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Abstract

The stress problem has become the major dilemma affecting many people’s lives

and professions. Nowadays, stress is often unrecognized, and people accept stress

as a normal condition. Short term stress is not necessarily bad, as on some oc-

casions it can help us to meet challenges. On the other hand, prolonged stress

should be avoided because it has been shown to cause physical breakdowns and

makes our body vulnerable to diseases.

In this thesis, we propose a framework for stress analytics, which focuses on man-

agement and analysis of multi-modal affective data captured in text, speech, facial

expression and physiological signals, such as Galvanic Skin Response (GSR). The

framework allows for automatic stress detection based on multimodal data, for in-

stance, from GSR and speech. We investigate the discriminating power of speech

and GSR in distinguishing two different stress levels in the controlled experiment

environment. A collective of 10 subjects voluntarily participated in the psycholog-

ical study for stress elicitation. The stress was induced by using the Stroop-Word

color test and solving mental arithmetic problems. During the experiment, the

speech was recorded and the homemade GSR device was used to monitor the skin

conductance.

Four different machine learning classifiers were investigated regarding their ability

to discriminate between two different stress levels. The state-of-the-art classifier,

Support Vector Machine (SVM), outperformed the other classifiers. The reason-

able accuracy of 70% was achieved by using individual GSR data as an input to

SVM classifier. On the other hand, using the speech signal as an input to an SVM

classifier yields a maximum accuracy of 92%. Furthermore, combining both GSR

and speech models does not improve the performance in significant ways.
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Chapter 1

Introduction

1.1 Motivation

Stress is a psychological response to the emotional, mental and physical way in

which we respond to pressure. Immediate dangers provoke the ’fight or flight ’

stress response, which causes the hormones adrenaline and cortisol to be released

into the blood stream to prepare the body to either battle or leave the conflict.

This instant burst of energy may help us in critical or emergency situations, such as

giving us the ability to run beyond our normal capability in a dangerous situation.

Not only are certain hormones released during this period, but changes in heart

rate, sweat, breathing and contraction of muscles can also be observed. If the body

is healthy, after this period it should restore balance and return to the normal state.

Unfortunately, nowadays stress has become a common phenomenon that can hardly

be avoided in daily life situations. Short term stress, at some points, may help

us to meet the challenges but not the prolonged stress. Prolonged stress has been

known to be able to cause a physiological breakdown that makes the body vul-

nerable to diseases, such as hypertension and coronary artery disease [1][2]. Not

only physical diseases may be caused by stress but also mental illness, such as

generalized anxiety disorder or depression [3].

People nowadays have difficulty recognizing stress and accept stress as a nor-

mal condition. Therefore, the technology for recognizing, analyzing and detecting

stress is important as a preemptive way to alleviate stress. This technology at
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Chapter 1

least could help the individual to become aware of stress and gain insight into the

condition that regularly arouses a stress response. Moreover, it can also become

an automatic tool to prevent stress by means of intervention.

1.2 Thesis Objective and Methodology

The objective of this thesis is two-fold:

1. Develop a framework for stress analytics, which can help the user (or do-

main experts) to analyze interesting stress patterns, gain insight in what is

happening and explore the stress-related data.

2. Develop a model which can automatically differentiate between two different

stress levels from multi-modal affective data.

The stress analytics framework, in essence, is a multidisciplinary approach in-

volving four main components: data management, data mining from multimodal

affective data, OLAP support and visualization. Data management handles how

the multimodal data is stored and aligned. Data mining employs supervised ma-

chine learning for automatic stress detection. Raw data can be summarized and

presented by means of basic OLAP exploration, which allows a multidimensional

query. Finally, the visualization addresses the presentation of the previous com-

ponents for the end user. The system can visualize the raw evidence (e.g. Speech

audio playback and actual GSR time series) to make users more aware of their

stress level. Last but not least, a time series similarity search is provided in our

framework by means of a shape-based query-by-example to help the domain expert

to analyze various stress patterns that may occur across different individuals.

In order to accomplish our second objective, we conduct a study of existing ap-

proaches for automatic stress recognition. The problems of stress detection have

been investigated by researchers, and many types of solutions have been pro-

posed. Stress can be detected from the changes in physiological signals, such as

heart rate, body temperature, skin conductance, body acceleration, pupil diame-

ter, blood pressure, etc. Besides physiological signals, stress can be detected from

other cues, such as speech and facial expression. In this thesis, we used two signals

obtained from Galvanic Skin Response (GSR) and speech for an automatic stress

detection task. The rationale behind choosing these two signals is due to the fact
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that both measurements are unobtrusive and, to our knowledge, there is no ex-

isting work yet which has investigated these signals for stress detection. As for a

real-life application, the stress detection from speech and GSR can be applied in

many areas, such as in call-centers and public relation jobs.

The detection of stressful events is a challenging task and far from trivial due

to several reasons. First, there is the unavailability of the general stress model.

Therefore, the interpretation of stress itself is still ambiguous. Second, it is unclear

which features and classifier should be used for detecting stress within literatures.

Third, the stress experiments are hardly reproducible; hence, the results of the

experiment are incomparable.

However, we used supervised machine learning techniques to differentiate between

two different stress levels. Supervised machine learning required preexisting la-

beled dataset for training and evaluation. Unfortunately, we cannot find an openly

available benchmark which consists of speech and GSR. Therefore, we conducted

a psychological stress elicitation experiments to obtain the dataset.

1.3 Main Result

The result of this thesis is a framework for stress analytics, and the automatic

stress classification using multi-modal data. Specifically, stress analytics was im-

plemented as a web-based system that enabled the summarization view of stress

level over different periods of times, OLAP exploration, zoom-in to the level of

evidences and zoom-out to the grand total summary of stress level, searching the

most similar time series and many more.

During this thesis, we conducted the psychological controlled stress experiment to

elicit a certain stress level to the individuals and have collected 10 hours of affec-

tive data including GSR, speech, facial expression and subjective annotation. This

dataset was used as a labeled dataset for supervised machine learning. The exper-

iment for detecting two different stress levels using supervised machine learning

showed a promising result, and it indicates that both GSR and speech are indeed

a good indicator for stress detection.
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1.4 Thesis Structure

The structure of this thesis is organized as follows. Chapter 2 describes the frame-

work for stress analytics. In Chapter 3, the techniques behind automatic stress

detection from the speech and GSR are elaborated. Chapter 4 presents the evalu-

ation of automatic stress detection. Finally, in Chapter 5, we draw the conclusions

from our work, and the possible improvement is presented for future work.
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Stress Analytics Framework

Stress Analytics is the system for management, analysis and automated stress

classification of multi-modal affective data captured from text, speech, facial ex-

pression and physiological signals. One of the principal goals of the system is to

enable users (or domain experts) to analyze interesting stress patterns and visual-

ize various evidence of stress so that they are able to manage stress in a better way.

The rest of this chapter is organized as follows. Section 2.1 reviews previous studies

on the multimodal analysis and similarity search on time-series. In Section 2.3, we

explain how to store and align the raw data. Section 2.4 introduces our design of

stress cube and OLAP. In Section 2.5 we briefly describe the Shape-Based Query-

by-Example functionality. Finally, in Section 2.6 we present the visualization of

stress analytics.

2.1 Related Work

2.1.1 Multimodal Analysis

Multi-modal analysis is a rapidly expanding interdisciplinary field in linguistics

and language-related fields of study, including education [4]. This is a field of

study that concerns combining multiple resources (e.g. text, image, audio, lan-

guage, and video) to create meaning in different contexts, such as in movie, digital

media, and daily life situations.
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The multi-modal analysis has been applied not only in the science field, but also

in other disciplines, such as the social sciences and linguistics. In linguistic [5],

it has been studied in order to understand the integration and interaction of two

or more data to convey the meaning within texts. For instance, language, page

layout and image-text relation may affect the way the individual perceives the

meaning. In the social sciences, for example in [6], multi-modal science has been

used to deconstruct Myspace’s social network in order to understand how different

communicative data (e.g. text, graphics, pictures and music) can be used to create

a user’s stereotype and engagement for sociable purposes.

On a different body of work, multi-modal analysis has been demonstrated as a dig-

ital tool that can link low-level features in different media (text, image and video)

to higher-order semantic information using social semiotic theory and computer-

based techniques of analysis [7]. The demonstrator utilized the recorded video’s

lecture as a study case for the analysis. The aim of this tool is to provide multi-

modal analysis of the media recorder in digital forms (e.g. recorded video). More

precisely, the following functionality and features are supported within the tool:

• Create time-stamped tier-based annotations and overlay.

• Create text, image and sound annotations.

• Searching functionality to locate a pattern of interest defined with respect to

all types of annotation.

• Media analytics, which provide the automatic detection of music classification,

silence audio detection, face detection, tracking objects in videos, optical

character recognition and basic image filtering.

• Providing gesture and movement analysis.

The analysis, then, can be stored in the database for further retrieval and visual-

ization of the results.

2.1.2 Similarity Search on Time-Series

Similarity measure is an active area of time-series data mining research, since all

tasks, including classification and clustering, require that the notion of similar-

ity be defined. Generally, similarity measure can be categorized into two groups:
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shape-based and structure-based similarity. The former, determines the similarity

of two time series based on the distance between individual points, whereas, the

latter looks at the higher structural level.

Measures have been proposed for shape-based similarity, including but not limited

to: Euclidean distance, Dynamic Time Warping (DTW) [8], Longest Common

Sub-Sequence (LCSS) [9], Edit Distance with Real Penalty (ERP) [10], and Time-

Warp Edit Distance (TWED) [11]. In [12], the performance comparisons of these

measures using five time series datasets are reported. The results showed that Eu-

clidean distance, given the simplest and the fastest method, is indeed as good as

other more complex measures. Therefore, they recommended Euclidean as a valid

and computationally inexpensive option for measuring similarity. In a different

study, we found that DTW has been demonstrated by several authors [13][14][15]

to be more superior compared to Euclidean distance in many data mining appli-

cations, including rule discovery, clustering and classification.

Shape based similarities works well for short time-series but produces a poor re-

sult for long time-series [12]. A structure-based similarity measure is an alternative

way to determine similarity for long time series based on the higher-level structure.

This is known also as a model-based similarity, as this approach extracts global

features such as auto-correlation, skewness and model parameter from data. In

[16], the author proposed using the ARMA model for learning time-series data

then using the model coefficients as a feature. A different approach, using a rep-

resentation similar to the one used for classifying text documents, was proposed

by [17]. They used a histogram-based representation that allows computation of

similarity between data based on the high-level structure. The technique is called

as ’bag of patterns’, similar to the text-based ’bag of words’.

Several approaches to speed-up the similarity queries for time-series data have

been proposed recently. The basic idea is to index the time series, by mapping

the sequences to the high level representation, then store this index in an efficient

data structure for fast retrieval. Agrawal et al. [18] proposed an indexing method

by using the Discrete Fourier Transform (DFT) to map the time sequences to the

frequency domain, and then using only the first few of the frequencies. These

coefficients thus stored using an R*-Trees [19] data structure for fast indexing and

retrieval. This approach works well for similarities queries, given the query and

the sequences to be searched have the same length. Faloutsos et al. [20] present an
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efficient indexing method to locate subsequences within a collection of sequences.

In other words, this method can handle the query which has different lengths

of sequence. They used a similar idea as proposed by [18]. The novel idea of

this approach was using a sliding window over the data sequences and extracting

its features (e.g. frequency representation of time series). The result is a trail

in feature space. This trail is divided into several sub-trails and, subsequently,

is represented by their Minimum Bounding Rectangle (MBR). Afterwards, these

MBR are stored using spatial method data structure like R*-tree for fast indexing

and retrieval. Besides DFT, many high-level time-series representations have been

proposed, including Discrete Wavelet Transform (DWT) [21], Piecewise Aggregate

Approximation (PAA)[22] and Symbolic Aggregate approXimation (SAX) [23].

2.2 Framework Overview

The model of stress analytics consists of four central parts: storing and aligning

multiple sources of raw data, data mining and pattern mining, Online Analytical

Processing (OLAP) support for stress exploration, and visualization as shown in

Figure 2.1. In this thesis, we only address and implement the following tasks:

storing raw data, data mining and classification from raw data, OLAP interactive

support, shape-based Query-by-Example support, pointer to evidences and visu-

alization for the end user. Nevertheless, we did not implement the data mining

or pattern mining from OLAP result, and the data mining from raw data was

performed in an offline instead of online setting.

Figure 2.2 shows a detailed overview of the framework for stress analytics. The

bottom-most level contains information of raw data structures. The data are orig-

inated from different heterogeneous sources, including but not limited to textual

data, physiological signals and metadata. For example, we used the existing tex-

tual data which have been collected by Erik Tromp during his thesis [24]. Tromp

had collected and performed a multilingual sentiment analysis of textual data from

social media, email and electronic agenda.
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Raw data

Data mining 
automatic stress detection,

Query-by-Example, etc.

OLAP Support:

zoom-in, zoom-out, navigation, etc.

User Interface

Read data Pointer to evidence

Views for mining

Explore stress related dataRequest data mining

Construct stress cube

Figure 2.1: A high-level overview of the stress analytics framework.

After the raw data is stored, it will be preprocessed, and several distinguishing fea-

tures will be extracted afterwards. The datasets must be represented by features

for learning. The performance of the learned system is affected by the definition

of its feature. In fact, the choice of features is more important than the choice

of the learning algorithm itself [25]. The feature often has to be preprocessed

before it is used. The preprocessing steps for textual data include but are not

limited to removing stop words, assigning parts-of-speech (POS) and lemmatiza-

tion. The features which are commonly utilized for textual data are frequency of

words, Term-Frequency and Inverse Document Frequency (tf-idf), and occurrences

of a word. We refer to [24] for a detailed explanation of preprocessing and feature

extraction of textual data.

Raw physiological signals which are collected have to be preprocessed. The pre-

processing may include but is not limited to removing noise, extracting voiced

sound from speech, smoothing, and discretization. Several features afterwards are

extracted for learning. The preprocessing and feature extraction step is going to

be elaborated more in Chapter 3.
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 (e.g. peak-to-trough)
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OLAP Operation

Preprocessing and Feature Extraction

Preprocessing: Removing stop-words, POS tagging, 

assigning TF-Idf score, etc.

Feature Extraction: bag of words.  

Preprocessing: filtering, sampling, smoothing, peak-trough detection, 

segmenting voiced speech, etc.

Feature Extraction: number of stress response, mean of energy, 

mean of temperature, pitch, MFCC representation, etc.

Data Mining and Machine Learning

Stress / non-Stress classification 

based on raw-data

Mining interesting patterns 

based on OLAP result

Classification, clustering, 

association analysis, etc.

Views for mining

Request 

data mining

Text data Physiological signals

User Interface

Shape-based Query-by-Example

Figure 2.2: A low-level overview of the stress analytics framework.
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The data mining and machine learning can be used for two purposes in this frame-

work. First, we can use data mining as a classification tool for both descriptive

or predictive modeling. Descriptive modeling differentiates objects from different

classes. On the other hand, the predictive modeling predicts a label of unknown

records. We refer to Chapter 3 for a detailed explanation of how to build a model

to differentiate between two different stress states based on the raw data. Second,

we envision that data mining, together with machine learning, can be applied for

finding interesting patterns from the OLAP result. For instance:

• Finding clusters of subjects who have the similar stress level during the spec-

ified time with respect to the same gender or age.

• Finding a sequence of tasks (stressors) which can induce a high stress level

on the subject.

• Predicting the general subject’s stress level in the future based on their past

data.

The output of the data mining block, together with raw data, is used to construct

a stress cube. A stress cube is a set of data organized in such a way to facili-

tate non-predetermined queries for OLAP. OLAP is commonly used for analyzing

business data by aggregating information on multi-dimensional data. We utilized

an OLAP support for interactive visualization of stress based on predefined multi-

dimensional data. Based on this cube and raw data, a simple yet interactive user

interface is provided to allow the user to navigate and explore the cube.

Finding the most similar time-series pattern (e.g. GSR or skin temperature) from

the database is a beneficial feature which can enable the domain expert to retrieve,

classify and study the particular stress pattern across different subjects, time and

other dimensions. This functionality was implemented inside our framework and

is hereafter called as shape-based Query-by-Example (QBE).

2.3 Storing and Alignment of Raw Data

2.3.1 Storing Raw Data

The raw data originating from different sources, such as physiological signals,

speech, textual data and metadata, were stored using a relational database. Figure
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2.3 illustrates the Entity-Relationship diagram for storing the raw data. Physio-

logical signals, such as Galvanic Skin Response (GSR), Skin Temperature (ST),

heart rate and pupil diameter are commonly used to measure the dynamic changes

of the Autonomic Nervous System (ANS)[26]. In this thesis, we only address how

to store GSR and skin temperature data. Nevertheless, due to the nature of this

database structure, more data can be added without jeopardizing the existing one.

Textual data GSR

metadata

Speech Skin temperature

1..* 1..*

1..*1..*

1 1

11

Figure 2.3: ER-diagram for storing the four different raw data.

The speech can be stored as a binary file in the relational database for easy re-

trieval, viewing and audio playback purposes. The textual data may originate

from various sources, including but not limited to email, personal diary, agenda,

and social media content. Senticorr: Multilingual sentiment analysis of personal

correspondence is an interactive, extensible system for automated sentiment anal-

ysis on multilingual user-generated content from various social media and emails

[27]. One of the goals of this sentiment analysis is to make people aware of how

much positive and negative content they read and write. Therefore, each email

is annotated with the number of positive, negative and objective sentences. The

email and its annotations, then, were stored in the database as an evidence of

textual content to support the analysis. As for metadata, it contains additional

descriptive information about the data which have been collected. For example,

the metadata may contain information about who the subject is (e.g. age, gender

and anxiety), where the data was collected (e.g. campus, home or street), what

12
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activity the subject performed (e.g. walking, standing or running), and when the

data was taken. The technical detail on how to store the raw data can be found

in Appendix A.

2.3.2 Alignment of Raw Data

Due to the fact that the raw data obtained from heterogeneous sources have to be

aligned one with another, we opted for using a global clock system to synchronize

these data because of the simplicity and the ease of implementation. In other

words, using a global clock system implies all data must have the same reference

of date and time.

2.3.3 Storing Other Raw Data

Due to the nature of this database structure, another raw data can be added

without jeopardizing the entire framework. For example, it is easy to add a video

recording of facial expression to the framework by following the diagram structure

as shown in Figure 2.3. Furthermore, the extension of the diagram for storing

another metadata is also straightforward.

2.4 OLAP and Stress Cube

2.4.1 Online Analytical Processing (OLAP)

Data warehouses are the collection of historical, summarized, non-volatile data

accumulated from transactional databases. They are optimized for OLAP and

have proven to be valuable for decision making [28]. The data in a warehouse are

conceptually modeled as data cubes. The size of the data warehouse is typically

huge, and OLAP queries are complex. As for the term itself, OLAP usually refers

to analysing large quantities of data in real time. Operation in OLAP typically

involves read-only with raw data in bulk. In other words, OLAP operations do

not change the content of raw data. The term online refers to the ability of the

system to respond to queries fast enough to allow an interactive exploration of the

data regardless of the huge size of the relational database, which is usually up to
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several gigabytes.

OLAP operations help the analyst to understand the meaning contained in the

databases using multi-dimensional analysis. The analysts can navigate through

the database, filter particular subsets of data, changing the data’s orientation and

defining analytical calculation [29]. A common operation of OLAP includes but

is not limited to slicing, dicing, drill-down and roll-up. A slice is a subset of a

multi-dimensional array corresponding to a single value for one or more members

of the dimensions not in the subset. A dice operation is a slice on more than

two dimensions of a data cube. Drill-up or down is a specific analytical technique

whereby the user navigates among levels of data ranging from the most summa-

rized (up) to the most detailed (down). In essence, each operation is equivalent to

adding a “WHERE” clause in the SQL statement.

OLAP systems can be mainly classified into three categories by the way they ac-

cess the data [30]. These categories are multidimensional, relational, and hybrid.

The first one, Multidimensional OLAP, abbreviated as MOLAP, stores both the

source data and the aggregations in a multi-dimensional array storage, rather than

in a relational database. MOLAP is the fastest option for data retrieval, but it

requires the most disk space. The second one, Relational OLAP, abbreviated as

ROLAP, works directly with a relational database. The base data and dimension

tables are stored as a relational table and the aggregated information is stored in

a new table. The third one is Hybrid OLAP, abbreviated as HOLAP, and it is

a combination of both MOLAP and ROLAP. HOLAP divides the data storage

between relational and specialized storage. Some data, mostly the aggregated one,

is stored in special storage while the rest is in relational.

We used Mondrian1, an open-source OLAP server, which is able to analyze large

quantities of data in real time. Mondrian only supports the ROLAP model as its

storage method. In addition, Mondrian does not store aggregated data on disk,

but on cache (memory) once it has read a piece of data once. The engine exe-

cutes queries written in the Multi-Dimensional eXpressions (MDX) language by

reading data from a relational database (RDBMS), and it presents the results in

a multi-dimensional format via Java Application Programming Interface (API).

MDX was the first query language created by Microsoft and dedicated for multi-

dimensional analysis. Nowadays, MDX language is considered the new standard

1http://mondrian.pentaho.com/
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for multi-dimensional analysis.

Olap4j2, a Java API which resembles JDBC (Java Database Connectivity) for re-

lational database, is used for accessing multi-dimensional data. It is designed as

an abstraction layer to handle database connection, query model abstraction, ex-

ecuting and obtaining the OLAP results.

2.4.2 Stress Cube

The core of any OLAP system is an OLAP cube. The cube can be multi-

dimensional or an n-dimensional cube. The cube metadata is typically created

based on the star or snowflake schema. The idea of star schema is quite simple:

All data are categorized as dimensions or measures. Measures are derived from

the records in the fact table, and dimensions are derived from the dimension ta-

bles. Therefore, the star schema is represented by a centralized fact table which

is connected to multiple dimensions. Each tuple in the fact table consists of the

pointer to each of the dimensions. The snowflake schema, on the other hand, is

quite similar to the star schema with the exception that child tables may have

multiple parent tables, hence resembling a snowflake shape. The star schema is a

special case of snowflake schema. We refer to [30] for detailed explanation about

data warehouse, OLAP, the star schema, and the snowflake schema.

The stress cube metadata structure was implemented as a star schema. The fact

table contains numerical measures for indicating a stress level. As for the di-

mensions, it consists of attributes that we wish to be aggregated, such as subject

id, date, activity, stressor (task), location and email. Figure 2.4 illustrates the

star schema model. Technical detail of stress cube construction can be found in

Appendix A.

2http://www.olap4j.org/
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Stress Fact 

activity

email

location

subject

date

stressor

GSR

skin temperature

speech

Figure 2.4: Stress cube star schema. Stress fact is a fact table, while the rest is

dimension.

2.4.3 Extension of Stress Cube

As we used the ROLAP model as a storage method for OLAP, the extension

or modification of the fact table (or dimensions) has to be done in a relational

database. The star schema as depicted in Figure 2.4 is straightforward to extend.

For example, adding another metadata such as accelerometer or room temperature

can be achieved by creating a new dimension and linking it directly to the fact

table.

2.5 Shape-Based Query-by-Example

Query-by-example is a search mechanism which allows a user to search for similar

documents based on the example of some particular document or list of docu-

ments. The document content itself could be any of the following: textual, graph-

ical, time series, or multimedia. In this thesis, we consider a query-by-example

based on shape for time-series data. The problem is formulated as follows: given

a subsequence query C, we wish to find the most similar (1-Nearest Neighbor)

shape-based subsequence R from T , where |R| = |C| and T is the sequences of
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time-series in the database.

We utilized the existing UCR-Suite algorithm [31], the current state-of-the-art,

for searching subsequences time series under Dynamic Time Warping (DTW) [32]

and Euclidean distance. The original source code of UCR-suite algorithm3 was

written in C language. In order to conform to our core application, we rewrote

the code by using Java language and presented both similarity results found by

using Euclidean distance and by DTW. We did not conduct any objective experi-

ments and evaluations to measure the performance differences between Euclidean

distance and DTW. Though based on an anecdotal evaluation, the result found

by using DTW is preferable to Euclidean Distance as shown in Figure 2.5. More

elaborate explanation about shape-based QBE can be found in Appendix A.

2.6 Stress Analytics Visualization

The summary view of the stress level over different dimensions is presented via an

interface providing a basic OLAP-style exploration. The interface allows the user

to zoom-in to the level of evidence and zoom-out to the grand total summary of

the stress level. Furthermore, the feature of shape-based query-by-example is pro-

vided to enable the user (or domain expert) to search for a similar stress pattern

(e.g. from GSR or skin temperature) across different dimensionalities.

We implemented the visualization of stress analytics using a web-based system

which used Apache Tomcat 7.04 as an HTTP web server together with MySQL

5.05 as a storage engine. The complete list of all open-source libraries, tools, soft-

ware, and script that we used for developing the stress analytics can be found in

Appendix D.

3http://www.cs.ucr.edu/∼eamonn/UCRsuite.html
4http://tomcat.apache.org/
5http://dev.mysql.com/
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(a)

(b)

(c)

Figure 2.5: Shape-based Query-by-Example (QBE). (a) Query time-series. (b)

The most similar time-series found by using DTW. (c) The most similar time-

series found by using Euclidean distance.
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In a nutshell, the visualization provides three different functionalities, interactive

OLAP exploration, showing evidence (e.g. stress related physiological signals)

or stress related events (e.g. email), and search functionality (e.g. shape-based

query-by-example). Figure 2.6 depicts the sample graph obtained by using OLAP

explorations. Apart from the visualization by OLAP, we present a visualization of

raw data as an evidence to make an individual more aware of what was actually

happening. Four different evidences: GSR, skin temperature, email and speech

(both audio recording and its waveform) are shown, and is illustrated in Figure

2.7. The shape-based QBE is depicted Figure 2.5. The interactive overall diagram

of stress analytics visualization can be found in Appendix A.

Figure 2.6: Visual exploration of the stress cube: Aggregated stress level for dif-

ferent locations and activities.
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(a) (b)

(c)

(d)

Figure 2.7: Four different raw data evidences. Red and black lines in time series

graph represent stress and non-stress periods respectively. (a) GSR. (b) Skin

temperature. (c) Speech waveform representation. The system also provides the

spectrogram representation and audio player for playing back the speech waveform.

(d) Email raw data. The black, green, and red sentences represent objective,

positive and negative respectively.
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Automatic Stress Detection from

Speech and Galvanic Skin

Response (GSR)

Chronic stress has become a serious problem affecting different life situations and

carrying a wide range of health-related diseases, including cardiovascular disease,

cerebrovascular disease, diabetes, and immune deficiencies [33]. Thus, stress man-

agement is an utmost importance for preventing it becoming chronic. Technologies

that automatically recognize stress can become a powerful tool to motivate people

to adjust their behavior and lifestyle to achieve a better stress balance. Tech-

nology such as sensors can be used for obtaining an objective measurement of

stress level, which afterwards, machine learning technique is employed to build a

model for stress detection and recognition. The objective, therefore, is to detect

the changes in GSR and speech, and discriminate them based on the binary la-

beling of stress. Stress detection in this section was conducted in an offline setting.

The rest of this chapter is organized as follows. In Section 3.1, we review the

previous studies on the stress model, stress in speech detection and stress detection

using physiological signals. We describe the preprocessing and feature extraction

for speech and GSR signals in Section 3.2. In Section 3.3, several machine learning

techniques for classification are discussed. Section 3.4 provides an explanation of

combining both GSR and speech for stress detection.
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3.1 Background and Previous Work

3.1.1 Stress Model

The concept of stress remains elusive, very broad and used differently in a number

of domains. It is poorly defined, and no single agreed definition of stress is in

existence. However, two models which are commonly used today come from Selye

and Lazarus. Selye [34] proposed General Adaptation Syndrome (GAS) model,

which identifies various stages of stress response. Selye argues that stress is a

disruption of homeostatis by physical or psychological stimuli. Physical factors,

such as noise, excessive heat or cold, and psychological factors, such as extreme

emotion, frustration and sleep deprivation, alter the internal equilibrium of the

body which causes a stress response. There are three stages in this model. The

first stage is the alarm stage; the body identifies the danger or threat and goes into

a state of alarm. In this stage, the hormone adrenaline and cortisol are released to

provide instant energy. Adrenaline is produced in order to prepare the body for

’fight’ or ’flight’. The secretion of adrenaline causes the blood flows to the large

muscle of the body, as the body prepares to run away or fight. The cortisol hor-

mone, known as ’stress hormone’, increases the blood pressure and blood sugar in

order to restore body homeostasis after the stress period. The second stage is the

resistance stage, where the body focuses all of its resources to restore balance, and

the recovery for repair and renewal takes place. In this stage, possibly the source

of stress might be resolved. If the stressful condition is not resolved at this stage,

then it moves to the next stage. The last stage is the exhaustion stage, when the

body can no longer resist the stressor and psychological breakdown begins. In this

stage, the body is vulnerable to disease and even death.

Lazarus’s model [35] is slightly different from Selye’s. Lazarus emphasises his

theory on two central concepts: appraisal, i.e., individuals’ evaluation and inter-

pretation of their circumstances, and coping, i.e., individual efforts to handle and

solve the situation. Lazarus argues that neither the stressor nor one’s response is

sufficient for defining stress, rather it would be one’s perception and appraisal of

the stressor that would determine if it creates stress. The first stage is the primary

appraisal, where the subject analyzes the stressor and determines if it is positive

or negative, exciting or dangerous, etc. During this stage, emotions are generated

by the appraisal. The second stage is the secondary appraisal, where the subject

decides if he or she can cope with the given stressor. If one can cope with the
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stressor, then the stress might be resolved and could be kept at a minimum level.

On the other hand, if one cannot cope with the stressor, he or she will experience

a high degree of stress.

3.1.2 Stress Detection in Speech

Hansen et al. [36] define stress in the scope of recognition from the voice signal as

any condition which causes a speaker to vary speech production from “natural”

conditions. The speech is considered as neutral when a speaker is in a quiet room

with no task obligations. Moreover, Hansen divides the stressor into two groups:

perceptual and physiological. The perceptual stressor is a condition whenever a

speaker perceives his or her environment to be different from natural, such as his

or her intention to produce speech varies from neutral condition. The perceptual

stressor can be induced by emotion, environmental noise (e.g. Lombard’s effect),

high cognitive workload, and frustration over contradictory information. On the

other hand, the physiological stressor causes the speaker to deviate from neutral

speech production despite his or her own intention due to the physical impact

on one’s body. Causes of physiological stressors include, but are not limited to,

G-force, vibration, drug interactions, and sickness.

The effect of stress in relation to speech production has been well studied over the

past decades. Respiration has been found to correlate with certain emotional sit-

uations. When an individual experiences a stressful situation, his respiration rate

increases. This presumably will increase subglottal pressure during speech, which

is known to increase pitch (or fundamental frequency) during voiced section [37].

Moreover, an increase in the respiration rate causes a shorter duration of speech

between breaths which, in turn, affects the speech articulation rate. In a different

body of work, Scherer [38] confirmed the previous finding, by showing that voice

is indeed a good indicator of stress and found a high correlation between stress

and the increase of fundamental frequency. Further details of analysis, modeling,

and recognition for speech under stress can be found in [39].

In general, the speech classification approach involves extracting discriminatory

features from the audio, then, the features will be utilized as an input to a pattern

classifier. The audio features can be categorized into prosodic and spectral fea-

tures. Pitch, loudness, speaking rate, duration, pause and rhythm are all perceived

characteristics of prosody. These measurements are usually encoded in terms of
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statistical measures like means, medians, standard deviations, and averages over

the whole utterances. On the other hand, several spectral features which are com-

monly used for emotion detection include, but are not limited to, Mel Frequency

Cepstral Coefficients (MFCC), Linear Predictive Cepstral Coefficient (LPCC), Mel

Filter Bank (MFB), and Perceptual Linear Prediction (PLP). The spectral feature

is usually extracted by using a frame window over the whole utterances. The effi-

cient number of frame size per speech utterance is investigated in [40].

After features have been defined, the machine learning technique is carried out to

classify instances of different classes. Cichosz et al. [41], investigated the emotion

recognition using binary-tree based classifier, where consecutive emotions are ex-

tracted at each node, based on an assessment of feature triplets. A different body

of work using a hidden semi-continuous Markov model has been investigated by

Nogueiras et al. [42]. They showed that the result obtained from the classifier is

very similar to that obtained with the same database in a subjective evaluation

by human judges. Shah [43] investigated Support Vector Machine and K-Means

to classify opposing emotions. He used statistics related to the pitch, Mel Fre-

quency Cepstral Coefficients (MFCCs) and a formant as an input to classification

algorithms. Gaussian Mixture Model (GMM) has been shown by [44] to be a

competitive model for recognizing emotion and speech. In addition, a detailed

exploration of affective expression in speech could be found in Shikler [45] work.

Another controversial model for detecting stress in speech is by using the Voice

Stress Analysis (VSA) [46] technique, which measures fluctuations in the physio-

logical microtremors present in speech. Microtremors are present in every muscle

in the body, including vocal cords and have a frequency around 8-9 Hz. Dur-

ing stress, this range is shifted to 8-12 Hz range. Stress thus can be detected

by analyzing the changes in the microtremors’ frequency of an individual voice.

Furthermore, VSA is known also as a controversial technology for lie detection.

3.1.3 Stress Detection using Physiological Signals

The human nervous systems can be divided into two main divisions, the volun-

tary and the Autonomic Nervous Systems (ANS). The voluntary nervous system

is concerned with the control of body movement via muscles, motor and sensory

neurons. On the other hand, the ANS is an involuntary division which has less

conscious control. It controls the organs of our body such as the heart, stomach
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and intestines.

Furthermore, the ANS can be divided into two divisions, sympathetic and parasym-

pathetic nervous systems. The parasympathetic nervous system is responsible for

nourishing, calming the nerves to return to the regular function, healing, and re-

generation. On the contrary, the sympathetic nervous system is accountable for

activating the glands and organs for defending the body from the threat. It is

called ’fight’ or ’flight’ response. The activation of sympathetic nervous system

might be accompanied by many bodily reactions, such as an increase in the heart

rate, rapid blood flow to the muscle, activation of sweat glands, and increase in

the respiration rate.

These physiological changes, such as the electrical activity on the scalp, Blood

Pressure (BP), Blood Volume Pulse (BVP), electrical activity of the heart over

a period of time, electrical activity produced by skeletal muscles, Galvanic Skin

Response (GSR), Skin Temperature (ST), eye’s blinking rate, pupil dilation, and

Heart Rate Variability (HRV), can be measured objectively by using modern tech-

nology sensors. These psychological variables can be monitored in non-invasive

ways and have been investigated by many researchers over the past decades. The

researcher often uses multimodal signals to obtain more precise information about

the state of mind.

The research provided in [47][26][48][49][50] proposes a multimodal system for de-

tecting stress, which consists of Blood Volume Pulse, Galvanic Skin Response, Skin

Temperature, and Pupil Dilation. They used these signals to differentiate between

two different affective states in a computer user and found a strong correlation

between these signals and stress variation.

A real-life study for automatic stress recognition involving call center employees

can be found in [51]. They modified the Support Vector Machine (SVM) loss

function to incorporate the participant specific information. The similar work for

personalized stress detection was presented in [52] as well.

In [53], an activity-aware mental stress detection scheme using Electrocardiogram

(ECG), GSR, and an accelerometer is proposed. They studied the correlation be-

tween the user’s activity and physiological measurements while one was subjected

25



Chapter 3

to mental stressors. Another interesting work on the stress detection field was pre-

sented by Healey and Picard [54] in 2005. They conducted a physiological study

on a real-world driving task where the objective is to determine a driver’s rela-

tive stress level. Several signals, such as ECG, Electromyogram (EMG), GSR, and

HRV, were recorded continuously while drivers followed a predefined route through

an open road in the Boston area. They could distinguish between three different

driving conditions with a great accuracy across multiple drivers and multiple days.

A different body of works for stress detection by using facial expression together

with physiological signals has been proposed in [55][56]. They used the Bayesian

network for modeling stress and the associated factors and showed that the in-

ferred user stress level is consistent with the psychological theory.

In general, the machine learning technique is employed for building a model for

differentiating between different levels of stress. The popular machine learning

methods which are used within literature include, but are not limited to, Fuzzy

Logic [57], Support Vector Machine (SVM) [48][26][53], Decision Tree Classifier

[26][53], Näıve Bayes Classifier [26], and Bayesian network [56][55][53].

3.2 Feature Selection

3.2.1 Speech

Several speech features which are investigated are described as follows:

1. Energy

The basic feature of audio signals for human auditory perception is loudness.

In general, several terms that are commonly used to describe the loudness of

audio signals are volume, intensity and energy. The energy of the signal X

for each sample i in time is described as:

Energyi = X2
i

The most common method to compute energy is using the overlapping time

frames as in the fundamental energy calculation. This method results in a

more continuous signal. Let X1, ..., XN defines the signal samples in a frame,

and then the smoothed energy in each frame is given as:
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SmoothedEnergyframe =
N
∑

i=1

X2
i

Figure 3.1 shows a speech signal and the results of different speech signal

calculations.

(a)

(b)

(c)

Figure 3.1: (a) Speech signal of the utterance of the word “bookstore”. (b) The

energy of each sample. (c) The average energy for each frame, using frame-size =

256 and overlap = 128.

2. Voiced and Unvoiced Speech

The audio signals are generally referred to as signals that are audible to

humans, which is typically from 20Hz to 20KHz. There are many sources of

audio signals: human voices, sound from animals, periodic sound, aperiodic

sound, etc. In this thesis, we only considered human voices. Basically, we can

divide each short segment of human voices into two categories: voiced and

unvoiced sound. Voiced sounds are produced by the vibration of the vocal

cord, hence we can observe the fundamental periods in a frame. On the other

hand, unvoiced sounds are not produced by the vibration of the vocal cord.

Instead, they are produced by the rapid flow of air through the nose or teeth.

Hence we cannot perceive any fundamental periods in a frame, due to the
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fact that there is no vibration in the vocal cord. Figure 3.2 shows a difference

between voiced and unvoiced sounds.

(a)

(b)

(c)

Figure 3.2: (a) Speech signal of the utterance “bookstore”. (b) Waveform of the

voiced sound, as shown in the red region in (a). (c) Waveform of the unvoiced

sound, as shown in the green region in (a).

3. Pitch

Pitch is the fundamental frequency of audio signals, which represent the vi-

bration rate of the sound source. In other words, pitch is the perceptual

correlation of the rate of vibration of the vocal cord. People tend to use an

intonation to convey meaning when speaking, and its perceptual correlation

is called pitch. Much research [58][59] has shown that pitch conveys consid-

erable information about emotional status.

There are many different extraction algorithms for the fundamental frequency.

One of the basic algorithms is an auto-correlation function (ACF). The auto-
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correlation is the cross-correlation of the signal with itself, or how well the

signal matches a time-shifted version of itself. This method is useful for

finding patterns in a signal. The ACF function is given as:

acf(τ) =
n−1−τ
∑

i=0

s(i)s(i+ τ)

where τ is the time lag in terms of sample points. The value of τ which

maximize acf(τ) over a specified range is selected as the pitch period in

sample points. Figure 3.3 illustrates the computation of the auto-correlation

function.

frame S(i)

shifted frame S(i+t)

 

t = 131

 

t = 131

acf(t)

Figure 3.3: The auto-correlation function illustration. The maximum of ACF (we

omit the first one) happens at index around 131, hence the corresponding pitch is

fs/(131 − 1) = 16000/130 = 123.08Hz, where fs denotes the frame rate (frame

per second).

The auto-correlation function, in fact, is not a good choice for pitch tracking,

since it used sampling and windowing for determining the maximum of auto-
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correlation and this turned out to cause many problems [60]. Numerous

algorithms for pitch tracking have been suggested over the years. Among

these, the most popular algorithm is the Robust Algorithm for Pitch Tracking

(RAPT), proposed by Talkin [61]. In this thesis, we used the VOICEBOX1

speech processing toolbox which contains the RAPT implementation.

4. Mel Frequency Cepstral Coefficients (MFCCs)

MFCCs are coefficients that represent human audio perception. These coeffi-

cients have been shown to have a great success in speaker recognition appli-

cation. In addition, MFCCs are the most widely used spectral representation

of speech in many applications, including speech and speaker recognition [62].

The application is not only limited to speaker recognition, but also to speech

and emotion recognition. The method of MFCCs can be summarized as fol-

lows:

• Transform a raw signal to frequency-based using Fast Fourier Transform

(FFT).

• The scale of frequencies is corrected to Mel’s frequency that approximates

the human system auditory response more closely.

• Take the logs powers at each of the Mel frequencies.

• Take the Discrete Cosine Transform (DCT) of log-Mel spectrum.

• Store only few high-order coefficients. For instance, store the first 13

components.

• For each coefficient, calculate its mean, variance, maximum, and mini-

mum value.

We used the VOICEBOX speech processing toolbox which contains the MFCC

implementation.

5. RASTA-PLP

Another popular method for speech feature representation is by using Rela-

tive Spectral Transform (RASTA) - Perceptual Linear Perception (PLP) [63].

PLP was originally purposed to minimize the differences between speakers

while maintaining the important speech information. RASTA is a technique

which involves several filtering to make PLP more robust to linear spectral dis-

tortions. For example, in [63] RASTA-PLP has been demonstrated to show

a significant error rate improvement for recognition using a telephone line

1http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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which contains static noise. In this thesis, we used the existing RASTA-PLP2

implementation in Matlab.

3.2.2 Galvanic Skin Response

Galvanic Skin Response (GSR) is a measure of electrical conductance of the skin,

which is proportional to sweat secretion [64]. When an individual experiences

stress, the sweat glands which are controlled by the sympathetic nervous sys-

tem are activated. Therefore, skin conductance may act as an indicator of stress

arousal. The skin conductance measurement is usually placed on hands or feet,

where the density of sweat gland is the highest.

In general, GSR has a typical startle response, which is a fast change of the GSR

signal in response to a sudden stimulus. Features which are used to characterize

this response include the amplitude and rising time of the signal. Figure 3.4 illus-

trates the startle response in GSR signal.

2http://labrosa.ee.columbia.edu/matlab/rastamat/
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A

R A

R

R

A

A

R

Figure 3.4: Four GSR startle responses. The peak which is detected by the al-

gorithm is marked with ’x’ and the onset is marked with ’o’. The amplitude and

rising time of the response are denoted by A and R respectively.

Boucsein has demonstrated that skin conductance is subject to inter-person vari-

ability, with differences in age, gender, ethnicity, and hormonal cycle contributing

to individual differences [65]. Due to these differences; we normalized the skin

conductance signals by subtracting the baseline minimum and dividing by base-

line range [66]. More precisely; it is given as:

GSRnormalized =
GSR−min(GSRbaseline)

max(GSRbaseline)−min(GSRbaseline)

where GSRbaseline corresponds to the values of the GSR when the user is supposed

to be relaxed and measured at the beginning of experiment.

Several GSR features which are investigated are described as follows:

• Mean, minimum, and maximum of skin conductance.

• Standard Deviation of skin conductance.
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• Total number of startle response in segment.

• The sum of startle amplitude (
∑

A).

• The sum of rising time response (
∑

R).

• The sum of energy response. It is estimated as the areas under the response
∑

(

1
2
A×R

)

.

• Mean, minimum, and maximum of peak height.

Picard et al. [54] have demonstrated that the total number of startle responses, the

sum of startle magnitude, the sum of response’s duration, and the sum of response’s

areas are a reliable feature for detecting stress. In this thesis, automatic detection

of GSR responses was carried out by using EDA toolbox 3.

3.3 Classification Methods

We formulate the automatic stress detection as a supervised learning task. Given

some past stress data, in which we know a label for each data (e.g. stress and

non-stress), the aim is to learn a model such that given some previously unseen

instance we can determine as accurately as possible to which group this instance

belongs to. All classification was carried out in offline settings. The GSR and

speech instances are constructed by segmenting the data using one-minute non-

overlapping window. Furthermore, first the GSR data and the speech data are

aligned, then, the instances which only contain the voiced sound of the subject are

stored. Further details about how the instances are created are discussed more in

Chapter 4.

We utilized four different machine learning techniques, including K-Means classi-

fier using vector quantization as our baseline due to its simplicity, binary decision

tree classifier, Gaussian Mixture Model (GMM) which has been shown to work

well for speaker or music recognition and the Support Vector Machine (SVM), as

the state-of-art for classification.

3https://github.com/mateusjoffily/EDA/wiki
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3.3.1 K-Means

K-means clustering algorithm can be used for classification by using a Vector

Quantization technique. The algorithm works by dividing a large set of vectors

into groups having the same number of points closest to them. Each group is then

represented by its centroid points. More precisely, the training algorithm works as

follows:

• Choose the number of centroid n, for representing instances’ distribution for

each class.

• Run standard K-means algorithm for each class, with the number of centroid

n. Hence, after performing K-means algorithm, we can use its centroid as a

representation of all instances’ distribution in that class.

After the training phase, the averaging Euclidean distance is used for classifying

un-seen instances. The algorithm calculates the average distance of points to its

closest (1-nearest-neighbor) centroids. The test instance is then classified to the

class who minimizes this measure. More precisely, the pseudo code is illustrated

in Algorithm 1.

Algorithm 1 K-Means Vector Quantization Algorithm
1: {Let T be a single testing instance to be classified}

2: {Let C be a set of classes. (e.g. ’stress’ or ’non-stress’)}

3: for i=1 to |C| do

4: {Get centroid representation for class Ci}

5: Centroid ← getCentroid(i)

6: sumDistance ← 0

7: for j=1 to |T | do

8: minDist ← Infinite

9: for k=1 to |Centroid| do

10: t ← euclideanDistance(Centroid[k],T [j])

11: if t < minDist then

12: minDist← t

13: end if

14: end for

15: sumDistance← sumDistance + minDist

16: end for

17: distanceClass[i]← sumDistance

18: end for

19: return arg min1≤k≤|C|(distanceClass[k])
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3.3.2 Decision Tree Classifier

Decision tree classifier [67] is a simple and widely used method for classification.

The classifier is based on flowchart-like binary tree structure, where each internal

(non-leaf) node denotes a test on attribute, each branch represents an outcome of

the test, and each leaf node holds a class label. First, the decision tree model has to

be created from the training set and once has been constructed; classifying a test

set is straightforward. Starting from the root node, we apply the test condition

of the attribute and follow the branch. This process is repeated until we arrive at

the leaf node which contains the outcome of the class label. We used the existing

solution of decision tree classifier from Matlab Statistics Toolbox 4.

3.3.3 Gaussian Mixture Model (GMM)

A Gaussian Mixture Model (GMM) [68] is a parametric probability density func-

tion represented as a weighted sum of Gaussian component densities as given by

the equation:

P (x|λ) =
M
∑

i=1

wi g(x|µi,Σi)

where x is D-dimensional continuous-valued features, wi are the mixture weights,

and g(x|µi,Σi) are the component Gaussian densities. Each component density is

a D-variate Gaussian function of the form:

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{

−
1

2
(x− µi)

′ Σ−1
i (x− µi)

}

where µi and Σi are a mean vector and covariance matrix respectively. The mean

vectors, covariance matrix and mixture weights are generally represented by the

notation:

λ = {wi, µi,Σi}, i = 1, ...,M

Given training vectors and a GMM configuration, the GMM parameter λ has to

be estimated in order to match the distribution of the training vectors. The most

popular algorithm to estimate this parameter λ is Maximum Likelihood (ML)

4http://www.mathworks.nl/products/statistics/
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estimation. We refer to [69] for a detailed discussion about this algorithm. Figure

3.5 illustrates the mixture of Gaussian found by this algorithm which best fits the

arbitrary histogram data.

Figure 3.5: Top: Arbitrary histogram data. The GMM distribution fit is shown by

the red line. Down: The Gaussian parameter (weight and densities) components.

The basic idea of GMM for pattern classification is similar to the K-Means algo-

rithm. First, we find the best parameter GMM λ for each class given the training

vectors (e.g. ∀i=1...|C|λi). Next, once the Gaussian parameter has been found, de-

termining a test vector’s class is straightforward. According to the posterior Bayes

inference:

P (λi|x) ∝ P (x|λi)P (λi)

and assumption that each class has an equal a priori probability (e.g. P (λi) =

1/C), a test vector x′ therefore is assigned to the class i which maximizes P (x′|λi).

36



Automatic Stress Detection from Speech and Galvanic Skin Response (GSR)

Depending on the choice of covariance matrices, GMM can have several different

forms, including nodal covariance, grand covariance and global covariance. The

first is a model which has one covariance matrix per Gaussian component. The

second has a single covariance matrix for all Gaussian components in a model.

The last has a single covariance matrix shared by all models. In addition, the

covariance matrix type can be full or diagonal. In this thesis, we opted to use

nodal, diagonal covariance matrix due to the fact that this configuration has been

shown by [70] to result in better identification performance compared to the nodal

and grand full covariance matrix for the speaker identification task. We used the

Machine Learning Toolbox5 [71] which contains the GMM implementation.

3.3.4 Support Vector Machine (SVM)

Support Vector Machines (SVMs) are the state-of-the-art supervised machine

learning technique for data classification, which behaves robustly over a variety

of different learning tasks. The basic idea behind SVM is to build a classifier

model based on training data for which it not only separates the vector instances

in one class from those in the others, but for which the separation, or margin, is

as large as possible.

We used the LibSVM tool [72], an integrated library for Support Vector classifi-

cation, regression, and distribution estimation. In order to classify the data using

this tool, the guidelines from [73] are followed and are summarized as follows:

1. Transform data to the format of an SVM package.

2. Conduct simple scaling on the data.

3. Choose the Radial Basis Function (RBF) kernel K(x, y) = e−γ|x−y|2 .

4. Select the random sample from training data and use cross-validation to find

the best parameter C and γ.

5. Use the best parameter C and γ to train the whole training set and obtain

the model.

6. Test the test set based on this model.
5http://neural.cs.nthu.edu.tw/jang/matlab/toolbox/machineLearning/
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3.4 Stress Detection Using Fusion of GSR and Speech

There are many options to combine the result of two different models. One option

is to enrich feature space and construct a model which could separate the instances

in the best possible way. Another option is to build an individual model and com-

bine them using ensemble learning. Figure 3.6 illustrates the feature enrichment

and ensemble learning methods.

Ensemble learning is generally used to combine prediction decision from multi-

ple models and aggregates their results into a single class label. There are many

ensembles learning methods, which are typically used, including voting, adaptive

weighting, stacking, logistic regression, fuzzy integrals, co-training, bagging, boost-

ing, random subspace, and many more. We used logistic regression method for

combining the result from two different models (i.e. speech and GSR) into one

single regression value. The rationale behind choosing this method is that it is

simple, and has been shown to work well for combining two different models in

[74]. Logistic regression requires that the GSR and speech data are available at

the same time instance and have been aligned with each other. We carried out a

manual segmentation and alignment of speech data in offline settings. However,

in the operational settings, this technique requires a real-time segmentation and

alignment of speech and GSR.
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Figure 3.6: (a) Enrichment of feature space. (b) Ensemble learning approach.

Logistic regression [75] is a standard method for addressing binary classification

problems. For instance, logistic regression might be used for predicting whether

a patient has a diabetes disease based on the observed characteristics of patients

(e.g. age, gender, body mass index and blood test). This method is useful owing

to its ability to map any arbitrary input values from negative infinity to positive

infinity to the outcome values between zero and one. Logistic regression is deemed

more appropriate for modeling binary classification problems, compared to linear

regression. The most obvious reason is that the linear regression model has no

bounds on what the outcome values will be. Hence, the outcome might have a

value lower than zero or greater than one, which is unsuitable to our binary clas-

sification purpose.

Let’s assume that we have N observed instances and each instance i consists of M

independent variables. Let the outcome of associated binary-valued denoted as yi is

the probability of two possible values (e.g. 0 and 1). The goal of logistic regression

is to model the relationship between the independent variables and the outcome,

so it can correctly predict an unseen instance for which only the independent
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variables are available. Logistic regression used the same mechanism as in linear

regression by modeling the probability pi, the probability of the outcome of 1 (e.g.

“success”, “yes”, etc), with a linear combination of the independent variables and

the set of regression coefficients. More precisely, the linear predictor function f(i)

is given as:

f(i) = c0 + c1.x1,i + ...+ cM .xM,i

where c0, ..., cM are regression coefficients and x1,i, ..., xM,i are the input of instance

i which consists of M independent variables. After defining the linear predictor

function, we linked it with the probability of binary-valued outcomes using this

equation:

ln

(

pi
1− pi

)

= c0 + c1.x1,i + ...+ cM .xM,i

where ln is the natural logarithm. Coefficients c0, ..., cM are estimated from the

training instances to best match its outcome by utilizing the maximum likelihood

algorithm [75]. Once these coefficients have been found, we can use them to predict

an unseen (testing) instance by using the above equation. In this thesis, we used

the Matlab Statistics Toolbox 6 for finding these regression coefficients.

6http://www.mathworks.nl/products/statistics/
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Evaluation of Stress Detection

In this section, we conduct a series of experiments in order to examine the perfor-

mance of different models for detecting two distinct states of stress level: recovery

phase with workloads phase and light workload with high workload phase. Four

different machine learning classifiers, K-Means, Decision Tree Classifier, Gaussian

Mixture Model (GMM) and Support Vector Machine (SVM), will be investigated,

and their performance will be compared. We opt to choose the simplest K-Means

algorithm as our baseline throughout the whole experiments.

The remainder of this chapter is organized as follows. In Section 4.1, we describe

the experimental settings, such as the evaluation metrics, cross-validation, statis-

tical significance test and Kappa inter-annotator agreement. Section 4.2 describes

the dataset for the experiment, together with its preprocessing and analysis. Fi-

nally, in Section 4.3, we present and discuss the experimental results.

4.1 Experimental Setting

4.1.1 Evaluation Metrics

The classification evaluation is utilized to measure the performance of the classi-

fier in the classification task. The best classifier which gives the finest evaluation

in turns will be chosen as a final classifier. The most common metrics used for

evaluation are accuracy, precision and recall. In order to compute these metrics

for binary classification, we need to calculate the number of true positive, false

41



Chapter 4

positive, true negative and false negative as depicted in Table 4.1. In our context,

the positive class would be a stress class, and the negative class would be a non-

stress class.

Actual Class
Predicted Class

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 4.1: Classification confusion matrix.

The accuracy, precision and recall are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

4.1.2 Cross-Validation

10-fold Cross-Validation

Cross-validation is a statistical method for validating a predictive model which

is mainly used to estimate how accurately a model will perform in practice. In

10-fold cross-validation, the dataset is randomly divided into 10 subsets. For each

subset, one will be used as testing data and the remainder as training data. The

process is then repeated 10 times. Afterwards, the 10 results from the folds can

be averaged to produce a single estimation.

Figure 4.1 illustrates the training and testing procedure using the first fold as

testing and the rest as training data. First, the best parameter is searched from

training data (fold 2 to fold 10) by using a 5-fold cross-validation. The rationale

behind choosing 5-fold lies in the limitation of the data size. After the best pa-

rameter is obtained, it will then be used to construct the model. The testing data
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from the first fold is then evaluated using this model, and its accuracy is reported.

This process is repeated 10-times and accuracies are averaged to produce a single

estimation.

Fold 1 Fold 2 Fold 10...
(training)

 

Find the best parameter 

using 5-fold cross-validation

Best parameter

Train Fold 2 to Fold 10 using 

this parameter

Model

Test Model

(testing)

evaluation

Figure 4.1: 10-fold cross validation illustration using fold 1 as testing and the rest

as training data.

1-Subject-Leave-Out Cross-Validation

1-subject-leave-out cross-validation is used to evaluate the model performance for

the subject independent case. This method, in nutshell, works as follows. The
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dataset is divided into n subset, where n denotes the number of the different

subject. The data from the same subject cannot be both present in the testing and

training data. For each subset, it will be used for testing and the rest as training

data. The process is then repeated n times, and the result can be averaged to

produce a single estimation.

4.1.3 Statistical Significance Test

Statistical significance is an assessment based on statistics to know whether the

observation reflects a pattern rather than just a chance. We utilized the permu-

tation test [76] (also called exact tests, randomization tests, or re-randomization

tests) for testing the significance of data. The permutation test concept is rela-

tively simple and intuitive, which involves permutation (or randomization) of the

data label to test the statistical significance.

Algorithm 2 illustrates the permutation test. If the calculated p-value is be-

low a certain threshold chosen for statistical significance, usually 0.05, then the

null-hypothesis is rejected. In essence, the null-hypothesis states that two

distinct states of stress level (e.g. stress and non-stress) are not differentially de-

pendent on the data, in the sense that if we used different data or changed the

order of data, we would have observed exactly the same results. One of the per-

mutation test benefits is that it does not rely on the data distribution. In other

words, this test is a non-parametric test. However, a drawback of this test is that

it requires a very expensive computation time.

Algorithm 2 Permutation Test
1: {Let c be the best accuracy obtained from one model.}

2: p-value ← 0

3: for i=1 to n do

4: Permute the label of data (both training and testing).

5: {The same setup as the one that was utilized to obtain c, is used in modelRun().}

6: {modelRun() returns the evaluation performance, i.e. an accuracy.}

7: c′ ← modelRun()

8: if c′ ≥ c then

9: p-value ← p-value + 1

10: end if

11: end for

12: return (p-value / n)
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4.1.4 Kappa Inter-Annotator Agreement

Cohen’s Kappa coefficient is a statistical measure for inter-annotator agreement

[77]. We utilized this measure to investigate the agreement between two different

models (e.g. model based on GSR and model based on speech) on the same dataset.

The Kappa coefficient is given as:

κ =
pr(a)− pr(e)

1− pr(e)

where pr(a) is the observed relative agreement between raters and pr(e) is the

hypothetical probability of chance agreement. The κ has value 1 if the raters are

in complete agreement. If there is no agreement between the raters, κ has value 0.

For the sake of clarity, let’s consider the example given in Table 4.2, which depicts

the agreement between model A and B.

B

Yes No

A
Yes 30 5

No 10 25

Table 4.2: Inter-annotator confusion matrix example.

Model A and B both said “Yes” on 30 instances and both said “No” on 25 instances.

Thus, the observed percentage of agreement is pr(a) = (30+25)/70 = 0.79. Model

A said “Yes” 35 times and “No” 35 times, hence the probability model A said “Yes”

is 50% of the time. Model B said “Yes” 40 times and “No” 30 times, hence the

probability model B said “Yes” is 57.1%. Thus, the probability that both models

said “Yes” randomly is 0.5 × 0.571 = 0.29, and that both of them said “No”

randomly is 0.5× 0.43 = 0.22. The overall probability of random agreement then

becomes pr(e) = 0.29 + 0.22 = 0.51. Applying the κ formula above, we get the

following inter-annotator agreement:

κ =
0.79− 0.51

1− 0.51
= 0.57

4.2 Dataset Description and Evaluation

Due to the unavailability of a free stress dataset which incorporates both speech

and GSR, we conduct a controlled psychological stress elicitation experiment. The
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main goal of this experiment is to obtain a labeled stress dataset. The whole ex-

periment is elaborated in Appendix B.

The stress elicitation experiment was conducted inside TU/e by employing 10

volunteer graduate students from the Mathematics and Computer Science depart-

ment. The experiment itself, in summary, consists of three different tasks which

have to be performed: recovery (relaxation), light workload, and heavy workload

session. In total, we collected approximately 10 hours of stress-related data from

the experiment.

The GSR patterns we observed during the whole experiment can be grouped into

three categories. The first pattern is in line with our initial expectation. See Figure

4.2 (a) for illustration. The average mean GSR’s value during light workload is

lower than the mean value during the heavy workload session. Moreover, we

observed that the GSR patterns decrease in the recovery period as the subject

probably felt less stress. In the second pattern (see Figure 4.2(b)), there are no

statistically significant differences between the average mean value of the light and

heavy workload session. The subject was presumably easy to get aroused even

with the task which was very weightless, hence he or she was most likely more

susceptible to stress. The third pattern (see Figure 4.2 (c)) is completely different

from the other two. The GSR patterns decrease in almost all of the tasks as if

the subject performed the relaxation task. This might be caused by the subject

ability to cope with the stress or the fact that the subject was not motivated at all

in participating in this test. We found this pattern in only 1 out of 10 instances.

46



Evaluation of Stress Detection
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Figure 4.2: Three types of GSR patterns. (a) The first type. (b) The second type.

(c) The third type.
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The data which has been collected contains approximately 10 hours of GSR and

speech, measured on 10 subjects. We segmented the GSR and speech raw values

by using a moving 60-second non-overlapping time window. The rationale behind

using a 60-second window is that we can observe a reasonable GSR startle re-

sponse and sufficient utterances of voiced sound within this period. The GSR and

speech data are synchronized using a global clock system approach. More pre-

cisely, the computer clock system was stored side by side with the GSR data (e.g.

“2012/06/28 13:10:25.100 40”, representing the GSR value of 40 at 28-June-2012

13:10:25.100 hours). The information about the start and end time of each task

was stored separately in our system. Whenever the system stored these values (e.g.

start and end time), the short burst of beep sound was played from the computer

and was recorded by the speech recorder. Therefore, the speech and GSR data

can be aligned together. Table 4.3 summarizes the total instances obtained from

recovery, light workload, and heavy workload session.

Phase GSR speech

Recovery session 100 -

Light workload session 110 110

Heavy workload session 120 120

Table 4.3: Total GSR and speech instances.

Three preprocessing steps were carried out for the GSR data. First, the data

was normalized by using its baseline to minimize the impact of individuality (e.g.

GSR measurement varies among individuals). Secondly, the GSR time series were

filtered by using a low pass Butterworth filter with a cut-off frequency of 0.5 Hz.

Finally, the GSR response was localized by using the EDA toolbox. Figure 4.3

illustrates the GSR raw time-series data and its shape after having been prepro-

cessed.

We used Praat software [78] for a manual speech segmentation. The speech was

segmented for each task, based on two short burst of beep sounds. After the

specific task had been localized, we segmented the speech into several instances

using a 60-second non-overlapping time window. Finally, we removed the other

sounds apart from the subject’s utterances from this instance (e.g. we removed

the evaluator speech, environmental noise, etc.).
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Figure 4.3: One minute GSR instance. (a) Raw GSR graph. (b) GSR graph after

having been preprocessed. The GSR responses found by the EDA toolbox are

shown in the picture.

Figure 4.4 shows the plot of three different instances (e.g. recovery, light workload,

and heavy workload session) using three distinct GSR features: mean, number of

responses and energy of response. It is evident in this graph that the recovery

phase has fewer numbers of responses and lower energy of response, compared to

the light and heavy workload phases. This finding is in line with our first hypothe-

sis (see Appendix B), which states that the number of GSR startle response during

the recovery period should be lower than the workloads. However, it seems there

is no clear cut, which could separate these instances based only on these three

features.

We also investigate the relation between GSR and speech by plotting their mean

value together (See Figure 4.5 (a)). It is obvious from this graph that the heavy

workload and the light workload instances are hardly separable by using only two

features. Figure 4.5 (b) depicts the distribution of the same instances aggregated

based on the subject. From this figure, we can infer that different individuals

show distinct GSR and pitch characteristics. For example, subject 9 shows a

significant difference of GSR and pitch value between the light workload and the

heavy workload, which is not the case for subject 8. The mean of GSR and pitch

during the heavy workload is higher than that of the light workload for several

subjects. This finding supports our second and third hypotheses (see Appendix
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B): The mean of skin conductance during the heavy workload should be higher

than the light workload, and the mean of pitch should increase under a stressful

condition, respectively.
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Figure 4.4: Three different instances: recovery, light workload and heavy workload.
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Figure 4.5: (a) The distribution of all instances. (b) The average mean of GSR

and speech aggregated with respect to the subject. The number on top of the

symbol represents the subject id.
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4.3 Experimental Setups and Results

4.3.1 Subject Dependent Model

The experiments are conducted to find the best classifier model to detect two dif-

ferent states of stress level. In this section, the experiments were conducted using

10-times 10-fold cross-validation since the dataset size is small. This method works

by repeating a 10-fold cross-validation 10 times, and the average statistics are re-

turned for the evaluations. We called this model subject dependent since the data

from the same subject can be present both in the training and testing sets.

Stress Model using GSR features

In this section, the binary classification models for three different scenarios are

investigated. The first one is a model involving recovery and workloads (light and

heavy) session. The second one is between recovery and heavy workload. The last

one is between light workload and heavy workload session. The dataset distribu-

tion for these three different scenarios is depicted in Table 4.4.

Recovery vs workloads
#recovery 100

#workloads 230

Recovery vs heavy workload
#recovery 100

#heavy workload 120

Light vs heavy workload
#light workload 110

#heavy workload 120

Table 4.4: The distribution of dataset.

The following features were used in this GSR experiment: mean GSR, maximum

GSR, minimum GSR, maximum GSR - minimum GSR, number of GSR’s response,

mean peak, maximum peak, minimum peak, maximum - minimum peak, ampli-

tude of response, rising time response and energy of response. Table 4.5 depicts the

average classifier accuracy using 10-times 10-fold cross-validation. More detailed

evaluations involving accuracy, precision and recall can be found in Appendix C.

It is evident in the result that the GMM, SVM and decision tree method outper-

formed the baseline (K-Means). The SVM outperforms the other classifiers and
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K-Means GMM SVM Decision Tree

Recovery vs workloads (light & heavy) 46.12±2.25 70.51±0.49 79.66±0.77 73.45± 1.27

Recovery vs heavy workload 55.54±2.64 74.90±0.79 80.72±0.61 77.81±1.31

Light vs heavy workload 53.21±1.00 66.82±0.46 70.60±1.10 62.52±1.79

Table 4.5: Binary classification accuracy (in percent) using 10-times 10-fold cross-

validation scheme. Boldface: the best accuracy for a given setting (row).

can reach accuracy around 80.72% for classifying recovery versus heavy workload

session. The result indicates also that differentiating the stress level in the light

versus heavy workload setting is harder than in the recovery versus heavy workload

setting.

Stress Model using Speech features

In this section, the speech features are used to build a model which can classify an

instance into binary classes: light workload and heavy workload. The distribution

of the dataset is depicted in the third row in Table 4.4. The features which are

investigated include pitch, MFCC, MFCC-Pitch and RASTA PLP. A total of 12

pitch features are used, including mean, minimum, maximum, median, standard

deviation, range (maximum - minimum) of pitch and its first derivation. As for the

MFCC features, we used 144 features, which consist of mean, variance, minimum

and maximum of the first 12 cepstral coefficients (excluding the 0-th coefficient),

delta coefficients (the first derivative of coefficients) and delta-delta coefficient

(the second derivative of coefficients). The feature MFCC-Pitch represents the

direct concatenation of MFCC and pitch features. In total, 108 RASTA PLP

features were used, which consist of statistics such as mean, variance, minimum and

maximum of RASTA PLP coefficients, its first derivative and the second derivative.

The experimental result using these features with 10-times 10-fold cross-validation

is depicted in Table 4.6. More detailed evaluations involving accuracy, precision

and recall can be found in Appendix C.

K-means results in the lowest accuracy and is unsuitable for stress detection. The

GMM classifier outperforms K-Means (baseline) with insignificant differences. In

general, the GMM accuracies using speech features are lower than using GSR fea-

tures. In contrast, the SVM method, which is not based on the distribution fit

technique, gives a high accuracy in this setting. This is most likely due to the

high dimensionality of speech (e.g. up to 144 dimensions for MFCC) which makes

the Gaussian distribution sparse, thus, making the Expectation-Maximization al-
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K-Means GMM SVM Decision Tree

Pitch 49.65±2.28 58.82±1.46 62.08±1.57 55.60±2.75

MFCC 55.39±1.92 56.78±1.76 92.39±0.58 68.86±3.07

MFCC-Pitch 49.17±2.34 59.08±0.94 92.56±1.63 70.69±1.33

RASTA PLP 50.60±0.42 52.30±2.78 91.69±0.94 71.47±2.97

Table 4.6: Speech classification accuracy (in percent) using 10-times 10-fold cross-

validation scheme. Boldface: the best accuracy for a given setting (row).

gorithm fail to cluster and fit the data. One possible way to address this issue is

by considering the sparseness of data in the Gaussian EM algorithm as shown in

[79]. The decision tree classifier, despite its simplicity, performs quite well in this

setting and can reach a reasonable accuracy up to 70%. The SVM model results

in the best accuracies, compared to the rest of classifiers. The SVM reached the

accuracy of 92.39% using the MFCC. By using the concatenation of MFCC and

pitch, the SVM reached the highest accuracy of 92.56%, though the improvement

is insignificant. Furthermore, it is evident that pitch alone is not a good indicator

for stress classification, as it gives the worst result, compared to other features.

Stress Model using Fusion of GSR and Speech

There are many approaches for combining the GSR and speech. One of them is

by using feature enrichment. Both features from speech and GSR are combined

together. Afterwards, the classifier is utilized to predict the class output. Another

approach is by using ensemble learning such as the logistic regression technique.

First, an individual model is built separately using the best parameter which had

been found in the previous section. Afterwards, the result of both models is

combined using logistic regression to produce a new regression of class output. All

classifications in this section were carried out by using the SVM classifier. The

result of classification is shown in Table 4.7. The accuracy, precision and recall for

each feature can be found in Appendix C.
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Enriching Feature Space Logistic Regression

MFCC and GSR 90.73±1.19 92.43±0.77

MFCC-Pitch and GSR 91.34±1.07 92.47±1.37

Pitch and GSR 69.04±1.24 70.17±2.36

Table 4.7: Fusion of Speech and GSR classification accuracy (in percent) using 10-

times 10-fold cross-validation scheme. Boldface: best accuracy for a given setting

(row).

The logistic regression method outperforms feature enrichment with negligible im-

provement. Figure 4.6 illustrates the best overall results obtained using individual

model and fusion of models. We can conclude from this result that combining two

different models, both using logistic regression and feature enrichment, does not

improve the performance in a significant way.
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Figure 4.6: Overall classification accuracies of individual and combined models.

4.3.2 Subject Independent Model

The 1-subject-leave-out cross-validation approach was studied to evaluate the

model performance for the subject independent case. Figure 4.7 shows a compari-

son of the model obtained using 10-times 10-fold cross-validation against 1-subject-

leave-out cross-validation. The accuracies using 10-times 10-fold cross-validation
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are obtained from the best result of the previous section. It is obvious from this

graph that the accuracies of the classifiers are dropped when using the subject

independent model. Hence, it is better to address the stress classification problem

as a subject dependent model.
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Figure 4.7: Comparison of two different evaluations: 10-times-10-fold CV and

1-subject-leave-out CV. (a) GSR. (b) Speech.

4.3.3 Statistical Significance Test

The permutation test with the number of iteration n = 100 was run to test the

statistical significance for each model in GSR and speech. We chose the number of

repetition 100 owing to the fact that it took around three hours to complete each

experiment using this value. All results gave a zero p-value, therefore, the null-

hypothesis can be rejected. In other words, the dataset is statistically significant

for determining two different stress levels.

4.3.4 Disagreement Test between GSR and Speech Model

Cohen’s Kappa test was utilized to measure the agreement between speech and

GSR model for classifying the same instances. The value κ = 0 means no agree-

ment between models, while κ = 1 means they are in complete agreement. The

inter-annotator agreement result is depicted in Table 4.8. It is evident from this

result that the models gave a poor agreement, especially for pitch and GSR that

result in κ = 0.13. These results indicate that both models may have a high di-

versity or independence in the ensemble. Thus, it can be exploited to achieve a

higher accuracy by finding the optimal strategy for ensemble. For example, the
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techniques such as using a dynamic integration of an ensemble classifier [80][81]

may give a promising outcome.

Kappa

MFCC and GSR 0.32± 0.18

MFCC-Pitch and GSR 0.31± 0.21

Pitch and GSR 0.19± 0.12

Table 4.8: Kappa Inter-Annotator agreement result.
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Conclusions and Future Work

In this work, we have studied the problem of managing stress-related data, visual-

ization, analysis and multi-modal data mining for stress detection. In this chapter,

we summarize, in brief, the contribution, formulate the conclusion which can be

drawn from the result and finally present the directions for future work.

5.1 Main Contribution

The main results and contribution of this thesis can be divided into two categories:

the stress analytics framework and multi-modal data mining for stress detection.

The framework for stress analytics proposed solutions for management of stress

related data, basic analysis using OLAP for stress explorations, query-by-example

analysis, visualization and automated stress classification using multimodal affec-

tive data captured from text, speech, GSR, facial expression and other physiolog-

ical signals. The framework itself, by nature, is easy to extend and modify. This

framework enables the user or domain expert to analyze the interesting stress pat-

terns, mining raw data for analysis, visualize various pieces of evidence of stress,

gain an insight into the potential causes of stress and make people aware of this

information, so they can cope with stress in the best possible way. In addition, the

framework also enables the possibility for data mining or pattern mining based on

OLAP result, which may explain the relationship between stress and other factors

even better.

Due to the modern technologies, the objective measurement of stress level is be-
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coming possible by means of sensor, such as a GSR device. Several features of

GSR and speech can be extracted. Afterwards, the supervised machine learning

classifier was employed to classify the instances. Supervised machine learning re-

quired an openly available benchmark for evaluations. Unfortunately, we cannot

find a free dataset which consists of both speech and GSR. Hence, we conducted

a controlled psychological experiment to obtain the labeled dataset.

The experiment itself was conducted inside TU/e by employing 10 volunteer grad-

uate students from the Mathematics and Computer Science department. The ob-

jective of this experiment was to elicit a certain stress level on the subject, while

taking the objective and subjective measurement at the same time. The objective

measurement, such as speech, facial expression and GSR, were taken. The results

of the experiment show that different individuals exhibit distinctive characteristics

of both GSR (e.g. mean of GSR) and speech (e.g. mean of pitch) patterns. As

for the subjective measurement, we used questionnaires. In total, we obtained 10

hours of affective data which was used in the stress detection experiment.

We investigated different models for detecting stress using four classifiers: K-

means, GMM, SVM and decision tree. The SVM outperformed the other classifiers

and can reach an accuracy of up to 92% by using speech features. We conclude

that these experiments show that speech and GSR provide a viable method of

measuring stress level in laboratory settings. The results showed that speech is

indeed a good indicator for determining stress. On the other hand, it turns out

that using only GSR data is not sufficient for determining the stress level as it

at most can reach an accuracy of 70% for differentiating between light and heavy

workload. Furthermore, it has been demonstrated in [82] that the GSR signal is

varied not only from person to person but also e.g. from day to another for the

same person. Therefore, including another measurement instead only from GSR

will be more reliable. Combining both GSR and speech using feature enrichment or

logistic regression does not improve the performance in a significant way. Finally,

the permutation test revealed that our dataset showed a statistical significance of

stress level instead of chance.
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5.2 Future Work

In our current work, we have developed all parts of the framework for stress an-

alytics, except the data and pattern mining from the OLAP result. It will be

interesting to incorporate data mining or pattern mining from the OLAP result

into the framework, such that the finer grained analysis of stress can be conducted.

The framework is straight forward to extend, hence other raw data, such as fa-

cial expression, can be added to the system. As for stress level, the framework

which we have developed can only recognize two different stress levels, e.g. stress

and non-stress. However, it should be noticed that stress can also be positive or

negative depending on the context. For instance, positive stress can be caused by

the excitement or an intrinsic motivation of the individual. Therefore, the system

which can detect this is promising. One possible way to detect positive and nega-

tive stress is to utilize context-aware data mining by using an additional source of

information, such as personal diary, email, speech and facial expression, to infer

the subject’s emotion at that particular time.

We have collected the labeled stress data from 10 subjects by means of physio-

logical stress elicitation experiment. Although we got the high accuracies from

this data, it will be more interesting to collect more data from the experiment to

enable better analysis. Furthermore, we have collected the facial expression dur-

ing the experiment which was not used for creating the stress model. In essence,

the facial expression can be analyzed using computer vision techniques based on

Paul Ekman’s model of Facial Action Coding System (FACS). FACS is a system

which taxonomizes human facial expression and is commonly used to categorize

the physical expression of emotions. As the muscle in facial expression is controlled

by the autonomic nervous system, we argue that stress can be detected from facial

expression as well.

The supervised machine learning can classify binary states of stress level up to

92% accuracy for the experiment in laboratory settings. However, detecting stress

levels in an operational setting will be a challenging task and more difficult than in

a rigorous laboratory environment. In a real-life setting, there is no guarantee that

the signals will be free of noise. For instance, the speech may contain background

noise, while the GSR signals may contain artifacts owing to the exact placement of

the sensor and the physical activity. The stress detection model can be extended to

handle this issue, for example, by introducing a filter to remove static background
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noise, which may occur during the recording. Furthermore, in an operational

setting, the speech and GSR may not be available at the same time, hence it is

necessary to design a model which can recognize and solve this situation. It has

been known that stress is influenced by various factors, including, but are not

limited to environment, personality, motivation, emotion and activity. Hence, we

suspect the model performance for real-life settings will be worse than a laboratory

environment.
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Appendix A

Technical Detail for Stress

Analytics Framework

A.1 Storing Raw Data

Figure A.1 depicts the relational database diagram for storing four different types

of raw data: physiological signals, speech, textual data (e.g. Email) and metadata.

A.1.1 Physiological signals

The GSR and skin temperature data were stored in the same table GSR device,

owing to the assumption that both were collected by using the same device. The

table GSR device can store GSR and skin temperature instances for any sampling

frequency. The field time and millisecond in the table are used to indicate the

actual date and time the instances were taken. Table A.1 illustrates the instances

which were sampled using 2Hz frequency.

subject id time milisecond gsr skin temp

1 2012-04-01 13:01:05 100 1240 1310

1 2012-04-01 13:01:05 400 1250 1330

Table A.1: Two instances of GSR device. The gsr and skin temp are referring to

the GSR and skin temperature level respectively.
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activity

activity_id INT(11)

activity VARCHAR(255)

desc VARCHAR(255)

Indexes

gsr_device

subject_id INT(11)

time DATETIME

milisecond INT(4)

gsr INT(11)

skin_temp INT(11)

sequence_id INT(11)

subject_info_subject_id INT(11)

Indexes

location

location_id INT(11)

location VARCHAR(255)

desc VARCHAR(255)

Indexes

perform_stressors

subject_id INT(11)

stressor_id INT(11)

start_time DATETIME

end_time DATETIME

activity_id INT(11)

location_id INT(11)

angry TINYINT(4)

irritated TINYINT(4)

fear TINYINT(4)

happy TINYINT(4)

subject_info_subject_id INT(11)

activity_activity_id INT(11)

location_location_id INT(11)

stressor_stressor_id INT(11)

Indexes

senticorr_email

email_id INT(11)

subject_id INT(11)

hash VARCHAR(255)

folder VARCHAR(255)

subject VARCHAR(255)

body LONGTEXT

bodyformat VARCHAR(255)

sender VARCHAR(255)

recipient VARCHAR(255)

cc VARCHAR(255)

bcc VARCHAR(255)

creation DATETIME

conversationid VARCHAR(255)

numpos INT(11)

numneg INT(11)

numobj INT(11)

subject_info_subject_id INT(11)

Indexes

senticorr_lines

hash VARCHAR(255)

linenumber INT(11)

line VARCHAR(1000)

tags VARCHAR(1000)

class VARCHAR(5)

userverdict VARCHAR(5)

senticorr_email_hash VARCHAR(255)

Indexes

speech

subject_id INT(11)

start_recording DATETIME

length FLOAT

wavdata LONGBLOB

subject_info_subject_id INT(11)

Indexes

stressor

stressor_id INT(11)

stressor VARCHAR(255)

desc VARCHAR(255)

Indexes

subject_info

subject_id INT(11)

anxiety VARCHAR(255)

age VARCHAR(255)

gender CHAR(1)

Indexes

Figure A.1: Database diagram for storing raw data.

A.1.2 Speech

The audio speech was stored in speech table as a binary wav file. The binary file,

start time, and length of the recording are stored in wavdata, start recording

and length field respectively, as shown in Table A.2. The start time of recording

is stored into the database for enabling an alignment with other raw data, and will

be explained in the upcoming section. On the other hand, the length of recording

is stored for efficiency and speeding up purposes, as it is expensive to query and

retrieve the wav file directly.
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subject id start recording length wavdata

1 2012-04-01 13:01:05 34.82 recording1.wav

1 2012-04-01 21:10:00 90.82 recording2.wav

Table A.2: Two instances of speech. The length is in second.

A.1.3 Textual data

We used the Senticorr plug-in to obtain the textual data from the email together

with its annotation and stored it into our database. The original senticorr email

table structure is exactly the same as shown in Figure A.1 without the subject id

field. The original structure does not conform with our current database, since

our convention required a table to have at least subject id and a date time field.

Table senticorr email has already had a date time notion in a creation field.

Therefore, we showed that it is possible to integrate the Senticorr email with this

project just by adding a subject id field into the original table senticorr email.

A.1.4 Metadata

Metadata contains additional descriptive information about the data content,

which is depicted in Figure A.1, consists of subject info, perform stressors,

stressor, activity and location table.

The table subject info contains information regarding the subject, including age,

gender, and the general anxiety level. The anxiety level is a subjective personal-

ity test, obtained using a questionnaire, to assess the subject’s manifest anxiety

scale. The tests, which are commonly used in the experiment, include Manifest

Anxiety Scale (MAS) [83] and Social Desirability Scale (SDS) [84]. The methods

of these tests are explained more in Appendix B. The anxiety field has three

options, namely “low anxiety”, “high anxiety” and “anxiety deniers”. Anxiety

deniers closely related to whom, which has the social desirability type of “faking

good” and “faking bad”.

We stored other metadata that provides additional information, such as where is

the location (campus, home, etc.), what is the activity (walking, standing, etc.),

what is the task (e.g. driving, teaching, etc.), when is the time and the subjective

assessments of the task itself. This is illustrated in Table A.3.
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subject id stressor id start time end time activity id location id angry irritated fear happy

1 1
2012-04-20
10:29:00

2012-04-20
11:05:00 1 2 3 4 5 1

2 1
2012-04-20
13:01:00

2012-04-20
13:20:00 1 2 2 1 3 5

Table A.3: Two instances of perform stressors table. The integer number in

the field stressor id, activity id, and location id is a key which refers to the

stressor, activity and location table respectively. The subjective assessment

of the task is stored in the field angry, irritated, fear and happy. Each of them

may have an integer value ranging from 1 to 5, where 1 denotes the less susceptible

and 5 the most susceptible.

A.2 Stress Cube

The stress cube metadata structure was implemented as a star schema. This is de-

picted in Figure A.2. The facts stress is a fact table, whereas the dimensions are

subject info, date, activity, senticorr email, location and stressor. The

numeric measures are stored in field by system, by expert and by user, which

may have an integer value be either 0 (non-stress), 1 (stress), or null (no-data).

The field by system means the value is calculated automatically from the stress

model. The field by expert means that the value is annotated manually by a do-

main expert by analyzing the raw data. Finally, by user means the user manually

assesses the stress level of a certain task. This is illustrated in Table A.4 and A.5.

Mondrian engine necessitates that the schema which defines the multi-dimensional

database should be provided in an XML (eXtensible Markup Language) file. The

schema should contain a logical model, consisting of cubes, hierarchies, and mem-

bers, and a mapping of this model onto a physical model. The illustration of this

schema is given in Figure A.3.
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subject id time id by system by expert by user

1 1 1 1 null

2 2 1 0 0

Table A.4: The illustration of fact stress table. Note that for the sake of pre-

sentation, we omit certain fields from the table. time id is a key that points to

Table A.5.

activity

activity_id INT(11)

activity VARCHAR(255)

desc VARCHAR(255)

Indexes

date

time_id BIGINT(20)

the_date DATETIME

year INT(11)

month TINYINT(4)

day TINYINT(4)

hour TINYINT(4)

minute TINYINT(4)

Indexes

facts_stress

id BIGINT(20)

subject_id BIGINT(20)

time_id BIGINT(20)

stressor_id INT(11)

activity_id INT(11)

location_id INT(11)

email_id INT(11)

by_system TINYINT(4)

by_expert TINYINT(4)

by_user TINYINT(4)

senticorr_email_email_id INT(11)

activity_activity_id INT(11)

stressor_stressor_id INT(11)

date_time_id BIGINT(20)

subject_info_subject_id INT(11)

location_location_id INT(11)

Indexes

location

location_id INT(11)

location VARCHAR(255)

desc VARCHAR(255)

Indexes

senticorr_email

email_id INT(11)

subject_id INT(11)

hash VARCHAR(255)

folder VARCHAR(255)

subject VARCHAR(255)

body LONGTEXT

bodyformat VARCHAR(255)

sender VARCHAR(255)

recipient VARCHAR(255)

cc VARCHAR(255)

bcc VARCHAR(255)

creation DATETIME

conversationid VARCHAR(255)

numpos INT(11)

numneg INT(11)

numobj INT(11)

Indexes

stressor

stressor_id INT(11)

stressor VARCHAR(255)

desc VARCHAR(255)

Indexes

subject_info

subject_id INT(11)

anxiety VARCHAR(255)

age VARCHAR(255)

gender CHAR(1)

Indexes

Figure A.2: Stress cube star schema.

time id the date year month day hour minute

1 2012-04-21 17:53:00 2012 04 21 17 53

2 2012-04-21 17:54:00 2012 04 21 17 54

Table A.5: Two instances of date table. The smallest granularity of time is in

minute.
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time_hour

facts_stress

subject location anxiety genderagestressor

activity

email_subject

email_folder

email_sender

email_recipientyearmonth

year

time_month

time_year

time_day

yearmonthday

time_minute

yearmonthdayhour

yearmonthdayhourminute

Figure A.3: Mondrian XML schema.
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The detail information about XML schema is given as follow:

<?xml ve r s i on=” 1 .0 ”?>

<Schema name=”ACMESchema”>

<Cube name=” S t r e s s ”>

<Table name=” f a c t s s t r e s s ”/>

<Dimension name=” anxiety ” fore ignKey=” sub j e c t i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” sub j e c t i d ”>

<Table name=” s u b j e c t i n f o ”/>

<Level name=” anxiety ” column=” anxiety ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=”gender ” fore ignKey=” sub j e c t i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” sub j e c t i d ”>

<Table name=” s u b j e c t i n f o ”/>

<Level name=”gender ” column=”gender ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=”age” fore ignKey=” sub j e c t i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” sub j e c t i d ”>

<Table name=” s u b j e c t i n f o ”/>

<Level name=”age” column=”age” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=” s t r e s s o r ” fore ignKey=” s t r e s s o r i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” s t r e s s o r i d ”>

<Table name=” s t r e s s o r ”/>

<Level name=” s t r e s s o r ” column=” s t r e s s o r ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=” a c t i v i t y ” fore ignKey=” a c t i v i t y i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” a c t i v i t y i d ”>

<Table name=” a c t i v i t y ”/>

<Level name=” a c t i v i t y ” column=” a c t i v i t y ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=” l o c a t i o n ” fore ignKey=” l o c a t i o n i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” l o c a t i o n i d ”>

<Table name=” l o c a t i o n ”/>

<Level name=” l o c a t i o n ” column=” l o c a t i o n ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=” sub j e c t ” fore ignKey=” sub j e c t i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” sub j e c t i d ”>

<Table name=” s u b j e c t i n f o ”/>

<Level name=” sub j e c t ” column=” sub j e c t i d ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=”timeminute” fore ignKey=” t ime id ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” t ime id ”>

<Table name=”date ”/>

<Level name=”year ” column=”year ” uniqueMembers=” true ”/>

<Level name=”month” column=”month” uniqueMembers=” f a l s e ”/>

<Level name=”day” column=”day” uniqueMembers=” f a l s e ”/>

<Level name=”hour” column=”hour” uniqueMembers=” f a l s e ”/>

<Level name=”minute” column=”minute” uniqueMembers=” f a l s e ”/>
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</Hierarchy>

</Dimension>

<Dimension name=”timehour ” fore ignKey=” t ime id ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” t ime id ”>

<Table name=”date ”/>

<Level name=”year ” column=”year ” uniqueMembers=” true ”/>

<Level name=”month” column=”month” uniqueMembers=” f a l s e ”/>

<Level name=”day” column=”day” uniqueMembers=” f a l s e ”/>

<Level name=”hour” column=”hour” uniqueMembers=” f a l s e ”/>

</Hierarchy>

</Dimension>

<Dimension name=”timeday” fore ignKey=” t ime id ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” t ime id ”>

<Table name=”date ”/>

<Level name=”year ” column=”year ” uniqueMembers=” true ”/>

<Level name=”month” column=”month” uniqueMembers=” f a l s e ”/>

<Level name=”day” column=”day” uniqueMembers=” f a l s e ”/>

</Hierarchy>

</Dimension>

<Dimension name=”timemonth” fore ignKey=” t ime id ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” t ime id ”>

<Table name=”date ”/>

<Level name=”year ” column=”year ” uniqueMembers=” true ”/>

<Level name=”month” column=”month” uniqueMembers=” f a l s e ”/>

</Hierarchy>

</Dimension>

<Dimension name=” timeyear ” fore ignKey=” t ime id ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” t ime id ”>

<Table name=”date ”/>

<Level name=”year ” column=”year ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=” ema i l f o l d e r ” fore ignKey=” ema i l i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” ema i l i d ”>

<Table name=” s e n t i c o r ema i l ”/>

<Level name=” f o l d e r ” column=” f o l d e r ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=” ema i l sub j e c t ” fore ignKey=” ema i l i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” ema i l i d ”>

<Table name=” s e n t i c o r ema i l ”/>

<Level name=” sub j e c t ” column=” sub j e c t ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Dimension name=” emai l s ender ” fore ignKey=” ema i l i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” ema i l i d ”>

<Table name=” s e n t i c o r ema i l ”/>

<Level name=” sender ” column=” sender ” uniqueMembers=” true ”/>

</Hierarchy>
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</Dimension>

<Dimension name=” ema i l r e c i p i e n t ” fore ignKey=” ema i l i d ”>

<Hierarchy hasAl l=” true ” allMemberName=” a l l ” primaryKey=” ema i l i d ”>

<Table name=” s e n t i c o r ema i l ”/>

<Level name=” r e c i p i e n t ” column=” r e c i p i e n t ” uniqueMembers=” true ”/>

</Hierarchy>

</Dimension>

<Measure name=”by system” column=”by system” aggregator=”sum” formatStr ing=”

Standard”/>

<Measure name=” by expert ” column=”by expert ” aggregator=”sum” formatStr ing=”

Standard”/>

<Measure name=” by user ” column=”by user ” aggregator=”sum” formatStr ing=”Standard”

/>

</Cube>

</Schema>

A.3 Shape-Based Query-by-Example

The definition of time series is as follows. A time series T = t1, ..., tm is an ordered

set of m real-valued variables. Next, we introduce a definition of subsequence:

Given a time series T with length m, the subsequence C of T is a shorter sequence

of length n < m of contiguous position from T . Formally, C = tp, ..., tp+n−1, for

1 ≤ p ≤ m− n+ 1.

Therefore, we formulate the problem as: given a subsequence query C, we wish

to find the most similar (1-Nearest Neighbor) shape-based subsequence R from T ,

where |R| = |C|.

A.3.1 Distance Metric

The distance metrics, which are commonly used for measuring similarity between

two time series, are Euclidean distance and Dynamic Time Warping.

Euclidean Distance

Euclidean distance is the most common and popular distance measure in data

mining. Let Q and C be two time series with an equal length |Q| = |C| = n. The

Euclidean distance between Q and C is defined as:
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ED(Q,C) =

√

√

√

√

n
∑

1

(qi − ci)2

Dynamic Time Warping

Dynamic Time Warping [32] is a method to measure similarity between two se-

quences, which may vary in time or speed. For instance, similarities in speech

patterns would be detected, even if in one recording, the person was speaking fast

and if in another, he or she was speaking slowly. This method was originally de-

veloped for automatic speech recognition, to cope with different speaking speeds.

These days, DTW has been applied for video, audio, and graphics as well. Indeed,

any data which could be represented as a linear representation can be analyzed

using DTW.

The algorithm finds the best warping path by creating a 2-dimensional matrix

n-by-m. Each element (i-th,j-th) contains the distance d between element qi and

cj: (qi − cj)
2. The best alignment between two sequences is satisfied by using the

following Dynamic Programming equation:

dtw(i, j) = d(q[i], c[j]) +min(dtw(i− 1, j), dtw(i, j − 1), dtw(i− 1, j − 1))

where dtw is the global distance up to (i, j) and d(i, j) is the squared Euclidean

Distance between two points. Figure A.4 illustrates the warping path found by

Dynamic Time Warping.

The DTW algorithm has a complexity of O(nr) time, where n is the maximum

length between two time series and r is the size of warping window (e.g. Sakoe-

Chiba band and Itakura Parallelogram [85]). The basic DTW algorithm is ex-

pensive to compute, therefore, in order to speed up the DTW computation, one

usually used several optimizations such as using lower bounds. Lower bounds are

used first to prune sequences that could not possibly match before the actual se-

quences are compared. This lower bound apparently should be fast to compute

and almost linear at time complexity. Several lower bounds which are usually used

include Kim[86], Yi [87], and Keogh[8] lower bound.
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A.3.2 UCR-Suite Algorithm

The UCR-Suite algorithm is the current state-of-the-art for searching subsequence

time series under DTW. The algorithm exploited several optimizations such as

early abandoning Z-normalization, reordering early abandoning, reversing the query

or data role in Keogh’s lower bound and cascading lower bound for speeding up

the computational time. We refer to [31] for a detailed explanation about this

algorithm.

A.3.3 Integration Into Stress Analytics

The integration of the UCR-Suite algorithm to stress analytics is straight-forward.

Stress analytics uses the similarity search functionality for finding a similar GSR

(or skin temperature) shape in the database. The user first selects a particular

query subsequence, and then the system determines the collection of candidate

sequences, for which the query subsequence will be compared to. Candidate se-

quences are all contiguous sequences in the database excluding the query subse-

quence. More formally, let S = {S1, S2, S3, ..., Sn} be the collection of sequences,

and Sk(j : m) be the query subsequence which the user selects, where 1 ≤ k ≤ n,

and 1 ≤ j < m ≤ |Sk|. Then the candidate sequence C is determined as a col-

Alignment by Euclidean Distance

Alignment by DTW

Figure A.4: Euclidean distance and Dynamic Time Warping (DTW) alignment.
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lection of (S − Sk) ∪ Sk(1 : j − 1) ∪ Sk(m + 1 : |Sk|). Afterwards, the UCR-suite

algorithm is used to find the most similar subsequence (1-Nearest Neighbor) R

from C, where |R| = m− j + 1.

A.4 Stress Analytics Visualization

The interactive overall diagram of stress analytics is depicted in Figure A.5. In a

nutshell, the system provides three different functionality, interactive OLAP explo-

ration, showing evidence (e.g. stress-related physiological signals) or stress-related

events (e.g. email), and search functionality (e.g. shape-based query-by-example).

The data which have been processed by OLAP is visualized as a two-dimensional

graph. The user may interact and explore the cube by using a graphical user inter-

face. Moreover, several filtering options are included for more fine-grained analysis.
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sd stress analytics
start

ref ref ref

[end]
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sd OLAP
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Figure A.5: Interactive overview diagram of stress analytics. (a) Main diagram.

(b) OLAP diagram. (c) Evidence diagram. (d) Query-by-Example (QBE) dia-

gram.
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Psychological Stress Elicitation

Experiment

In general, stress can be both physical and psychological. Physical stress may arise

as a result of the contact of our body with the inconvenient physical environment

(e.g. noisy environment, vibration, sickness, cold temperature, etc.) which will

induce stress to the individual. On the other hand, psychological stress may occur

when the individual cannot cope with special challenge or task (e.g. workload

which is beyond one’s capability, job’s pressure, etc.). In real life, the physical

stress is often present together with psychological stress. For instance, one most

likely cannot do things which usually he could when he is in a sick condition,

therefore, this may lead to frustration and stress. In this chapter, we discussed in

detail the psychological stress elicitation experiment in laboratory settings.

The remainder of this appendix is organized as follows. In Section B.1, we present

our motivation and goal for conducting this psychological experiment. Section B.2

briefly describes related works. Section B.3 explains in detail the data which we

collected during the experiment. The method and protocol of the experiment are

discussed in Section B.4.
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B.1 Motivation, Goals and Hypothesis

We conduct this experiment, mainly owing to the unavailability of a free stress

dataset which incorporates both speech and GSR. This labeled dataset will be

used to create a stress model which can differentiate between two different stress

levels, which was discussed in Chapter 3. Another reason is that we would like to

investigate several claims about GSR and speech characteristics under stress and

non-stress conditions as demonstrated in literatures.

The hypotheses that we made in this experiment are as follows:

• The number of GSR startle responses during the relaxation period should

be lower, compared to the light or heavy workload, as the GSR level should

increase during the stress period which, in turn, increases the number of

startle responses.

• The mean of skin conductance during the heavy workload should be higher

than during the light workload. We assume that the heavy workload will

induce more stress to the subjects.

• When the subject experiences stress, his respiration rate increases. This will

increase Subglotall pressure during speech, which, in turn, increases the fun-

damental frequency F0 (pitch). Hence, we expect that the mean of F0 will

increase under a stressful (heavy workload) condition.

B.2 Related Works

There have been numerous methods proposed for stress elicitation experiments

within literatures. In 1935, Stroop proposed a psychological test called The Stroop

Color-Word Interference Test [88]. The test itself demands that the color of a word

designating a different color to be named. Stroop found that it took a longer time

to read the words printed in a different color than name the same words printed

in black. This task, widely known as Stroop effect or Stroop task, is widely used

as a tool to understand our cognitive-perceptual process [89]. In a different area

of research, Stroop effect has been widely utilized as a cognitive stressor able to

induce a heightened level of physiological arousal. The reliability of Stroop task

to induce a certain level of stress has been demonstrated in a lot of studies [90][47].
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The ’Trier Social Stress Test’ (TSST) [91] is the standardized test for the induc-

tion of moderate psychological stress in a laboratory setting. This test consists of

certain protocols, which have to be performed by the subject of the experiment.

In a nutshell, first the subject is asked to take the role as a job applicant, and

they should introduce themselves to three managers in a free speech of five-minute

duration. This task corresponds to the public speaking stressor. Following this

task, the subject is instructed to serially subtract number 13 from 1,022 as fast and

as accurate as possible. On every failure, the subject has to restart at 1,022. This

task corresponds to the mental arithmetic stressor. In this study, this protocol

has been found to induce considerable changes in the concentration of adrenocor-

ticotropin (ACTH), cortisol, prolactin and heart-rate in six independent studies.

Kirschbaum et al. [92] have demonstrated that the cortisol levels of the subject

increased when they performed The ’Trier Mental Challenge Test’ (TMCT) in a

group setting. This test demands the subject to solve mental arithmetic tasks un-

der time pressure. The arithmetic task is divided into different categories, ranging

from the simplest (e.g. 1+1 =?) to the toughest (e.g. 9+10×2−18/2 =?). After

the subject finishes each session of the task, they have to report their outcome in

front of the group. The other test derived from TMCT is The ’Montreal Imaging

Stress Task’ (MIST) [93], which consists of computerized mental arithmetic chal-

lenges combined with social evaluative threat components. In this condition, the

difficulty and time limit of the tasks are manipulated to be beyond the subject’s

mental capacity. In addition, when the subject is performing the mental arith-

metic tasks, the average and expected performance information is displayed on

the monitor. Upon completion of each task, the performance evaluation is given

to further increase the social evaluative threat of the situation.

Other procedures which are known to be able to elicit stress include solving the

Raven Standard (and Advanced) Progressive Matrices test [94], watching the slides

that contain extreme emotional conditions [94], asking the subjects to lie about

their feeling after watching an unpleasant surgery movie [95], playing a video

game [55], real-world driving task [54], and a hyperventilation task, which consists

of deep and fast breaths every three seconds [96].
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B.3 Data Collections

B.3.1 Objective Measurements

During the experiment, several signals were recorded including speech, facial ex-

pression, and skin conductance. We used an ordinary speech recorder to record

the subject’s voice when he or she was performing tasks. The speech was sampled

at a sampling rate of 44,100 Hz by using two channels. Facial expression was

recorded using Handycam Camcorders with High Definition (HD) resolution at

1, 440× 1, 080 pixels.

We used a homemade GSR sensor to measure the changes in skin conductance.

This was carried out by using the LEGOMindstorms NXT 1 and an RCX wire con-

nector sensor. The LEGO Mindstorms NXT and RCX wire connector are shown

in Figure B.1. Stress causes the activation of sweat glands, which, in turn, affects

the amount of sweat produced. The changes of sweat affect the skin conductance.

The more relaxed the individual, the dryer the skin will be, hence the skin con-

ductance is lower. In contrast, when an individual is in stress, the sweat in the

hand increases, which, in turn, increases the skin conductance.

(a) (b)

Figure B.1: (a) LEGO NXT Mindstorms. (b) RCX wire connector sensor.

1http://mindstorms.lego.com/en-us/Default.aspx
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The RXC connector is just a plain Analog to Digital Converter (ADC) sensor,

which converts the analog reading to digital raw values in the range of 0 to 1,023.

We cut one end of the RCX connector which connects to the brick and soldered it

to a copper. On top of this copper, we attached aluminum foil and glued it to a

stripped Velcro for a wrapper around the finger. This homemade device is known

as dry type electrodes, while the professional one would utilize a conductive paste

(gel) for more stable and repeatable readings. The reading returns 0 if the two

wires are separated (e.g. not touch each other) and returns 1,023 if the two wires

are connected directly. Figure B.2 illustrates the modified RCX connector, and

the homemade GSR device used in the experiment.

(a) (b)

RCX connector

Velcro

wires

Aluminum Foil

Copper

Figure B.2: (a) The modified RCX connector. (b) Homemade GSR device.

The measurements were sampled with 2Hz frequency by using LEGO NXT. Next,

the raw value was sent in real time to the computer by means of Bluetooth’s con-

nection. We used LEJOS - Java for LEGO Mindstorms 2 open source framework

for handling this connection.

B.3.2 Subjective Measurements

We collected not only objective measurement’s data but also subjective measure-

ments by means of questionnaires. The subject’s anxiety characteristics could be

grouped into four different categories based on two-dimensional scales [38]. The

2http://lejos.sourceforge.net/
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scales were obtained by using two questionnaires, including Taylor Manifest Anx-

iety Scale (MAS) [83] and Crowne-Marlowe Social Desirability Scale (SDS) [84].

Using a certain cut-off threshold, the subjects can be grouped into four extremes

[38]: anxiety-deniers (low MAS, high SDS), high-anxiety (high MAS, low SDS),

defensive high-anxiety (high MAS, high SDS), and low-anxiety (low MAS, low

SDS). These scales were commonly used for participant selections before the ex-

periment began [94].

Upon completion of each task, the subjects were asked to complete a free scale

questionnaire assessing their emotional feeling. The questionnaire ask the subjects

to rate from number “1” (less susceptible) to “5” (most susceptible) for the follow-

ing emotions: angry, irritated, happy and satisfied. All results of the subjective

measurements will not be utilized for building a stress model, but will be employed

as an additional annotation to enrich our stress analytics system.

B.4 Experiment Methods

B.4.1 Locations and Subjects

The experiment was conducted in room 7.86, HG main building at Technical Uni-

versity Eindhoven (TU/e). 10 graduate students (8 males, 2 females) from the

department of Mathematics and Computer Science participated in this study. The

mean age, Body Mass Index (BMI), MAS, and SDS of the subject are 26.2± 2.6,

22.9± 2.7, 18.3± 7.4, and 19.2± 5.2 respectively.

B.4.2 Control Settings

There are five parameters, which were controlled during the experiments. First,

the room temperature was made constant by means of an air conditioner. Second,

no type of physical stressor (e.g. no noisy environment) was applied to the subject.

Third, the subject performed all tasks in the standing position. Fourth, the GSR

measurement was collected from the right hand, second phalanx of index and

middle fingers. Fifth, the order of the task was made random in each session.
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B.4.3 Procedure

The stress experiment lasted for approximately one hour and consisted of three

sessions, including baseline, light workload and heavy workload. The overall time-

line diagram of the experiment is illustrated in Figure B.3. At the time 0 minute,

the subject filled in a personal questionnaire about age, body weight, height, Tay-

lor Manifest Anxiety Scale (MAS) and Social Desirability Scale (SDS) for roughly

10 minutes. At the time +10 minutes, the subject was seated in the room after

having had a GSR sensor attached, turning on the speech recorder and positioning

the video camera to allow a close-up recording of the face. The subject was asked

to relax while watching a movie about nature clips (e.g. mountain, forest, beach,

etc.) accompanied by relaxation instrumental music in the background. The movie

itself was projected to the screen straight in front of the subject. There were no

other persons in the room, except the subject and the operator. The operator was

sitting at a table behind the subject and operated the entire apparatus during the

whole experiment.

(a)

Questionairre 

(MAS & SDS)

10 min

Baseline

10 min

Session I

15 min

Recovery I

5 min

Session II

15 min

Recovery II

5 min

time

Experiment

(b)

Task S1-1

4 min
Questionnaire

Task S1-2

4 min
Questionnaire

Task S1-3

4 min
Questionnaire

time

Session I

(c)

Task S2-1

4 min

Evaluation &

Questionnaire

Task S2-2

4 min

Evaluation &

Questionnaire

Task S2-3

4 min
Questionnaire

time

Session II

Figure B.3: (a) The whole experiment timeline. (b) Session I timeline. (c) Session

II timeline.

After completing the baseline session, the subject at time +20 minutes performed

three different tasks in the first session. The first session corresponds to the light
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workload, where the subject performed easy tasks without time limitation, pres-

sure, social threat and comparisons with other individuals. The order of tasks in

this session was made random to minimize the influence of the order itself on the

stress level. In this session, the subject performed all tasks in the standing position

and answered each trial verbally. There were no other persons in the room during

this session, except the subject and the operator. Upon completion of each task,

the subject gave a subjective evaluation by rating the questionnaire assessing their

personal emotions. The first session timeline is illustrated in Figure B.3 (b).

The three tasks in the first session consist of a Stroop-Word congruent color test,

an easy mental arithmetic test, and an easy mental subtraction test. The reason

behind using three different kinds of stressors is two-fold. The first is the necessi-

ties to collect sufficient instances with limited participants. The second is to avoid

using the same stressor so as to prevent the habituation effect. An individual who

is carrying out the same task, even after an undefined period of time, would be

prepared to face the task, and the response of his (or her) psychological signals

will not be certainly the same [96].

The Stroop-Word congruent color test lasted for approximately four minutes. The

subject was instructed to verbally name the font color of the given words presented

on the screen. The word itself is designating a color name. The word’s designation

and its font color always match. Therefore, this situation corresponds to the

spontaneous action, and we expect no stress is evoked in this task. In total, there

are five color names which were used, including red, green, yellow, blue and white.

Each trial lasted for two seconds. In case the subject cannot produce a decision

within two seconds, the screen automatically changed to the next trial. Figure B.4

depicts the Stroop-Word congruent color test.

Figure B.4: Stroop-Word congruent color test.
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The easy mental arithmetic test lasted for approximately 3.5 minutes. The subject

was instructed to give an answer involving a simple addition and subtraction with

two to three numbers. There was no time limitation for answering the question, and

the correct (or incorrect) feedback was displayed on the screen. This is illustrated

in Figure B.5.

(a) (b) (c)

Figure B.5: Easy mental arithmetic. (a) The question. (b) Right answer. (c)

Wrong answer.

In the easy mental subtraction test, the subject was instructed to serially subtract

number 1 from 300. This test lasted for four minutes. There was no imposition to

do the task as quickly as possible and there was no intervention in case the subject

made a mistake.

It has been known that GSR has a characteristic to react quickly to an event (stres-

sor) but has a very slow decreasing response to go back to the previous baseline

[55]. Hence, based on this priori information, the subject at the time +35 minutes

was asked to sit in the relaxation chair for watching a natural clips movie with in-

strumental relaxation music. This relaxation lasted for approximately five minutes.

The second session consisted of three different tasks, including a Stroop-Word

incongruent color test, a hard mental arithmetic test, and a hard mental sub-

traction test. The order of these tasks was made random and different from the

first session to minimize the habituation effect. The second session timeline is

depicted in Figure B.3 (c). In essence, the tasks in the second session correspond

to the heavy workload (stressful situation) in which the subject was instructed to

do tasks beyond his (or her) ability, with imposition of time limitation, pressure,

social evaluative threat and comparison with other populations. The subject per-

formed all tasks in this session in the standing position and answered each trial

verbally. The setting in the room was the same as the first session, except, there

was a presence of one evaluator. The evaluator was sitting at a table in front of
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the subject. Furthermore, the subject was informed that his (or her) performance,

articulation, poise, voice frequency and facial expression would be evaluated by

the evaluator. There were two evaluations given in this session. The first one

was given after the subject completed the first task. The evaluator informed the

subject that his (or her) performance was not as good as expected and beyond the

average population. Furthermore, the evaluator imposed a social evaluative threat

by informing the subject that the experiment will fail if his (or her) performance

did not improve in the next task. The other evaluation was given after the subject

completed the second task. The evaluator gave a negative evaluation in this phase

by saying that the performance was still not improved. A question related to the

individual personality was given, such as “You look tired today. Did you have a

sleep problem last night?”

The Stroop-Word incongruent color test lasted for 4 minutes. The subject was

instructed to name the font color of the word verbally, in which the word’s des-

ignation and the font color were made to be mismatched. Five color names were

used, including red, green, blue, yellow and white. Each trial lasted for 1.3 sec-

onds. In case the subject could not produce a decision within a time limit, the

screen was automatically changed to the next trial. Figure B.6 illustrates this idea.

Figure B.6: Stroop-Word incongruent color test.

The hard mental arithmetic test consisted of multiple addition, subtraction, mul-

tiplication and division with precedence. The result of the arithmetic is always in

an integer form within a range of 0 to 10. This task lasted for approximately four

minutes and consisted of several trials (questions). Each trial only lasted for five

seconds and the timer was shown at the top right of the screen. In case the subject

could not produce an answer within a time limit, he (or she) was asked to guess the
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number from 0 to 10. Each correct and incorrect answer increased and decreased

the subject’s score respectively. The test itself was designed to be adaptive in such

a way that the subject can only solve 50 to 60 percent of the questions correctly

regardless of their ability. This was accomplished by preparing three groups of

questions, including easy, medium and hard. The easy level involved arithmetic

with three to four numbers. The medium level involved intricate arithmetic with

four to six numbers. The hard level involved an extreme arithmetic up to nine

numbers with elaborate precedence and negative numbers. The questions at this

level are hardly solvable within a five-second time limit. The system showed a

question depending on the subject’s score (e.g. if the subject’s score drops below

a certain threshold, then present an easy level question). The subject’s score and

the population score were shown as two different bars on top of the screen. The

population score was a fictitious score and always made greater than the subject’s

score to introduce a social evaluative threat and the notion of self’s inferior. Figure

B.7 illustrates the hard arithmetic test.

In the hard mental subtraction test, the subject was instructed to serially subtract

number 13 from 1,010 as fast and as accurately as possible. On every failure, the

evaluator interrupted and instructed the subject to restart the calculation from

1,010 by saying, “Stop please! Start again from 1,010!” This task lasted for four

minutes.

At the time +40 minutes, after the subject completed the first recovery, the oper-

ator called an evaluator, who immediately entered the room and sat at a table in

front of the subject. Afterwards, the subject completed three different tasks in the

second session for approximately 15 minutes. At the time +55 minutes, the eval-

uator left the room, and the subject was seated in a relaxation chair for watching

natural clip movies with instrumental relaxation music in the background. This

relaxation lasted for approximately five minutes. At the time +60 minutes, the

operator called back the evaluator, and the subject was debriefed about the real

purpose of the experiment.
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(a) (b)

(c) (d)

Figure B.7: Hard mental arithmetic test. (a) The question. Top right: Five

seconds countdown timer. (b) Time limit exceeded. (c) Correct answer. (d)

Incorrect answer. A loud wrong answer buzz sound is played.
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Evaluation Detail for Stress

Detection

This appendix presents an evaluation detail for Chapter 4.

C.1 Stress Model using GSR features

All results in this section were obtained using 10-times-10-folds cross-validation.

1. Recovery vs Workloads (light & heavy)

Accuracy Precision Recall

K-Means 46.12± 2.25 35.47± 1.62 87.16± 2.19

GMM 70.51± 0.49 50.99± 1.16 72.61± 1.52

SVM 79.66± 0.77 87.75± 0.89 82.41± 0.73

Decision Tree 73.45± 1.27 81.28± 1.01 80.67± 1.22

2. Recovery vs Heavy Workload

Accuracy Precision Recall

K-Means 55.54± 2.64 51.07± 2.38 90.27± 3.26

GMM 74.90± 0.79 72.29± 1.50 72.64± 1.43

SVM 80.72± 0.61 85.29± 1.06 78.20± 1.19

Decision Tree 77.81± 1.31 77.18± 2.36 77.18± 2.36
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3. Light vs Heavy Workload

Accuracy Precision Recall

K-Means 53.21± 1.00 50.53± 0.68 50.53± 0.68

GMM 66.82± 0.46 65.59± 0.95 66.59± 1.20

SVM 70.60± 1.10 72.20± 1.87 72.02± 2.26

Decision Tree 62.52± 1.79 67.12± 3.67 63.58± 1.96

C.2 Stress Model using Speech features

All results in this section were obtained using 10-times-10-folds cross-validation.

1. Pitch feature

Accuracy Precision Recall

K-Means 49.65± 2.28 − 57.21± 7.18

GMM 58.82± 1.46 58.50± 2.81 50.71± 2.24

SVM 62.08± 1.57 65.04± 1.93 61.80± 3.23

Decision Tree 55.60± 2.75 59.74± 3.59 57.11± 3.03

2. MFCC feature

Accuracy Precision Recall

K-Means 55.39± 1.92 − 29.78± 6.04

GMM 56.78± 1.76 53.90± 1.62 63.60± 3.68

SVM 92.39± 0.58 92.09± 1.09 93.79± 0.84

Decision Tree 68.86± 3.07 70.95± 4.51 70.31± 2.91

3. MFCC-Pitch feature
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Accuracy Precision Recall

K-Means 49.17± 2.34 − 52.12± 4.56

GMM 59.08± 0.94 57.90± 1.35 51.70± 2.15

SVM 92.56± 1.63 91.45± 1.09 94.57± 2.47

Decision Tree 70.69± 1.33 73.73± 1.62 71.71± 2.19

4. RASTA PLP feature

Accuracy Precision Recall

K-Means 50.60± 0.42 50.60± 0.42 99.90± 0.31

GMM 52.30± 2.78 49.50± 2.55 62.49± 5.71

SVM 91.69± 0.94 92.11± 1.61 92.21± 1.27

Decision Tree 71.47± 2.97 73.84± 2.88 73.22± 2.59

C.3 Stress Model using fusion of GSR and Speech

All results in this section were obtained using 10-times-10-folds cross-validation

and SVM as a classifier.

1. Enrich Feature Space

Accuracy Precision Recall

MFCC and GSR 90.73± 1.19 90.76± 1.67 91.74± 1.54

MFCC-Pitch and GSR 91.34± 1.07 93.08± 1.07 90.45± 1.65

Pitch and GSR 69.04± 1.24 71.17± 1.37 68.65± 2.12

2. Logistic Regression
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Accuracy Precision Recall

MFCC and GSR 92.43± 0.77 92.75± 1.47 92.73± 1.35

MFCC-Pitch and GSR 92.47± 1.37 92.40± 1.61 93.32± 1.27

Pitch and GSR 70.17± 2.36 71.94± 2.82 70.71± 2.33

C.4 Subject Independent Model

All results in this section were obtained using 1-subject-leave-out cross-validation

and SVM as a classifier.

1. GSR features

Accuracy Precision Recall

Recovery vs workloads 74.84 83.93 80.00

Recovery vs heavy workload 75.00 79.66 75.83

Light vs heavy workload 63.04 69.01 66.66

2. Speech features

Accuracy Precision Recall

Pitch 53.04 54.55 65.83

MFCC 67.82 67.01 80.00

MFCC-Pitch 70.00 71.72 79.16

RASTA PLP 72.17 75.10 79.16
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Open Source Library / Toolbox /

Software / Script

The following are the library, software, engine and script which were used for

developing the web-based stress analytics:

1. Senticorr: Multilingual sentiment analysis of personal correspon-

dence

http://www.win.tue.nl/∼mpechen/projects/senticorr/

2. Mondrian OLAP

An open source OLAP server, which implemented ROLAP model as its stor-

age method.

http://mondrian.pentaho.com/

3. OLAP4j API

olap4j is an open Java API for OLAP.

http://www.olap4j.org/

4. Apache Tomcat 7.0

Apache Tomcat is an open source software implementation of the Java Servlet

and JavaServer Pages technologies.

http://tomcat.apache.org/

5. MySql 5.0

Relational database management system (RDBMS) that runs as a server pro-

viding multi-user access to a number of databases.

http://dev.mysql.com/
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6. Flot

Flot is a pure Javascript plotting library for jQuery. It produces graphical

plots of arbitrary datasets on-the-fly client-side.

http://code.google.com/p/flot/

7. Trentrichardson Timepicker

The timepicker addon adds a timepicker to jQuery UI Datepicker.

http://trentrichardson.com/examples/timepicker/

8. jPlayer

HTML5 Audio & Video for JQuery.

http://www.jplayer.org/

9. musicg

Lightweight Java API for audio analysing. This API allows developers to ex-

tract audio features and operate audio data like reading, cutting and trimming

easily from an inputstream. It also provides tools for digital signal processing,

renders the wavform or spectrogram for research and development purpose.

http://code.google.com/p/musicg/

10. UCR-Suite

The software that enables ultrafast subsequence search under both Dynamic

Time Warping (DTW) and Euclidean Distance (ED).

http://www.cs.ucr.edu/∼eamonn/UCRsuite.html

The following are the library, software and toolbox which were used for data-mining

and experiments:

1. Robert Jang Machine Learning Toolbox

This toolbox (MLT, or Machine Learning Toolbox) provides a number of

essential functions for machine learning, especially for data clustering and

pattern recognition. We used this toolbox for the implementation of Gaussian

Mixture Model (GMM).

http://neural.cs.nthu.edu.tw/jang/matlab/toolbox/machineLearning/

2. Praat: doing phonetics by computer

We used this free software for manual segmentation of speech audio.

http://www.fon.hum.uva.nl/praat/

3. VOICEBOX: Speech Processing Toolbox for MATLAB

VOICEBOX is a speech processing toolbox consists of MATLAB routines for
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Open Source Library / Toolbox / Software / Script

speech processing. The robust pitch tracking (RAPT) and MFCC represen-

tation were taken from this toolbox.

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

4. LibSVM: A Library for Support Vector Machines

LIBSVM is an integrated software for support vector classification, (C-SVC,

nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-

class SVM). It supports multi-class classification.

http://www.csie.ntu.edu.tw/ cjlin/libsvm/

5. EDA Toolbox

EDA is a Matlab toolbox for Electrodermal Activity (EDA) processing and

analysis.

https://github.com/mateusjoffily/EDA/wiki

6. RASTA-PLP

Relative Spectral Transform - Perceptual Linear Prediction.

http://labrosa.ee.columbia.edu/matlab/rastamat/

7. Matlab Statistics Toolbox

Statistics Toolbox provides algorithms and tools for organizing, analyzing,

and modeling data. We used this toolbox for logistic regression and decision

tree classifier.

http://www.mathworks.nl/products/statistics/

8. LEJOS - Java for LEGO Mindstorms

LeJOS is a Java based replacement firmware for the Lego Mindstorms RCX

microcontroller and NXJ is a Java based replacement firmware for the Lego.

http://lejos.sourceforge.net/
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