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Abstract

Many database replication protocols have been designeduaranteeing a serialisable isolation
level, since it is appropriate for almost all applicatiori$owever, it also requires a tight coordination
among replicas and might generate high abortion rates wittesworkloads. So, other isolation levels
have also been considered, such as snapshot isolation el stability, but none of the previous works
has proposed an overall support for more than one isolagieel bt the same time. This paper explores
such a research line.
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1 Introduction

Many data replication protocols have been published forg/gg 6, 11, 22], and they have always been
centred on a single isolation level. Indeed, when multigtdadtion levels have been presented [11], a
separate protocol has been designed for each of them. Ther problem with this approach, since it
makes possible a thorough description, discussion offigeion for each protocol. However, applications
may often require that their transactions were executedffardnt isolation levels, mainly for improving
the access time of such transactions that tolerate readinggstmictly-consistent data. This necessity of
managing multiple isolation levels is a main issue for dasgbapplications, and has been even included as
part of several &tandard” benchmark applications, such as the one defined in the TPZDiGpecification.

In such benchmark, itsew-Order, Payment, Delivery andOrder-Status transactions require the ANSI
serialisable level, and the same set of transactions requires that atregdctions accessing the same data
(besides th&tock-Level one, that is also included in the benchmark) use#peatable read level, whilst

its Stock-Level transaction only demands tliead committed level. Many applications follow similar
patterns on their sets of transactions.

Any serious centralisedatabase management system (DBMS, on the sequel) is able to manage with-
out problem multiple isolation levels at a time (i.e. for eeal concurrent transactions), but a database
replication middleware is faced with some inconveniencepfoviding such service. Mainly, there is no
trivial way of coordinating different replication protolsp each one providing support for a single isolation
level.

As a result, when such applications must be managed, thererdy three options for dealing with
them. The first one is to discard the modern database replicetchniques, following a distributed lock-
ing approach for concurrency control. The rules for prorglthe most important isolation levels have
already been specified for locking techniques [4], and aséyeianplementable in distributed systems with
distributed locks. However, distributed locking has pmove show a poor performance when compared



with replication techniques based on total ordered writepsopagation [22]. The second approach con-
sists in selecting a set of modern protocols with similahteques and different isolation levels, defining

from scratch the rules to be followed when different levelssirbe combined. This may be achieved when
such protocols use similar solutions for the most importearameters that define a replication protocol
[21]: server architecture, replica interaction, and test®n termination. The last option consists in sup-
porting a single isolation level —the strictest one beingdesl—, thus requiring that all transactions were
executed using such level. This leads to poor performantégtier abortion rates for those transactions
that would have tolerated a more relaxed isolation level.

This paper describes a general scheme for designing réphqarotocols that support multiple isolation
levels. Although there are multiple levels that could hagersupported, this first solution only considers
four basic alternatives that are quite similar to the ANSinskard levels, according to the generalised
definitions proposed in [2].

The rest of the paper is structured as follows. Section 2gossour system replication model. Section
3 outlines the supported isolation levels and how they haentimplemented in previous replication
protocols. Section 4 describes our solution, whilst secE@ompares it with other related work. Finally,
section 6 concludes the paper.

2 System Model

We assume a partially synchronous distributed system -entlecks are not synchronised but the message
transmission time is bounded— composed by N nodes wherenealehholds a replica of a given database;
i.e., the database is fully replicated in all system nodé®se€ replicas might fail according to thertial-
amnesia crash failure model proposed in [8], since all already committethsactions are able to recover,
but on-going ones are lost when a node crashes. However, wetdocus on recovery issues in this paper.

Each system node has a local DBMS that is used for locally giagdaransactions, and that provides
the mechanisms needed for ensuring the standard ANSlimolavels. On top of the DBMS a middleware
is deployed in order to provide support for replication. §hiddleware also has access to a group com-
munication service that should support atomic multica8i [br uniform atomic multicast if failures are
considered). Our solutions might be also used in non midallevbased systems, but this requires at least
a minimal modification of the DBMS core, and such extensiquetiels on the DBMSes being considered.
We do not describe such dependencies in this paper, so aursgdisn is better tailored for middleware
solutions.

The replication model being usedriead one, write all available (ROWAA, on the sequel), since in
almost all replication protocols only the transaction ex#ets are propagated. The comparison made in
[22] also proves that this behaviour provides better penfmice than any other that requires read execution
in all replicas.

3 Isolation Levels

Many current relational DBMSes support the standard ANSkison levels, as defined in [1]. However,
the definitions given in such standard are not enough prexsshey were criticised in [4]. In that paper, its
authors distinguished between strict interpretationsiephenomenat discussed in the standard, and loose
interpretations, showing with some examples that with iatgtrterpretation some non-desired anomalies
were possible in each isolation level. As a result, the steshdpecification must be understood using the
loose interpretations outlined in [4] that generate stritgévels of isolation. Some traditional implementa-
tions based on locks already supported such loose intatfmes, but others did not. Thus, some DBMSes
using multi-version concurrency control (MVCC, for shangd followed the strict phenomena interpreta-
tions. Consequently, they only providedrapshot isolation level (as defined in [4]) when they were asked
for aserialisable one.

Unfortunately, both the loose phenomena interpretatiahtae lock-based concurrency control pro-
scribed some transaction executions that were perfe@bl fer the required isolation levels. Adya et al.

1The termphenomenon refers to consistency anomalies that should be avoided whesaction isolation is enforced.



[2] detected such problems and specified again the isol&giais. Their specifications are more precise
than those presented in [4] and also implementable withmagtic concurrency control (and this is the
most common in replicated systems, since transactionsearerglly allowed to proceed until they request
their commit and get validated or certified).

So, in order to be complete, we provide on the sequel the phena definitions given in [2] that should
be proscribed in some of the standard isolation levels. Eneyhe following:

GO (Write cycles): A history H exhibits phenomenon GO if DSG(H) contains adied cycle consisting
entirely of write-dependency edges.

In this definition, DSG(H) is @irect serialisation graph [2] based on direct conflicts between com-
mitted transactions. Additionally, a write dependencywscwhen one transaction overwrites a
version written by another transaction.

Gla (Aborted reads): A history H shows phenomenon G1la if it contains an abor@ustaction T1 and a
committed transaction T2 such that T2 has read some objedifieby T1.

G1b (Intermediate reads): A history H shows phenomenon G1b if it contains a committadsaction
T2 that has read a version of object x written by transactibrhiiat was not T1’s final modification
of x.

Glc (Circular information flow ): A history H exhibits phenomenon G1c if DSG(H) contains riedied
cycle consisting entirely of dependency edges.

In this phenomenon definition, a dependency edge is eitheita dependency (already defined in
GO description) or a read dependency. A read dependen@saniken a transaction reads some
items written by another transaction, or when the resulta tinsaction read (using a predicate)
are modified by a write operation made by another transa¢inmuding value changes, as well as
element additions or removals in such results). The resultsich predicate-based queries are all
items accessed, plus their correspondingh degree for the predicate, even if they do not match
such predicate. Those items that match the predicate asgldaddhe history as separate individual
reads. So, the write operations that include or remove eltsria a predicate read are those that
inserted or deleted such items in or from their respectibéeta

G2 (Anti-dependency cyclek A history H exhibits phenomenon G2 if DSG(H) contains adied cycle
with one or more anti-dependency edges.

Informally, an anti-dependency arises when a transacti@mvarites a version observed by some
other transaction.

When the anti-dependencies arise between transactiondgdimat use predicate-based read§2a
item phenomenon occurs. In the general case (i.e., withGBg@henomenon) both kinds of read
operations are considered (predicate-based and itenthbase

These definitions match respectively the original PO, Pl(elgBivalent to G2-item) and P3 (equivalent
to G2) phenomena definitions of the ANSI standard. Howeverv&s decomposed in three different G1
subcases in order to eliminate the problems detected irtd®elinterpretations proposed by [4]. Consider
also that G1 implicitly includes the GO phenomenon, so ivallproscribes G1 it also proscribes GO. With
these phenomena definitions, Adya et al. specify some gdertedels of isolation that we summarise in
table 1.Portablerefers here to the possibility ofimplementing all theseslewvith any concurrency control
approach, and this characteristic is very convenient fplicated environments.

We use these portable isolation level specifications indtieviing sections for building a set of rules
that might be used for defining general replication proteatile to manage multiple isolation levels.

2These definitions are in a summarised form. The interesttereshould read [2] for complete and formal definitions.



Portable | Disallowed Equivalent

level phenomena ANSI level
PL-1 GO READ UNCOMMITTED
PL-2 Gl READ COMMITTED
PL-2.99 | G1, G2-item| REPEATABLE READ
PL-3 Gl, G2 SERIALISABLE

Table 1: Portable ANSI isolation levels

4 A General Replication Protocol

There are many ways of writing a database replication pafagince there are some parameters that
define how such protocol should behave. Thus, in [21] threarpeters of this kind were identified: server
architecture, server interaction and transaction tertitona Each one of these parameters can take two
different values, generating eight different classes ofquols.

A general enough replication protocol that supports midigolation levels should be able to match any
implementable protocol in all these classes. Unfortugateére are big differences among such classes,
and it would be quite difficult to provide a single principlas#ly adaptable for all classes.

For instance, theerver architecture parameter distinguishes between protocols based on arima
server where all transactions should be forwarded, andpotd that allow the execution of transactions
in any site (defined aspdate everywhere replication). Regarding concurrency control and isolatithe
primary server approach does notimply any problem, sineexecution of transactions is fully centralised
and we may rely on the local concurrency control mechanisrssich primary copy; i.e., the protocols we
are looking for are trivially implementable in this kind odplication since only one replica should take
care of concurrency control, and its semantics can be djrddven by the underlying DBMS.

Besides this, other classes can be easily discarded dukdppmbblems not related with isolation, but
with other requirements such as performance. For instdineayr interaction (one of the alternatives for the
server interaction parameter) implies extremely expaneiverheads on communication among replicas,
and complicates a lot the recovery subprotocols. So, itisroonly discarded in the general case.

As aresult of this, only two of the original eight classetiiged in [21] should be surveyed as general
replication protocols in this paper: those based onfiate everywhere server architecture, witbonstant
serverinteraction and with eithewnoting or non-voting transaction termination.

So, once identified the target protocol classes to be managedr general solution, let us see which
implementation choices we assume and how a general pratandle defined, also proving how is it able
to avoid each of the general phenomena described in [2].

4.1 Protocol Implementation Features

There have been multiple database replication protocdtssinpdate everywhere server architecture with

a constant serverinteraction [11, 19, 17, 9, 12, 23]. Many of them share the following clotgsistics,
proving to be extremely adequate for replication purposésis, we will take them as a basis for designing
our general protocol:

e Since they belong to the update everywhere server arcigdransactions can be initiated in any
replica. There is no special replica that centralises #ratisn management.

e As they also belong to the constant interaction class, ordgrestant number of messages are ex-
changed among replicas. In the common case, such messagesedrfor propagating the updates,
and they are needed once the commit has been locally reduedtee initiating replica. Although
other solutions are possible, we will limit our discussiorptotocols that propagate the transaction
data at the end of each transaction; i.e., when the applichgs locally requested the commit.

e Write-set (and, in some cases, read-sets [23]) propagatimade using aatomic multicast; i.e., a
multicast with message delivery in total order. This ensubat all replicas see the same sequence



of write-sets (and, if needed, read-sets); i.e., the samgesee of transactions.

e The underlying DBMS provides support for the isolation ldveing requested by the user transac-
tions. Thus, local transactions can be managed by the ymugiDBMS, and the middleware must
ensure that the mix among remote and local transactiondallsws the requested isolation levels.

Taking these features as a basis, the design of a databdisatiep protocol is reduced to check for
conflicts between local transactions and write-sets be#liyeted, or between those write-sets. Addi-
tionally, two schemes for such checking are possible, déipgron the transaction termination alternative
being chosen [21]: either a voting phase is needed in thadwion termination, or all replicas behave
deterministically in the certification phase and all artivehe same decision without needing any explicit
coordination. But protocols based on voting can be dividethio different subclasses: those that are
symmetrical, requiring a vote by every replica (for instanio order to cope with unilateral abortions [16]
or other sources of non-determinism), or others that relg delegate serv&rwho imposes its decision to
the rest of replicas (this approach is referred tavask voting replication in [22]).

Between these three approaches for terminating transactice choose only the weak voting replica-
tion approach, since the other two have the following protse

e Non-voting termination. In this case, if theerialisableisolation level has to be supported, read-sets
must be propagated [16]. Although there are some technitpagsllow read-set propagation with
minimal costs [23], read-set collection can be a problenidog transactions.

e Symmetrical voting termination. The communication needs of this voting phase, plus thosady
paid for total order write-set delivery generate an overathmunication cost similar to a 2PC. This
scheme might be supported if a non-atomic multicast is usgch as in the protocols described in
[3], but with the scheme outlined in this section its cosestao high to consider it appropriate.

Although these two approaches will not be the focus of thigepahe solution described in the follow-
ing sections might be easily adapted to both of them. In at@gches a validation phase is needed, and
the issues being considered in these validations are nalifieoent among these approaches.

4.2 A General Scheme

Our general scheme for supporting multiple isolation Isvglbased on the following principles:

o If multiple isolation levels should be supported, a proldoo the strictest isolation level —among
those to be supported— has to be selected.

e When a transaction is started, its intended isolation lehgluld be requested to the underlying
DBMS.

e When a transaction reaches the commit phase, and its vetittaed, in some cases, read-set) is
propagated, its isolation level identifier has to be inctliohéo such propagation message.

e The validation step needed in the replication protocol miding whether a transaction must commit
or abort has to consider the isolation levels of all the taatisns being checked. The rules to check
between transactions that have requested different isnlivels have to consider the phenomena
to be proscribed by such isolation levels.

These principles are general enough to be applied to angdcdion termination approach (i.e., weak
voting, symmetrical voting, and non-voting cases). In giaper, such scheme will be applied to the weak
voting replication approach. So, this kind of databaseicafibn must be considered as a case study for
our general scheme.

A database replication protocol based on weak voting rafitia consists in the following steps [22]:

3The delegate server is the replica that has initiated thicpar transaction.



1. When a delegate database servey Bf8eives a transaction T from a client C, it executes thestran
action but delays its write operations.

2. When client C requests the transaction commit, the timgawrite-set is propagated to all replicas
using atomic broadcast. Note that if a transaction has artyemte-set (i.e., it is a read-only
transaction) no broadcast is needed and it immediately dtanm

3. When such write-set message is delivered, the delegater sketermines if conflicting transactions
have been committed.

4. If so, transaction T must be aborted. Otherwise, it shbeldommitted. Depending on the result of
this validation, the replica DSuses a reliable broadcast to propagate this result.

5. Concurrently with these two last steps, the other repliwve received the same write-set and have
locally applied it. Once they receive the validation restiiey take the appropriate action (either to
abort or to commit transaction T).

This protocol is able to provide serialisable isolation level, but the key for this resides in its step
number 3, where the write-set is validated and a result foheensaction is decided. Depending on the
rules being used for determining “conflicting” transacsather isolation levels can be obtained.

For applying our general scheme, we only need to extend nailhjrthis sample algorithm in order to:

a) Extend its step 1, requesting to the underlying DBMS tlr@priate isolation level.

b) Extend its step 2, including the isolation level of sudmnsaction as an additional field into the
write-set message.

c) Adapt its step 3, using the appropriate conflict checkings for each isolation level.

The last extension deserves further explanation and istighly discussed on the sequel.

4.3 Avoiding General Phenomena

In this section, we will show how the general phenomena piteskein section 3 can be proscribed using
some concurrency control techniques and validation chiectte protocol outlined above. To begin with,
let us start with the mechanisms needed for guaranteeirigdltaion level PL-3, and later discussing how
the other levels (PL-2.99, PL-2, and PL-1, respectively) ba ensured. In all these variants, read-set
propagation is not needed since read accesses are onlyechagkinst write-sets (from either local or
remote transactions) in the delegate replica where sunkdrions have been started.

4.3.1 Portable Level PL-3.

This portable level is almost identical to the ANS&irialisable level. It requires that both G2 and G1
phenomena were proscribed.

Using traditional locking techniques, this isolation Ieweeds long read and write locks. In a replicated
environment, these locks should be combined with the totldrdbeing guaranteed by the atomic broadcast.

An example of database replication protocol that uses ttakweting replication approach ensuring a
serialisablelevel is the SER protocol of [11]. This solution also usesckibased concurrency control, re-
guesting long locks in the delegate server for both kindsoéases (reads and writes), and requesting also
write locks when the write-set is delivered in remote regdicAs a result of this, its validation procedure
distinguishes the following actions:

1. The write-set application may get blocked in non-delegaplicas if the requested locks conflict with
the locks already acquired by other transactions that haea Ipreviously delivered following the
total order of the atomic broadcasts. Thus, such writeqggli@ation simply waits for the completion
of such conflicting transactions, and no rollback is needdtis case.



2. Otherwise, if such lock request collides with some loealdrlocks that belong to transactions whose
write-sets have not been delivered, such local transastomaborted.

Thus, in order to forbid phenomenon G2, we must ensure theycie with at least one anti-dependency
edge might be created in any execution of this protocol. Réw T1 has an anti-dependencyon T2if T1
overwrites an item (or the result of a predicate evaluatieayl by T2. In this protocol cycles are prohibited,
since the total order delivery ensures that all transastéye sequentially ordered and thus, it is impossible
that the same transaction initiates and terminates a cydependencies (it will be either the first or the
last in such order, but not both since the local concurrencyrol in all replicas also prevents such kind of
cycles among local transactions).

Supose that a node;Ns trying to apply T;’s write-set WS. Validation action 1 ensures that a WS
is never applied before any previous conflicting delivemath$actions because Will be blocked un-
til these transactions commit. Additionally, all not yetlidered local transactions with read locks on
items accessed by, hever commit before ;Tbecause validation action 2 would abort them. Both actions
combined ensure that the destination transaction for edepgndency or anti-dependency edge commits
after its source transaction. This implies a sequentialrodting order, and justifies the avoidance of
phenomenon G2.

In a similar way, G1 is avoided since G1c is also proscribegltdithe total order delivery, introducing
a sequential order of transactions that prevents cycles fippearing in the DSG(H) of any history H.
Moreover, the use of local long write locks avoids phenom@fha and G1b. Thus, Gla (aborted reads) is
avoided because due to the long write locks, it is impossfidea transaction T2 would have read an item
previously written by a transaction T1 that finally had abdrtThe same happens with G1b (intermediate
reads).

If, instead of a lock-based concurrency control other lazadcurrency control approaches were used
similar validation actions would be needed. For instandth MVCC, the validation action 1 would have
had the same behaviour, since write conflicts lead to blarkiith such kind of concurrency control. On
the other hand, the validation action 2 would have had a diffffanagement with this kind of concurrency
control, since no locks are requested for reading. As atideuhl read operations should be translated into
SELECT FOR UPDATE statements in order to detect such redg-aonflicts and a mechanism such as
the one described in [15] would be needed for dealing withhddied of conflicts, leading to the abortion
of these local transactions.

As it has been explained for lock-based concurrency conthid¢ solution proscribes both G2 and
G1 phenomena. Both G2 and Glc are prohibited by the totalr dreieg used for write-set delivery,
whilst both G1la and G1b are trivially avoided by the undertyMVCC, since the versions being read by
each transaction have been generated by transactiondyatremmitted (intermediate versions are always
private for the transaction that has generated them, whamniaisable isolation level is requested in a
MVCC system).

4.3.2 Portable Level PL-2.99.

This second portable level (PL-2.99) is almost equivalenihe ANSIrepeatable read isolation level. For
ensuring it, in lock-based concurrency control long lockes @sed for write and item-read operations, but
only short locks when the read operations use a predicatee Iflan to use an underlying DBMS with
this kind of concurrency control, we may use the same vabdaactions than we described for PL-3 —
but considering that now predicate reads only need shokslaad, as a result, will not get aborted by
validation action 2—. Since transactions that need PL-B#®& requested thepeatable read isolation
level to the underlying DBMS, conflicts among PL-3 and PL92w&iting transactions will be correctly
managed by such DBMS. In case of conflicts between remote-seits and local reading transactions, the
middleware will be able to detect such conflicts using the macsms outlined in [15]; i.e., reading one
of the system-catalogue tables that records those traosat¢hat have been blocked due to conflicts with
other transactions.

As a result of this, no modification over the solution alreddgcribed for PL-3 is needed for achieving
PL-2.99 at the middleware level. Additionally, the jus@iion of the proscription of the G2-item and G1
phenomenais identical to those already given above for PL-3



If MVCC is used, there is no way to allow phenomena G2 for pratti-based reads; i.e., allowing anti-
dependency edges that overwrite predicate reads. Some O3kt on MVCC are not able to provide an
ANSI repeatable read isolation level: PostgreSQL [18] is an example. This kindcofcurrency control
ensures that each transaction gets item versions thatspomd to the moment when such transaction was
started. As a result of this, a write operation generateswavegsion for every updated item, but such
version can not be accessed by concurrent transactionghé&dolation achieved with this concurrency
control technique for read accesses is more or less equivedeusing long read locks in a lock-based
technique. Thus, level PL-2.99 is not achievable with thigllof concurrency control. On the other hand,
this kind of concurrency control easily provides ti@pshot isolation level [4] that shares some of the
characteristics of this PL-2.99 level but that is not eqlgmato it.

4.3.3 Portable Level PL-2.

In this portable level (more or less equivalent to the AN&d committed level), phenomenon G2 is
completely allowed, but G1 is still proscribed. So, antpeiedency edges may be present, being able to
close dependency cycles among a given set of transactioas. implementation based on locks this level
only requires short locks for read accesses, and long laoksrites.

Regarding our sample protocol described for the PL-3 lewvethis case validation action 2 can be
completely removed since the application of a remote wsd@ewould not abort any local transaction. As a
consequence, no abortion is generated in such validattionaand this means that the reliable broadcast
needed in step 4 of the sample protocol outlined in secti@will not be needed by transactions that
belong to the PL-2 and PL-1 isolation levels.

If the underlying DBMS supports this PL-2 level, both G1la &itth phenomena are proscribed, since
these phenomena are caused by read accesses and they cha tmdgl in our sample general protocol.
Phenomenon G1c should also be proscribed. To this end, h® af/dependency edges should be allowed
by our protocol. This is easily ensured, since validatiotioscl ensures that write-dependencies can
only be established in the order being imposed by the atomligaty of write-sets, and this prevents
the appearance of write-dependency cycles. Read-depapedaran be locally present in some replicas
(in those where each transaction had its delegate servethéw would not be able to close any cycle.
Otherwise, a single transaction would have read some irdoom from a write-set that occurs after it
in the write-set total order delivery, and this is impossifgince local concurrency control mechanisms
prevent a transaction from reading something that has rtdigen committed).

As stated above, phenomenon G2 should be allowed. So, ayhigt® the following one should be
permitted (it follows the notation proposed in [2]):

H: r1(Weight>50:x0,60;y0,51) r1(x0,60) I'Q(y(),51) W2(y2,50) Co rl(y2,50) C1

In such sample, transaction T1 gets all items with a weigbatgr than 50 and two items are returned,
x andy. Concurrently T2 updates y weight, setting it to value 50nafliy, when T1 gets y’s data it
recovers a 50 value that does not match the predicate beaty B0, we have a T1 read-dependency on
T2 and a T2 anti-dependency on T1. This situation is triyiallowed by our general protocol since read-
only transactions are not broadcast to all replicas, anti;hndase T1 —a read-only transaction— has been
allowed to commit by the local concurrency control on itsedglte replica. Additionally, T2 is broadcast
and committed without problems in all database replicas.

Note that the solution described for this portable levehi@dependent on the underlying concurrency
control mechanism being used.

In a general solution, with other validation techniquesiferPL-3 level, the checks being made for
write-set collisions should be maintained in this PL-2 levmit those checks associated to write-read
conflicts can be eliminated if a local concurrency contrdédb provide PL-2 guarantees is present in each
replica.

4.3.4 Portable Level PL-1.

Finally, portable level PL-1 (similar toead uncommitted) only proscribes phenomenon GO; i.e., write-
dependency cycles. As already discussed in the previoes waise-dependency cycles are avoided if the



write-set delivery order is respected when such write-aetsapplied on each replica. Again, as in the
previous case, the specific validation action 2 is not neetedvever, now the underlying DBMS needs
to enforce locally only the PL-1 level and this only placessaestrictions on write accesses but never on
reads. Due to this type of read management, read-deperdanaly arise, allowing thus the occurrence of
phenomena Gla, G1b and Glc.

Note also that in many DBMSes (for instance, IBM DB2) the AM&Id uncommitted isolation level
does not allow writes by default, although such behaviooitmareset. If the programmer accepts its default
mode, transactions with this isolation level will not gesterany trouble for our general protocol, since they
will be locally committed and no write-set will need any kiofimanagement for such transactions.

The general solution to this isolation level is the sameaalyestated for PL-2: to take care only for
write-write conflicts when write-sets are delivered. Thegse difference with that level is that now some
local concurrency control support specific for a PL-1 legehssumed. Note that not all MVCC DBMSes
provide a so relaxed isolation level. For instance, PoSigie [18] is able to provide support foead
committed (PL-2) and itsserialisable (PL-3) (actuallysnapshot) levels, but not foread uncommitted (PL-

1) nor forrepeatable read (PL-2.99). The same happens in Microsoft SQL Server 2005 \jtten it is
configured for using optimistic concurrency control tecfugs.

4.3.5 Summary.

The study made in this section has shown that dealing withiphelisolation levels in a middleware-layer
replication protocol is feasible. To this end, a good regilmn protocol for the strictest isolation level to
be supported has to be chosen and local support for all tbaded isolation levels should be present in
the underlying DBMS. If all these requirements can be copid, whe concurrency control checks will
be quite similar for all these isolation levels, but parttodin are lost in the looser levels being supported
(mainly, those related to read-write conflicts). Thus, whenrite-set arrives, the receiving replica must
only apply the checks associated to the isolation level ohsncoming write-set. Note also that some
non-standard isolation levels might require other techegfor avoiding their proscribed phenomena (e.g.,
in case of thesnapshot or cursor stability levels), but such cases will be studied in further works to be
completed in the near future.

In order to summarise this section, figure 1 shows the reguttatabase replication protocol supporting
the standard isolation levels that we have generated takiin§ER protocol of [11] as its basis.

1. When a transaction T; starts, set its isolation level on the local DBMS.
2. When T; is locally terminated:
2.1. Ifitis read-only, it directly commits.
2.2. Otherwise, get its write-set (WS;) and its isolation level (IL;) and
broadcast them in total order to all replicas.
3. Upon (WS,,IL;) delivery:
3.1. For each operation on WS;:
a) If there is a read-write conflict with a local transaction T
with IL; > PL-2 that has not delivered its write-set, abort T;.
- If T,; has broadcast (WS;,IL;), broadcast abort(T).
b) If there is any other conflict with another local transaction T;,
wait until T; terminates (WS; should have been delivered before).
3.2. Apply WS; locally.
3.3. If T; is a local transaction and IL; >PL-2, broadcast commit(T,).
3.4. If IL;<PL-2.99, commit T,.
4. Upon commit(T;) or abort(T;) delivery, commit or abort T;, depending
on the received message.

Figure 1: A sample of general replication protocol.



5 Related Work

Most current database replication protocols aim to prosigaport for only theserialisable [22, 19, 17] or
snapshot isolation levels [9, 12], since they are needed by a wideetyiof applications. However, there
have also been some works that have studied multiple le¥éolation, either providing protocols for
each of them [11, 23] or by specifying new definitions of suglels [4, 2]. But none of these works has
supported more than one isolation level in a single repboaprotocol. As a result, they have designed
good solutions for a single level but they can not be mergeilyemto a single protocol, since such
solutions are specifically tailored for their target level.

Despite this, there have been some attempts for providipgatifor multiple isolation levels in a single
protocol. This was one of the aims in the GlobData project fiftl some initial solutions were provided
in [14]. But the isolation levels defined in GlobData were tieg ANSI standard ones, since GlobData
was a system with an object-oriented interface able to piean object-oriented replicated database using
relational database replicas, and for those systems, tiene considered another set of behaviours. So,
such initial solution is not comparable to the one discugséhis paper.

A complementary solution is described in [7], where suclcEmeprotocols can be concurrently sup-
ported by a meta-protocol that directly manages all tratimag asking to the installed protocols the results
of the concurrency control checks needed for deciding ifagaction must be committed or rolled back.
This meta-protocol allows the concurrent installation afltiple replication protocols highly optimised for
their target applications, isolation levels and assumstksy model. So, different applications with differ-
ent requirements might use their tailored replication pcots using this kind of solution. Moreover, the
support provided by this meta-protocol easily allows thaatyic exchange of the installed protocols; i.e.,
one application would be able to select at run-time the matmost convenient for its objectives or for
the current system environment (workload in each node, or&twaffic, failures that have occurred, etc.).
However, the scheme being imposed by this meta-protocainegja strong adaptation of the protocols to
its required interfaces and this implies some re-writirfgref

Other papers deserve special attention although theictibgs are not exactly the same as ours. In
[23] two new protocols are described. The first one is an giaiwof the originalDatabase State Machine
(DBSM) approach [16] that providesapshot isolation, while the other uses some rules that are similar
to those of the original DBSM but it is able to guarantee disaaility without transferring read-sets. The
latter manages conflict classes (or logical sets) and inttesl dummy writes that are able to simulate the
read-sets. Unfortunately, these two protocols are notcasd¢he same principles (the first one usesian
date everywhere server architecture with non-voting termination, whitgt tsecond one uses a primary copy
server architecture) and, as a result of this, they will d8adilt to merge in a single protocol supporting
both isolation levels. On the other hand, it analyses twdefnhost used isolation levels.

In [11], two different protocols were provided for suppadithe same isolation levels. Moreover,
in [11] other non-standard isolation levelsu(sor stability, for instance) were also supported by other
protocols. However, although all of them share similar &extiures (update everywhere server architecture
and constant interaction), nothing is said about mergihig\els in a single protocol.

6 Conclusions

This paper has presented a general scheme for designindenvitté database replication protocols sup-
porting multiple isolation levels. It is based on progressimplifications of the validation rules used in
the strictest isolation level being supported, and on I¢ttaéach replica) support for each isolation level
in the underlying DBMS.

Such scheme provides a uniform management for all isold¢ieels, needing minimal extensions to
the original database protocol (the one initially desigfagdhe strictest level). This support for multiple
isolation levels is specially fruitful for those applicatis that manage multiple kinds of transactions, since
they get an improved performance for those transactiorestalylin with the loosest isolation levels. With-
out the described general protocol, an application of thid kould have used a single replication protocol
supporting the strictest needed isolation level, and thuigld/have penalised their performance, or would
increase the abortion rate of the most relaxed transactions
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