solution with all players

– If no player outside the restricted player list becomes critical: the heuristic ends

– Add the new critical player to the restricted player list.

• Step 2:

– Look for the server which minimizes the response time of the new critical player

when added to the current server list.

– If the addition of a server no longer improves the critical response time: the heuristic

ends.

– Add this new server to the server list

– re-iterate to Step 1

Captions for the figures:

Figure: brun.figure1.eps

Caption: “Examples of synchronization in distributed server architecture. In optimistic

synchronization, the sync message from server 2 can create a paradox on server 1 if it conflicts

with Player A’s action. The local lag compensates the inter-decision point inconsistencies

assuming there is no jitter or packet loss.”

Figure: brun.figure2.eps

Caption: “Iterative evolution of a typical heuristic convergence. The critical response time

is improved each time a server is added to the game. The final solution outperforms any
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central server approach and ends up close to the calculable lower bound.”

Figure: brun.figure3.eps

Caption: “Playability and Fairness of different decision point selection strategies. The set

of distributed servers chosen by the heuristic outperforms the best central server approaches

in terms of fairness at a marginal cost in average response time.”
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Fig. 1. Examples of synchronization in distributed server architecture. In optimistic synchronization, the sync message from

server 2 can create a paradox on server 1 if it conflicts with Player A’s action. The local lag compensates the inter-decision

point inconsistencies assuming there is no jitter or packet loss.
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