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Abstract

Many database replication protocols have been designed forguaranteeing a serialisable isolation
level, since it is appropriate for almost all applications.However, it also requires a tight coordination
among replicas and might generate high abortion rates with some workloads. So, other isolation levels
have also been considered, such as snapshot isolation and cursor stability, but none of the previous works
has proposed an overall support for more than one isolation level at the same time. This paper explores
such a research line.
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1 Introduction

Many data replication protocols have been published for years [5, 6, 11, 22], and they have always been
centred on a single isolation level. Indeed, when multiple isolation levels have been presented [11], a
separate protocol has been designed for each of them. There is no problem with this approach, since it
makes possible a thorough description, discussion or justification for each protocol. However, applications
may often require that their transactions were executed in different isolation levels, mainly for improving
the access time of such transactions that tolerate reading non-strictly-consistent data. This necessity of
managing multiple isolation levels is a main issue for database applications, and has been even included as
part of several “standard” benchmark applications, such as the one defined in the TPC-C[20] specification.
In such benchmark, itsNew-Order, Payment, Delivery andOrder-Status transactions require the ANSI
serialisable level, and the same set of transactions requires that other transactions accessing the same data
(besides theStock-Level one, that is also included in the benchmark) use therepeatable read level, whilst
its Stock-Level transaction only demands theread committed level. Many applications follow similar
patterns on their sets of transactions.

Any serious centraliseddatabase management system (DBMS, on the sequel) is able to manage with-
out problem multiple isolation levels at a time (i.e. for several concurrent transactions), but a database
replication middleware is faced with some inconveniences for providing such service. Mainly, there is no
trivial way of coordinating different replication protocols, each one providing support for a single isolation
level.

As a result, when such applications must be managed, there are only three options for dealing with
them. The first one is to discard the modern database replication techniques, following a distributed lock-
ing approach for concurrency control. The rules for providing the most important isolation levels have
already been specified for locking techniques [4], and are easily implementable in distributed systems with
distributed locks. However, distributed locking has proven to show a poor performance when compared
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with replication techniques based on total ordered write-set propagation [22]. The second approach con-
sists in selecting a set of modern protocols with similar techniques and different isolation levels, defining
from scratch the rules to be followed when different levels must be combined. This may be achieved when
such protocols use similar solutions for the most importantparameters that define a replication protocol
[21]: server architecture, replica interaction, and transaction termination. The last option consists in sup-
porting a single isolation level –the strictest one being needed–, thus requiring that all transactions were
executed using such level. This leads to poor performance orhigher abortion rates for those transactions
that would have tolerated a more relaxed isolation level.

This paper describes a general scheme for designing replication protocols that support multiple isolation
levels. Although there are multiple levels that could have been supported, this first solution only considers
four basic alternatives that are quite similar to the ANSI standard levels, according to the generalised
definitions proposed in [2].

The rest of the paper is structured as follows. Section 2 presents our system replication model. Section
3 outlines the supported isolation levels and how they have been implemented in previous replication
protocols. Section 4 describes our solution, whilst section 5 compares it with other related work. Finally,
section 6 concludes the paper.

2 System Model

We assume a partially synchronous distributed system –where clocks are not synchronised but the message
transmission time is bounded– composed by N nodes where eachnode holds a replica of a given database;
i.e., the database is fully replicated in all system nodes. These replicas might fail according to thepartial-
amnesia crash failure model proposed in [8], since all already committed transactions are able to recover,
but on-going ones are lost when a node crashes. However, we donot focus on recovery issues in this paper.

Each system node has a local DBMS that is used for locally managing transactions, and that provides
the mechanisms needed for ensuring the standard ANSI isolation levels. On top of the DBMS a middleware
is deployed in order to provide support for replication. This middleware also has access to a group com-
munication service that should support atomic multicast [10] (or uniform atomic multicast if failures are
considered). Our solutions might be also used in non middleware-based systems, but this requires at least
a minimal modification of the DBMS core, and such extension depends on the DBMSes being considered.
We do not describe such dependencies in this paper, so our discussion is better tailored for middleware
solutions.

The replication model being used isread one, write all available (ROWAA, on the sequel), since in
almost all replication protocols only the transaction write-sets are propagated. The comparison made in
[22] also proves that this behaviour provides better performance than any other that requires read execution
in all replicas.

3 Isolation Levels

Many current relational DBMSes support the standard ANSI isolation levels, as defined in [1]. However,
the definitions given in such standard are not enough precise, as they were criticised in [4]. In that paper, its
authors distinguished between strict interpretations of thephenomena1 discussed in the standard, and loose
interpretations, showing with some examples that with a strict interpretation some non-desired anomalies
were possible in each isolation level. As a result, the standard specification must be understood using the
loose interpretations outlined in [4] that generate stricter levels of isolation. Some traditional implementa-
tions based on locks already supported such loose interpretations, but others did not. Thus, some DBMSes
using multi-version concurrency control (MVCC, for short)had followed the strict phenomena interpreta-
tions. Consequently, they only provided asnapshot isolation level (as defined in [4]) when they were asked
for a serialisable one.

Unfortunately, both the loose phenomena interpretation and the lock-based concurrency control pro-
scribed some transaction executions that were perfectly legal for the required isolation levels. Adya et al.

1The termphenomenon refers to consistency anomalies that should be avoided whentransaction isolation is enforced.
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[2] detected such problems and specified again the isolationlevels. Their specifications are more precise
than those presented in [4] and also implementable with optimistic concurrency control (and this is the
most common in replicated systems, since transactions are generally allowed to proceed until they request
their commit and get validated or certified).

So, in order to be complete, we provide on the sequel the phenomena definitions given in [2] that should
be proscribed in some of the standard isolation levels. Theyare the following2:

G0 (Write cycles): A history H exhibits phenomenon G0 if DSG(H) contains a directed cycle consisting
entirely of write-dependency edges.

In this definition, DSG(H) is adirect serialisation graph [2] based on direct conflicts between com-
mitted transactions. Additionally, a write dependency occurs when one transaction overwrites a
version written by another transaction.

G1a (Aborted reads): A history H shows phenomenon G1a if it contains an aborted transaction T1 and a
committed transaction T2 such that T2 has read some object modified by T1.

G1b (Intermediate reads): A history H shows phenomenon G1b if it contains a committedtransaction
T2 that has read a version of object x written by transaction T1 that was not T1’s final modification
of x.

G1c (Circular information flow ): A history H exhibits phenomenon G1c if DSG(H) contains a directed
cycle consisting entirely of dependency edges.

In this phenomenon definition, a dependency edge is either a write dependency (already defined in
G0 description) or a read dependency. A read dependency arises when a transaction reads some
items written by another transaction, or when the results ofa transaction read (using a predicate)
are modified by a write operation made by another transaction(including value changes, as well as
element additions or removals in such results). The resultsin such predicate-based queries are all
items accessed, plus their correspondingtruth degree for the predicate, even if they do not match
such predicate. Those items that match the predicate are added to the history as separate individual
reads. So, the write operations that include or remove elements in a predicate read are those that
inserted or deleted such items in or from their respective tables.

G2 (Anti-dependency cycles): A history H exhibits phenomenon G2 if DSG(H) contains a directed cycle
with one or more anti-dependency edges.

Informally, an anti-dependency arises when a transaction overwrites a version observed by some
other transaction.

When the anti-dependencies arise between transactions that do not use predicate-based reads, aG2-
item phenomenon occurs. In the general case (i.e., with theG2 phenomenon) both kinds of read
operations are considered (predicate-based and item-based).

These definitions match respectively the original P0, P1, P2(equivalent to G2-item) and P3 (equivalent
to G2) phenomena definitions of the ANSI standard. However, P1 was decomposed in three different G1
subcases in order to eliminate the problems detected in the loose interpretations proposed by [4]. Consider
also that G1 implicitly includes the G0 phenomenon, so if a level proscribes G1 it also proscribes G0. With
these phenomena definitions, Adya et al. specify some portable levels of isolation that we summarise in
table 1.Portable refers here to the possibility of implementing all these levels with any concurrency control
approach, and this characteristic is very convenient for replicated environments.

We use these portable isolation level specifications in the following sections for building a set of rules
that might be used for defining general replication protocols able to manage multiple isolation levels.

2These definitions are in a summarised form. The interested reader should read [2] for complete and formal definitions.
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Portable Disallowed Equivalent
level phenomena ANSI level

PL-1 G0 READ UNCOMMITTED
PL-2 G1 READ COMMITTED
PL-2.99 G1, G2-item REPEATABLE READ
PL-3 G1, G2 SERIALISABLE

Table 1: Portable ANSI isolation levels

4 A General Replication Protocol

There are many ways of writing a database replication protocol, since there are some parameters that
define how such protocol should behave. Thus, in [21] three parameters of this kind were identified: server
architecture, server interaction and transaction termination. Each one of these parameters can take two
different values, generating eight different classes of protocols.

A general enough replication protocol that supports multiple isolation levels should be able to match any
implementable protocol in all these classes. Unfortunately, there are big differences among such classes,
and it would be quite difficult to provide a single principle easily adaptable for all classes.

For instance, theserver architecture parameter distinguishes between protocols based on a primary
server where all transactions should be forwarded, and protocols that allow the execution of transactions
in any site (defined asupdate everywhere replication). Regarding concurrency control and isolation, the
primary server approach does not imply any problem, since the execution of transactions is fully centralised
and we may rely on the local concurrency control mechanisms in such primary copy; i.e., the protocols we
are looking for are trivially implementable in this kind of replication since only one replica should take
care of concurrency control, and its semantics can be directly driven by the underlying DBMS.

Besides this, other classes can be easily discarded due to other problems not related with isolation, but
with other requirements such as performance. For instance,linear interaction (one of the alternatives for the
server interaction parameter) implies extremely expensive overheads on communication among replicas,
and complicates a lot the recovery subprotocols. So, it is commonly discarded in the general case.

As a result of this, only two of the original eight classes identified in [21] should be surveyed as general
replication protocols in this paper: those based on anupdate everywhere server architecture, withconstant
serverinteraction and with eithervoting or non-voting transaction termination.

So, once identified the target protocol classes to be managedby our general solution, let us see which
implementation choices we assume and how a general protocolcan be defined, also proving how is it able
to avoid each of the general phenomena described in [2].

4.1 Protocol Implementation Features

There have been multiple database replication protocols intheupdate everywhere server architecture with
a constant serverinteraction [11, 19, 17, 9, 12, 23]. Many of them share the following characteristics,
proving to be extremely adequate for replication purposes.Thus, we will take them as a basis for designing
our general protocol:

• Since they belong to the update everywhere server architecture, transactions can be initiated in any
replica. There is no special replica that centralises transaction management.

• As they also belong to the constant interaction class, only aconstant number of messages are ex-
changed among replicas. In the common case, such messages are used for propagating the updates,
and they are needed once the commit has been locally requested in the initiating replica. Although
other solutions are possible, we will limit our discussion to protocols that propagate the transaction
data at the end of each transaction; i.e., when the application has locally requested the commit.

• Write-set (and, in some cases, read-sets [23]) propagationis made using anatomic multicast; i.e., a
multicast with message delivery in total order. This ensures that all replicas see the same sequence
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of write-sets (and, if needed, read-sets); i.e., the same sequence of transactions.

• The underlying DBMS provides support for the isolation level being requested by the user transac-
tions. Thus, local transactions can be managed by the underlying DBMS, and the middleware must
ensure that the mix among remote and local transactions alsofollows the requested isolation levels.

Taking these features as a basis, the design of a database replication protocol is reduced to check for
conflicts between local transactions and write-sets being delivered, or between those write-sets. Addi-
tionally, two schemes for such checking are possible, depending on the transaction termination alternative
being chosen [21]: either a voting phase is needed in the transaction termination, or all replicas behave
deterministically in the certification phase and all arriveto the same decision without needing any explicit
coordination. But protocols based on voting can be divided in two different subclasses: those that are
symmetrical, requiring a vote by every replica (for instance, in order to cope with unilateral abortions [16]
or other sources of non-determinism), or others that rely ona delegate server3, who imposes its decision to
the rest of replicas (this approach is referred to asweak voting replication in [22]).

Between these three approaches for terminating transactions, we choose only the weak voting replica-
tion approach, since the other two have the following problems:

• Non-voting termination. In this case, if theserialisable isolation level has to be supported, read-sets
must be propagated [16]. Although there are some techniquesthat allow read-set propagation with
minimal costs [23], read-set collection can be a problem forlong transactions.

• Symmetrical voting termination. The communication needs of this voting phase, plus those already
paid for total order write-set delivery generate an overallcommunication cost similar to a 2PC. This
scheme might be supported if a non-atomic multicast is used,such as in the protocols described in
[3], but with the scheme outlined in this section its costs are too high to consider it appropriate.

Although these two approaches will not be the focus of this paper, the solution described in the follow-
ing sections might be easily adapted to both of them. In all approaches a validation phase is needed, and
the issues being considered in these validations are not toodifferent among these approaches.

4.2 A General Scheme

Our general scheme for supporting multiple isolation levels is based on the following principles:

• If multiple isolation levels should be supported, a protocol for the strictest isolation level –among
those to be supported– has to be selected.

• When a transaction is started, its intended isolation levelshould be requested to the underlying
DBMS.

• When a transaction reaches the commit phase, and its write-set (and, in some cases, read-set) is
propagated, its isolation level identifier has to be included into such propagation message.

• The validation step needed in the replication protocol for deciding whether a transaction must commit
or abort has to consider the isolation levels of all the transactions being checked. The rules to check
between transactions that have requested different isolation levels have to consider the phenomena
to be proscribed by such isolation levels.

These principles are general enough to be applied to any transaction termination approach (i.e., weak
voting, symmetrical voting, and non-voting cases). In thispaper, such scheme will be applied to the weak
voting replication approach. So, this kind of database replication must be considered as a case study for
our general scheme.

A database replication protocol based on weak voting replication consists in the following steps [22]:

3The delegate server is the replica that has initiated the particular transaction.
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1. When a delegate database server DSd receives a transaction T from a client C, it executes the trans-
action but delays its write operations.

2. When client C requests the transaction commit, the transaction write-set is propagated to all replicas
using atomic broadcast. Note that if a transaction has an empty write-set (i.e., it is a read-only
transaction) no broadcast is needed and it immediately commits.

3. When such write-set message is delivered, the delegate server determines if conflicting transactions
have been committed.

4. If so, transaction T must be aborted. Otherwise, it shouldbe committed. Depending on the result of
this validation, the replica DSd uses a reliable broadcast to propagate this result.

5. Concurrently with these two last steps, the other replicas have received the same write-set and have
locally applied it. Once they receive the validation result, they take the appropriate action (either to
abort or to commit transaction T).

This protocol is able to provide aserialisable isolation level, but the key for this resides in its step
number 3, where the write-set is validated and a result for each transaction is decided. Depending on the
rules being used for determining “conflicting” transactions other isolation levels can be obtained.

For applying our general scheme, we only need to extend minimally this sample algorithm in order to:

a) Extend its step 1, requesting to the underlying DBMS the appropriate isolation level.

b) Extend its step 2, including the isolation level of such transaction as an additional field into the
write-set message.

c) Adapt its step 3, using the appropriate conflict checking rules for each isolation level.

The last extension deserves further explanation and is thoroughly discussed on the sequel.

4.3 Avoiding General Phenomena

In this section, we will show how the general phenomena presented in section 3 can be proscribed using
some concurrency control techniques and validation checksin the protocol outlined above. To begin with,
let us start with the mechanisms needed for guaranteeing theisolation level PL-3, and later discussing how
the other levels (PL-2.99, PL-2, and PL-1, respectively) can be ensured. In all these variants, read-set
propagation is not needed since read accesses are only checked against write-sets (from either local or
remote transactions) in the delegate replica where such transactions have been started.

4.3.1 Portable Level PL-3.

This portable level is almost identical to the ANSIserialisable level. It requires that both G2 and G1
phenomena were proscribed.

Using traditional locking techniques, this isolation level needs long read and write locks. In a replicated
environment, these locks should be combined with the total order being guaranteed by the atomic broadcast.

An example of database replication protocol that uses the weak voting replication approach ensuring a
serialisable level is the SER protocol of [11]. This solution also uses a lock-based concurrency control, re-
questing long locks in the delegate server for both kinds of accesses (reads and writes), and requesting also
write locks when the write-set is delivered in remote replicas. As a result of this, its validation procedure
distinguishes the following actions:

1. The write-set application may get blocked in non-delegate replicas if the requested locks conflict with
the locks already acquired by other transactions that have been previously delivered following the
total order of the atomic broadcasts. Thus, such write-set application simply waits for the completion
of such conflicting transactions, and no rollback is needed in this case.
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2. Otherwise, if such lock request collides with some local read locks that belong to transactions whose
write-sets have not been delivered, such local transactions are aborted.

Thus, in order to forbid phenomenon G2, we must ensure that nocycle with at least one anti-dependency
edge might be created in any execution of this protocol. Recall that T1 has an anti-dependency on T2 if T1
overwrites an item (or the result of a predicate evaluation)read by T2. In this protocol cycles are prohibited,
since the total order delivery ensures that all transactions are sequentially ordered and thus, it is impossible
that the same transaction initiates and terminates a cycle of dependencies (it will be either the first or the
last in such order, but not both since the local concurrency control in all replicas also prevents such kind of
cycles among local transactions).

Supose that a node Ni is trying to apply Ti’s write-set WSi. Validation action 1 ensures that a WSi

is never applied before any previous conflicting delivered transactions because WSi will be blocked un-
til these transactions commit. Additionally, all not yet delivered local transactions with read locks on
items accessed by Ti never commit before Ti because validation action 2 would abort them. Both actions
combined ensure that the destination transaction for everydependency or anti-dependency edge commits
after its source transaction. This implies a sequential committing order, and justifies the avoidance of
phenomenon G2.

In a similar way, G1 is avoided since G1c is also proscribed due to the total order delivery, introducing
a sequential order of transactions that prevents cycles from appearing in the DSG(H) of any history H.
Moreover, the use of local long write locks avoids phenomenaG1a and G1b. Thus, G1a (aborted reads) is
avoided because due to the long write locks, it is impossiblethat a transaction T2 would have read an item
previously written by a transaction T1 that finally had aborted. The same happens with G1b (intermediate
reads).

If, instead of a lock-based concurrency control other localconcurrency control approaches were used
similar validation actions would be needed. For instance, with MVCC, the validation action 1 would have
had the same behaviour, since write conflicts lead to blocking with such kind of concurrency control. On
the other hand, the validation action 2 would have had a difficult management with this kind of concurrency
control, since no locks are requested for reading. As a result, local read operations should be translated into
SELECT FOR UPDATE statements in order to detect such read-write conflicts and a mechanism such as
the one described in [15] would be needed for dealing with such kind of conflicts, leading to the abortion
of these local transactions.

As it has been explained for lock-based concurrency control, this solution proscribes both G2 and
G1 phenomena. Both G2 and G1c are prohibited by the total order being used for write-set delivery,
whilst both G1a and G1b are trivially avoided by the underlying MVCC, since the versions being read by
each transaction have been generated by transactions already committed (intermediate versions are always
private for the transaction that has generated them, when aserialisable isolation level is requested in a
MVCC system).

4.3.2 Portable Level PL-2.99.

This second portable level (PL-2.99) is almost equivalent to the ANSIrepeatable read isolation level. For
ensuring it, in lock-based concurrency control long locks are used for write and item-read operations, but
only short locks when the read operations use a predicate. Ifwe plan to use an underlying DBMS with
this kind of concurrency control, we may use the same validation actions than we described for PL-3 –
but considering that now predicate reads only need short locks and, as a result, will not get aborted by
validation action 2–. Since transactions that need PL-2.99have requested therepeatable read isolation
level to the underlying DBMS, conflicts among PL-3 and PL-2.99 writing transactions will be correctly
managed by such DBMS. In case of conflicts between remote write-sets and local reading transactions, the
middleware will be able to detect such conflicts using the mechanisms outlined in [15]; i.e., reading one
of the system-catalogue tables that records those transactions that have been blocked due to conflicts with
other transactions.

As a result of this, no modification over the solution alreadydescribed for PL-3 is needed for achieving
PL-2.99 at the middleware level. Additionally, the justification of the proscription of the G2-item and G1
phenomena is identical to those already given above for PL-3.
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If MVCC is used, there is no way to allow phenomena G2 for predicate-based reads; i.e., allowing anti-
dependency edges that overwrite predicate reads. Some DBMSbased on MVCC are not able to provide an
ANSI repeatable read isolation level: PostgreSQL [18] is an example. This kind ofconcurrency control
ensures that each transaction gets item versions that correspond to the moment when such transaction was
started. As a result of this, a write operation generates a new version for every updated item, but such
version can not be accessed by concurrent transactions. So,the isolation achieved with this concurrency
control technique for read accesses is more or less equivalent to using long read locks in a lock-based
technique. Thus, level PL-2.99 is not achievable with this kind of concurrency control. On the other hand,
this kind of concurrency control easily provides thesnapshot isolation level [4] that shares some of the
characteristics of this PL-2.99 level but that is not equivalent to it.

4.3.3 Portable Level PL-2.

In this portable level (more or less equivalent to the ANSIread committed level), phenomenon G2 is
completely allowed, but G1 is still proscribed. So, anti-dependency edges may be present, being able to
close dependency cycles among a given set of transactions. In an implementation based on locks this level
only requires short locks for read accesses, and long locks for writes.

Regarding our sample protocol described for the PL-3 level,in this case validation action 2 can be
completely removed since the application of a remote write-set would not abort any local transaction. As a
consequence, no abortion is generated in such validation actions and this means that the reliable broadcast
needed in step 4 of the sample protocol outlined in section 4.2 will not be needed by transactions that
belong to the PL-2 and PL-1 isolation levels.

If the underlying DBMS supports this PL-2 level, both G1a andG1b phenomena are proscribed, since
these phenomena are caused by read accesses and they can onlybe local in our sample general protocol.
Phenomenon G1c should also be proscribed. To this end, no cycle of dependency edges should be allowed
by our protocol. This is easily ensured, since validation action 1 ensures that write-dependencies can
only be established in the order being imposed by the atomic delivery of write-sets, and this prevents
the appearance of write-dependency cycles. Read-dependencies can be locally present in some replicas
(in those where each transaction had its delegate server) but they would not be able to close any cycle.
Otherwise, a single transaction would have read some information from a write-set that occurs after it
in the write-set total order delivery, and this is impossible (since local concurrency control mechanisms
prevent a transaction from reading something that has not yet been committed).

As stated above, phenomenon G2 should be allowed. So, a history like the following one should be
permitted (it follows the notation proposed in [2]):

H: r1(Weight>50:x0,60;y0,51) r1(x0,60) r2(y0,51) w2(y2,50) c2 r1(y2,50) c1

In such sample, transaction T1 gets all items with a weight greater than 50 and two items are returned,
x and y. Concurrently T2 updates y weight, setting it to value 50. Finally, when T1 gets y’s data it
recovers a 50 value that does not match the predicate being used. So, we have a T1 read-dependency on
T2 and a T2 anti-dependency on T1. This situation is trivially allowed by our general protocol since read-
only transactions are not broadcast to all replicas, and in this case T1 –a read-only transaction– has been
allowed to commit by the local concurrency control on its delegate replica. Additionally, T2 is broadcast
and committed without problems in all database replicas.

Note that the solution described for this portable level is independent on the underlying concurrency
control mechanism being used.

In a general solution, with other validation techniques forits PL-3 level, the checks being made for
write-set collisions should be maintained in this PL-2 level, but those checks associated to write-read
conflicts can be eliminated if a local concurrency control able to provide PL-2 guarantees is present in each
replica.

4.3.4 Portable Level PL-1.

Finally, portable level PL-1 (similar toread uncommitted) only proscribes phenomenon G0; i.e., write-
dependency cycles. As already discussed in the previous case, write-dependency cycles are avoided if the
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write-set delivery order is respected when such write-setsare applied on each replica. Again, as in the
previous case, the specific validation action 2 is not needed. However, now the underlying DBMS needs
to enforce locally only the PL-1 level and this only places some restrictions on write accesses but never on
reads. Due to this type of read management, read-dependencies may arise, allowing thus the occurrence of
phenomena G1a, G1b and G1c.

Note also that in many DBMSes (for instance, IBM DB2) the ANSIread uncommitted isolation level
does not allow writes by default, although such behaviour can be reset. If the programmeraccepts its default
mode, transactions with this isolation level will not generate any trouble for our general protocol, since they
will be locally committed and no write-set will need any kindof management for such transactions.

The general solution to this isolation level is the same already stated for PL-2: to take care only for
write-write conflicts when write-sets are delivered. The single difference with that level is that now some
local concurrency control support specific for a PL-1 level is assumed. Note that not all MVCC DBMSes
provide a so relaxed isolation level. For instance, PostgreSQL [18] is able to provide support forread
committed (PL-2) and itsserialisable (PL-3) (actually,snapshot) levels, but not forread uncommitted (PL-
1) nor for repeatable read (PL-2.99). The same happens in Microsoft SQL Server 2005 [13] when it is
configured for using optimistic concurrency control techniques.

4.3.5 Summary.

The study made in this section has shown that dealing with multiple isolation levels in a middleware-layer
replication protocol is feasible. To this end, a good replication protocol for the strictest isolation level to
be supported has to be chosen and local support for all the intended isolation levels should be present in
the underlying DBMS. If all these requirements can be coped with, the concurrency control checks will
be quite similar for all these isolation levels, but part of them are lost in the looser levels being supported
(mainly, those related to read-write conflicts). Thus, whena write-set arrives, the receiving replica must
only apply the checks associated to the isolation level of such incoming write-set. Note also that some
non-standard isolation levels might require other techniques for avoiding their proscribed phenomena (e.g.,
in case of thesnapshot or cursor stability levels), but such cases will be studied in further works to be
completed in the near future.

In order to summarise this section, figure 1 shows the resulting database replication protocol supporting
the standard isolation levels that we have generated takingthe SER protocol of [11] as its basis.

1. When a transaction Ti starts, set its isolation level on the local DBMS.
2. When Ti is locally terminated:

2.1. If it is read-only, it directly commits.
2.2. Otherwise, get its write-set (WSi) and its isolation level (ILi) and

broadcast them in total order to all replicas.
3. Upon (WSi,ILi) delivery:

3.1. For each operation on WSi:
a) If there is a read-write conflict with a local transaction Tj

with ILj > PL-2 that has not delivered its write-set, abort Tj .
- If Tj has broadcast (WSj ,ILj), broadcast abort(Tj).

b) If there is any other conflict with another local transaction Tj ,
wait until Tj terminates (WSj should have been delivered before).

3.2. Apply WSi locally.
3.3. If Ti is a local transaction and ILi>PL-2, broadcast commit(Ti).
3.4. If ILi<PL-2.99, commit Ti.

4. Upon commit(Ti) or abort(Ti) delivery, commit or abort Ti, depending
on the received message.

Figure 1: A sample of general replication protocol.

9



5 Related Work

Most current database replication protocols aim to providesupport for only theserialisable [22, 19, 17] or
snapshot isolation levels [9, 12], since they are needed by a wide variety of applications. However, there
have also been some works that have studied multiple levels of isolation, either providing protocols for
each of them [11, 23] or by specifying new definitions of such levels [4, 2]. But none of these works has
supported more than one isolation level in a single replication protocol. As a result, they have designed
good solutions for a single level but they can not be merged easily into a single protocol, since such
solutions are specifically tailored for their target level.

Despite this, there have been some attempts for providing support for multiple isolation levels in a single
protocol. This was one of the aims in the GlobData project [19] and some initial solutions were provided
in [14]. But the isolation levels defined in GlobData were notthe ANSI standard ones, since GlobData
was a system with an object-oriented interface able to provide an object-oriented replicated database using
relational database replicas, and for those systems, therewere considered another set of behaviours. So,
such initial solution is not comparable to the one discussedin this paper.

A complementary solution is described in [7], where such specific protocols can be concurrently sup-
ported by a meta-protocol that directly manages all transactions asking to the installed protocols the results
of the concurrency control checks needed for deciding if a transaction must be committed or rolled back.
This meta-protocol allows the concurrent installation of multiple replication protocols highly optimised for
their target applications, isolation levels and assumed system model. So, different applications with differ-
ent requirements might use their tailored replication protocols using this kind of solution. Moreover, the
support provided by this meta-protocol easily allows the dynamic exchange of the installed protocols; i.e.,
one application would be able to select at run-time the protocol most convenient for its objectives or for
the current system environment (workload in each node, network traffic, failures that have occurred, etc.).
However, the scheme being imposed by this meta-protocol requires a strong adaptation of the protocols to
its required interfaces and this implies some re-writing effort.

Other papers deserve special attention although their objectives are not exactly the same as ours. In
[23] two new protocols are described. The first one is an evolution of the originalDatabase State Machine
(DBSM) approach [16] that providessnapshot isolation, while the other uses some rules that are similar
to those of the original DBSM but it is able to guarantee serialisability without transferring read-sets. The
latter manages conflict classes (or logical sets) and introduces dummy writes that are able to simulate the
read-sets. Unfortunately, these two protocols are not based on the same principles (the first one uses anup-
date everywhere server architecture with non-voting termination, whilst the second one uses a primary copy
server architecture) and, as a result of this, they will be difficult to merge in a single protocol supporting
both isolation levels. On the other hand, it analyses two of the most used isolation levels.

In [11], two different protocols were provided for supporting the same isolation levels. Moreover,
in [11] other non-standard isolation levels (cursor stability, for instance) were also supported by other
protocols. However, although all of them share similar architectures (update everywhere server architecture
and constant interaction), nothing is said about merging all levels in a single protocol.

6 Conclusions

This paper has presented a general scheme for designing middleware database replication protocols sup-
porting multiple isolation levels. It is based on progressive simplifications of the validation rules used in
the strictest isolation level being supported, and on local(to each replica) support for each isolation level
in the underlying DBMS.

Such scheme provides a uniform management for all isolationlevels, needing minimal extensions to
the original database protocol (the one initially designedfor the strictest level). This support for multiple
isolation levels is specially fruitful for those applications that manage multiple kinds of transactions, since
they get an improved performance for those transactions able to run with the loosest isolation levels. With-
out the described general protocol, an application of this kind would have used a single replication protocol
supporting the strictest needed isolation level, and this would have penalised their performance, or would
increase the abortion rate of the most relaxed transactions.
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[15] F. D. Muñoz-Escoı́, J. Pla-Civera, M. I. Ruiz-Fuertes, L. Irún-Briz, J. E. Armendáriz-́Iñigo, and J. R.
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