
MANAGING MULTIPLE ONTOLOGIES AND

ONTOLOGY EVOLUTION IN ONTOLOGGING

A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz

FZI Research Center for Information Technologies at the Univ. of Karlsruhe. Germany

email: {maedche. motik. stojanov. studer. volz}@fzi.edu

Abstract: Ontologging is an ontology-driven environment to enable next generation

knowledge management applications building on Semantic Web technology. In

this paper we first present the conceptual architecture underlying Ontologging.

Second, we focus on two important challenges for ontology-based knowledge

management, namely the supporting multiple ontologies and managing

ontology evolution. We will provide a general approach for handling these two

essential issues within the Ontologging architecture.

Key words: Knowledge management, ontology mapping, ontology evolution.

3. INTRODUCTION

"People can't share knowledge if they do not speak a common language"

[6]. This simple insight accurately characterizes what makes knowledge

management achallenging task. Its goal to reach global knowledge access

within different departments of an enterprise is usually difficult due to the

fact that different departments usually encompass different vocabularies,

which hinders commu-nication. Consider the case of a large company

consisting of different departments, e.g. Human Resources, Production,

Sales, etc. Under optimal circumstances we can assume that the first problem

of collecting, organizing, and distributing the knowledge within one

department has been solved. Ontologies have shown to be the right answer to

these structuring and modelling problems by providing a basis for the

definition of meaning. They can be used to provide the conceptual basis for

communication among humans and machines [2].

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

M. A. Musen et al. (eds.), Intelligent Information Processing

10.1007/978-0-387-35602-0_35

http://dx.doi.org/10.1007/978-0-387-35602-0_35

52 A. Maedche. B. Motik, L. Stojanovic. R. Studer and R. Volz

However, we have been confronted with several problems when using

ontologies in real-world applications. In this paper we consider the following

two important problems: First, the traditional approach to design one large­

scale ontology, which covers all departments, has shown to be difficult due to

effort, scale and maintainability. To facilitate communication between

multiple communities one approach is to rely on multiple ontologies, where

individualontologies are defined, e.g. for each department, and mappings

between ontologies establish the linkage between the individual domains.

Second, knowledge management systems typically operate in changeable

environments. Business dynamics result in several necessary changes within

the applications. Consequently, the underlying ontology changes and evolves

over time [2]. Clearly, the ontological changes have to be propagated to the

depending artefacts in order to keep an overall consistency. This question of

managing the necessary evolution of ontologies has not yet sufficiently been

approached in literature and practice.

In this paper we introduce a novel approach that tackles these difficulties

by allowing the management of multiple ontologies and introducing means

for ontology evolution. Ontologging, an ontology-based environment targets

beside other research questions these two core problems introduced above. It

builds on Semantic Web standards to enable the next generation of

knowledge management applications. Based on a short introduction of the

comprehensive Ontologging architecture we will present an approach for

handling the two essential issues of managing multiple ontologies and

supporting ontology evolution.

4. ARCHITECTURE

To enable the described enhanced of existing ontology-based knowledge

management approaches a comprehensive architecture is required. We pursue

a c1early separated three layered architecture within our Ontologging system.

On the top layer, the presentation layer, relevant information is accessed,

browsed, queried and edited. We distinguish between the two different users,

namely the knowledge manager and the normal end user. In this paper we

mainly focus on the knowledge manager and the corresponding methods and

tools supporting hirn in his work with respect to dealing with multiple

ontologies and managing ontology evolution. Normal end users access the

system via different clients, e.g. a MS Office-based connector and a Web­

based browsing and querying interface.

Presentation clients access the different the systems backend via an

integrated SOAP-based Web service interface l hiding the complexity of the

1 http://www.w3.org/2002/ws/

Intelligent Information Processing 53

different AP1s to application programmers. There exist dedicated interfaces

for multiple ontology and metadata management, user management and

documents management. Additionally, services in the middleware layer

provide value adding functionality on top of the core data, e.g. we provide

intelligent services for user personalization and different kinds of agents.

Finally, on the lowest layer, the data layer, data relevant for the overall

system is stored. There, we mainly rely on relational database technology.

WUplO
ontu/DiII'" &

.... anagement

,",sollet
OOnnec:to,

ODCumet'II ...,....,
Interface

Oniologglllg
Ple.ellt.don

Uyer

._.' •• .• '0' ••• _ • ••• , ._. ••• • ••• • • ••• _ . _..... • •••• •••••••• :t. :t _

onlologg 19
"'Iddlotw.,.

L«yer

t.-.-....
Layer

Figure I . Overall Ontologging Architecture

In the following we will mainly focus on the multiple ontology and

metadata management parts within Ontologging. First, we will discuss the

underlying modules enabling multiple ontologies. Second, we will discuss

the internal support and strategies we provide for the overall ontology

evolution process. 1t is important to mention that both methods and

components are driven by meta-ontologies, a so-called semantic bridging and

an evolution ontology that capture the relevant information to support

multiple ontologies and evolving ontologies.

5. MULTIPLE ONTOLOGIES

An ontology mapping process is the set of activities required to transform

instances of a source ontology into instances of a target ontology. By

studying the process and analysing different approaches from the literature

54 A. Maedche. B. MOlik, L. Slojanovic. R. Sluder and R. Vo/z

[9] we observed a set of commonalities and assembled them into the our

MAFRA mapping conceptual framework, outIined in Figure 2. The

framework consists of five horizontal modules describing the phases that we

consider fundamental and distinct in a mapping process. Four vertical

components run along the entire mapping process, interacting with horizontal

modules.

Within the horizontal dimension, we identified following five modules:

Lift & Normalization. This module focuses on raising all data to be

mapped onto the same representation level, coping with syntactical, structural

and language heterogeneity. Both ontologies must be normalized to a

uniform representation, in our case RDF(S), thus eliminating syntax

differences and making semantics differences between the source and the

target ontology more apparent. To facilitate that, we developed a LIFT

approach providing means to bring DTDs, XML-Schema, and relational

databases2 to the structural level of the ontology. Lift is not further

elaborated in this paper - we shall simply assume that the source and target

ontologies are already represented in RDF-Schema with their instances in

RDF.

Figure 2. Conceptual Mapping Architecture

Similarity. This module establishes similarities between entities from the

source and target ontology. Similarity between conceptual models is hard to

measure and often establishing a suitable similarity measure is a very

subjective task. Several different similarity measures have been proposed in

2 http:// kaon.semanticweb.orgIREVERSE

Intelligent Information Processing 55

literature [1, 9, 11] focusing on different aspects of ontology entities. We

don't further elaborate on this issue, as it is not in scope ofthis paper.

Semantic Bridging. Based on the similarities computed in the previously

described phase, the semantic bridging module is responsible for establishing

correspondence between entities from the source and target ontology.

Technically, this is accomplished by establishing semantic bridges3 - entities

reflecting correspondence between two ontology entities [8]. Apart from the

semantic correspondence, additional "procedural" information is needed to

further specify the transformation to be performed, e.g. translation of

measures like currencies.

Execution. This module actually transforms instances from the source

ontology into target ontology by evaluating the semantic bridges defined

earlier. In general two distinct modes of operation are possible, namely

offline (static, one-time transformation) and online (dynamic, continuous

mapping between source and the target) execution.

Post-processing. The post-processing module takes the results of the

execution module to check and improve the quality of the transformation

results. The most challenging task of post-processing is establishing object

identity - recognizing that two instances represent the same real-world object.

Furthermore, by computing statistical properties of transformed instances, it

is possible to check whether semantic bridges were under specified.

The vertical dimension of MAFRA contains modules that interact with

horizontal modules during the overall process. Following four modules have

been identified and will be only shortly mentioned in this paper:

Evolution. This modules focuses on keeping semantic bridges obtained

by the "Semantic Bridge" module, which must be kept in synchrony with the

changes in the source and target ontologies. Evolving ontologies on the

Semantic Web result in an update requirement ofthe corresponding semantic

bridges. Although this may be achieved by reapplying the mapping process,

this is probably not the most efficient or accurate way. Thus, the mapping

process must have an evolution component that will reuse the existing

semantic bridges in adapting them to new requirements.

Cooperative Consensus Building. The cooperative Consensus Building

module is responsible for establishing a consensus on semantic bridges

between two communities participating in the mapping process. This is a

requirement as one has to choose frequently from multiple, altematively

possible mappings .The amount of human involvement required to achieve

consensus may be reduced by automating the mapping process as much as

possible.

3 http://www.fzi.de/wimlstaff/Nuno/bridges

56 A. Maedche, B. Motik, L. Stojanovic, R. Studer and R. Volz

-.-1 _

"' ­, -'- ...-..
0:J c..-_I __ l-..._I

'.

Figure 3. Interface for instantiating the semantic bridging ontology

Graphical User Interface. Mapping is a difficult and time consuming

process, which is not less difficult than building an ontology itself, i.e. deep

understanding of both conceptualisations required on human side, thus

extensive graphical support must be given and it is aseparate issue how this

can be achieved in an optimal way. The graphical user interfaces modules

(Figure 3) allows the users drive the mapping process, provide domain

constraint and background knowledge, create semantic bridges, refine bridges

according to the results of the execution module, etc.

6. EVOLVING ONTOLOGIES

Ontology evolution (OE) is the timely adaptation of an ontology to

changed business requirements, to trends in ontology instances and patterns

of usage of the ontology-based applications, as weIl as the consistent

management/propagation of these changes to dependent elements, A

modification in one part of the ontology may generate subtle inconsistencies

in other parts of the same ontology, in the ontology-based instances as weIl as

in depending ontologies and applications [5]. This variety of causes and

consequences of the ontology changes makes OE a very complex operation

that should be considered as both, an organizational and a technical process

[12]. It requires a careful analysis of the types of the ontology changes that

can trigger evolution as weIl as the environment in which the whole OE

process is realized.

Intelligent Information Processing 57

The overall OE process is presented in Figure 4. It has a cyclic structure,

since validation of realized changes may induce new changes in order to

obtain model consistency or to satisfy users' expectations. In the following

we will shortly elaborate on each of the phases.

Change Representation. To resolve changes, they have to be identified

and represented in a suitable format. Elementary changes in the ontology

shown in Table 1 are derived from our ontology definition [6] given in

specifying fine-grained changes that can be performed in the course of OE.

However, this granularity of OE changes is not always appropriate. Often,

intent of the changes may be expressed on a higher level. For example, the

may need to generate a common superconcept of two concepts. He may bring

the ontology into desired state through successive application of a list of

elementary evolution changes. However, there is an impedance mismatch

between the intent of the request and the way the intent is achieved.

Moreover, a lot of unnecessary changes may be performed if each change is

applied alone. To avoid these drawbacks, it should be possible to express

changes on a more coarse level, with the intent of change directly visible. We

introduce the composite changes (e.g. Merge_concepts, Extract_subconcepts,

ExtractJelated_concept) representing a group of elementary changes applied

together.

Semantics of Change. Application of an elementary change in the

ontology can induce inconsistencies in other parts of the ontology. We

distinguish syntax and semantic inconsistency. Syntax inconsistency arises

when undefined entities at the ontology or instance level are used or ontology

model constraints are invalidated. Semantic inconsistency arises when

meaning of an ontology entity is changed [16]. For example, removal of a

concept which is the only element of domain set for some property results in

syntax inconsistency [4]. Resolving that problem is treated as arequest for a

new change in the ontology, which can induce new problems that cause new

changes and so on. If an ontology is large, it may be difficult to fully

comprehend the extent and meaning of each induced change. The task of

'semantics of change' phase is to enable resolution of induced changes in a

systematic manner, ensuring consistency of the whole ontology. To help in

better understanding of effects of each change, this phase should contribute

maximum transparency providing detailed insight into each change being

performed.

However, for each change in the ontology, it is possible to generate

different sets of additional changes, leading to different final consistent

states. Most of existing systems for the ontology development provide only

one possibility for realizing a change and this is usually the simplest one. For

example, the deletion of a concept always causes the deletion of a1l its

subconcepts.

58 A. Maedche. B. Motik, L. Stojanovic. R. Studer and R. Vo/z

6. Validation

Business
requirements

Oiscovering

5. Propagation

T, bl J EI a e

Change

Add

Delete

Modify

2. Representation

3. Semantics
ofchange

Figure 4. Cycle Ontology Evolution Process

h . h ementary C anges In t e onto ogy an d aSSOclate d d meta ata

Elementary change

Add_Concept; Add_SubConceptOf Add]roperty; Add_SubPropertyOf;

Add Domain; Add Axiom; Add InstanceOf; Add PropertylnstanceOf

Delete _ Concepi; Delete _ SubConceptOf; Delete _ Property;

Delete_SubPropertyOf; Delete_Domain; Delete_Axiom;

Delete InstanceOf; Delete PropertylnstanceOf

Set Property Range

Thus, to resolve a change, the evolution process needs to determine

answers at many resolution points - branch points during change resolution

where taking a different path will produce different results. Each possible

answer at each resolution point is an elementary evolution strategy. Common

policy consisting of a set of elementary evolution strategies, each giving an

ans wer for one resolution point, is an evolution strategy and is used to

customize the OE process. Thus, an evolution strategy unambiguously

defines the way how elementary changes will be resolved. Typically a

particular evolution strategy is chosen by the user at the start of the OE

process (the left part of Figure 5).

Change Implementation. In order to avoid perforrning undesired

changes, before applying a change to the ontology, a list of alt implications to

the ontology should be generated and presented to the user [15]. He should be

able to comprehend the list and approve or cancel the change (the right part

of Fig. 5). When the changes are approved, they are perforrned by

successively resolving changes from the list. If changes are cancelled, the

ontology should remain intact.

I Otpl\af\od ctoIdr., ...

.. • •. Ie..,. os !her w.

,.. ••• to lOGt

r ... _t to _ -<oncopI

f
At., _ _ fIIoo/HJ4I

r.

(No

Intelligent Information Processing 59

1
A'CIII ._oe! ' ,,",oc>I ...

r .. . <10 ""'",_",-'

,r. ...
r ... _oorly.-"uw_.

r c.."e!otlon.>Pt< _ ,ongo1

r. y"

1(' No

Figure S. Ontology Evolution in KAON4 framework: Evolution Strategy Set-up and Ontology

Evolution User Interface in OntoMat-SOEP

Change Propagation. First, when the ontology is modified, ontology

instances need to be changed to preserve consistency with the ontology [5].

This can be performed in three steps. If the instances are on the Web, they are

collected in the knowledge bases. In the second step, modification of

instances is performed according to the changes in the ontology [14]. In the

last step "out-of-date" instances on the Web are replaced with corresponding

"up-to-date" instances. Second, ontologies often reuse and extend other

ontologies. Therefore, an ontology update might also corrupt ontologies that

depend on the modified ontology and consequently, all artefacts that are

based on these ontologies. This problem can be solved by recursive applying

the OE process on these ontologies. However, besides of the syntax

inconsistency, the semantic inconsistency can also arise when, for example,

the dependent ontology already contains a concept that is added in the

original ontology. Third, when an ontology is changed, applications based on

the changed ontology may not work correctly. An OE approach has to

recognize which change in the ontology can affect the functionality of

dependent applications [10] and to react correspondingly [13].

4 http://kaon.semanticweb.org/SOEP

S http://kaon.sematicweb.org/CRAWL

60 A. Maedche. B. Motik. L. Stojanovic. R. Studer and R. Volz

Validation. When working on an ontology collaboratively, different

ontology engineers may have different ideas about how the ontology should

be changed. Moreover, the ontology engineer may faH to understand the

actual effect of the change and approve the change that shouldn 't be

performed. It may be desired to change the ontology for experimental

purposes. In order to enable recovering from these situations, we introduce

the validation phase in the OE process (see Figure 4). It enables validation of

performed changes and undoing them at user's request. It is important to note

that reversibility means undoing all effects of some change, which may not

be the same as simply requesting an inverse change manually. For example,

if a concept is deleted from a concept hierarchy, its subconcepts will need to

be either deleted as weil, attached to the root concept, or attached to the

parent of the deleted concept. Reversing such a change is not equal to

recreating the deleted concept - one needs, also, to revert the concept

hierarchy into original state. The problem of reversibility is typically solved

by creating evolution logs. An evolution log, based on the evolution ontology

described in the following, tracks information about each change, allowing to

reconstruct the sequence of changes leading to current state ofthe ontology.

Change Discovery and Capture. In OE we may distinguish two types of

changes: top-down and bottom-up, whose generation is part ofthe "capturing

phase" in the OE process. Top-down changes are explicit changes, driven, for

example, by top-manager who want to adapt the system to new requirements

and can be easily realized by an OE system. However, some changes in the

domain are implicit, reflected in the behaviour of the system and can be

discovered only through analysis of its behaviour. For example, if a customer

group doesn 't contain members for a longer period of time, it may mean that

it can be removed. This second type of change mined from the set of

ontology instances are called bottom-up changes. Another source of bottom­

up changes is the structure of the ontology itself. Indeed, the previously

described "validation phase" results in an ontology which may be in a

consistent state, but contains some redundant entities or can be better

structured with respect to the domain. For example, multiple users may be

working on different parts of an ontology without enough communication.

They may be deleting subconcepts of a common concepts at different points

in time to fulfil their immediate needs. As a result, it may happen that only

one subconcept is left. Since classification with only one subclass beats the

original purpose of classification, we consider such ontology to have a

suboptimal structure. To aid users in detecting such situations, we

investigated the possibilities of applying the self-adaptive systems principles

and proactively make suggestions for ontology refinements - changes to the

ontology with the goal of improving ontology structure, making the ontology

easier to understand and cheaper to modify. As known to authors, none of

Intelligent Information Processing 61

existing systems for ontology development and maintenance offer support for

(semi-) automatie ontology improvement.

6.1 Evolution Ontology

The backbone of the whole evolution process is a meta-ontology for

evolution that enables representation, analysis, realization and sharing

ontological changes in a more systematic and consistent way. It is a specific

ontology that is designed to support aB phases in the evolution process of an

ontology.

The evolution ontology consists of three parts. First part is about

mechanisms to represent changes (see Table 1). Ontological changes [6] are

represented using the top level concept "Change" and its relations. For every

change, it is also useful to know who is author of the change and when it is

happened (date). The cause of the change is used to represent the source of

the change (business requirements or the leaming process) and the relevance

of the change describes whether and how it can fulfil the requirements. Also,

OE is a managerial process and it needs so me properties to support decision­

making like cost, priority, etc. The order of changes is also very important as

it enables recovery of implemented changes (if the result of the validation

phase is unsatisfied) and/or mining trends (patterns) to improve the OE

process. To solve semantics of change problem, the evolution ontology

contains axioms that derive additional changes. The derived change and the

required change are connected usingparentChange relation.

The second part of the evolution ontology containing relations like

prototypical, primary _key, etc. represents semantic information about the

domain ontology explicitly [16], because the conceptual structure of the

evolution ontology aims to provide enough mechanisms to deal with

problems of syntax as weIl as semantic inconsistencies. The third part of the

evolution ontology aims to support data-driven self-improvement of the

domain ontology. We enforce formal discovering of changes by representing

some heuristics as axioms in the evolution ontology. For example, if all

subconcepts have the same property, the property may be moved to the

parent concept.

7. RELATED WORKAND CONCLUSION

In the last decade, there has been much active research in the area of

ontology-based systems. However, there are very few approaches

investigating the problems of changing in the ontologies.

62 A. Maedche. B. Motik. L. Stojanovic. R. Studer and R. Volz

Heflin [4] points out that ontologies on the Web will need to evolve and

he presents SHOE, a web-based knowledge representation language that

supports multiple vers ions of ontologies. Although good design may prevent

many ontological errors, some errors will not be realized until the ontology is

put to use. However, this problem as well as the problem of the change

propagation are not treated. Moreover, the user cannot customize the way of

performing the change and the problem of the identification of the change is

not analysed. In contrast to the OE that allows access to all data (to ontology

itself and to dependent artefacts) only through the newest ontology, ontology

versioning allows access to data through different version of the ontology.

Thus, OE can be treated as apart of the ontology versioning. Ontology

versioning is analysed in [5]. Authors provide an overview of causes and

consequences of the changes in the ontology. However, the most important

flaw is the lack of a detailed analysis of the effect of specific changes on the

interpretation of data which is a constituent part of our work.

Other research communities also have influences our work. The problem

of schema evolution and schema versioning support has been extensively

studied in relational and database papers [10]. However, there are several

differences that steam from different knowledge models and different usage

paradigms. Research in OE can also benefit from the many years of research

in knowledge-based system evolution. The script-based knowledge evolution

[15] that identifies typical sequences of changes to knowledge base and

represents them in a form of scripts, is similar to our approach. In contrast to

the knowledge-scripts that allow the tool to understand the consequences of

each change, we go step further by allowing the user to control how to

complete the overall modification and by suggesting the changes that could

improve the ontology.

There is only Iittle work concerning the support of using multiple

ontologies. Again, our approach is motivated by classical work on federated

database and mediators done by the database community [17]. Nevertheless,

our approach goes beyond classical techniques, as it provides an integrated

view on the overall multi-ontology scenario, from discovering mappings,

representing mappings [1] to processing mappings.

In this paper we have presented Ontologging, the corporate ontology

modeling and management system. Ontologging is an ontology-based

environment to enable next generation knowledge management applications

building on Semantic Web standards. In this paper we have mainly focused

on two important challenges for ontology-based knowledge management:

First, the management of multiple ontologies and, second, the handling of

ontology evolution in dynamic environments. Both approaches rely on

heavily using meta-primitives, also represented in the form of ontologies.

Intelligent Information Processing 63

ACKNOWLEDGEMENTS

The research presented in this paper was profited from fruitful discussion

with our Ontologging project partners from Insead (France), Meta4 (Spain),

Deltatee (Belgium), Archetypon (Greece) and Indra (Spain). Research for this

paper was financed by European Commission, IST project "Ontologging"

(IST -2000-28293).

REFERENCES

1. Doan A., Madhavan J., Domingos P., Halevy A., Leaming to map between ontologies on

the Semantie Web, In Proc. ofthe World-Wide Web Conference 2002.

2. Fensel D., Ontologies: Dynamics Networks ofMeaning, In Proc. ofthe 1st Semantic web

working symposium, Stanford, CA, USA, July 30th-August 1st, 2001.

3. Franconi E., Grandi F., Mandreoli F., A semantic approach for schema evolution and

versioning in object-oriented databases, In Proc. of the 1st International Conf. on

Computational Logic (CL '2000), Springer-Verlag, 2000.

4. Heflin J., Towards the Semantic Web: Knowledge Representation in a Dynamic,

Distributed Environment, Ph.D. Thesis, University ofMaryland, College Park. 2001.

5. Klein M., Fensel D., Ontology versioning for the Semantic Web, In Proc. International

Semantic Web Working Symposium (SWWS), USA, 2001.

6. Maedche A., Staab S., Stojanovic N., Studer R., Sure Y., SEmantic PortAL - The SEAL

approach. to appear: In Creating the Semantic Web, D. Fensel, 1. Hendler, H. Lieberman,

W. Wahlster (eds.) MIT Press, MA, Cambridge, 2001.

7. Maedche A., Staab S., On Comparing Ontologies, Internal Report 403, Institute AIFB,

University ofKarlsruhe, 2001.

8. Maedche A., Motik B., Silva N., Volz R., MAFRA - An Ontology Mapping FRAmework

in the Context ofthe Semantic Web, Internal Report, FZI, 2002.

9. Rahm N., Bernstein P., A survey of approaches to automatie schema matching. VLDB

Journal, 10(4):334-350,2001.

10. Roddick J.F., A Survey of Schema Versioning Issues for Database Systems,Information

and Software Technology, 37(7): 383-393, 1996.

11. Staab S., Maedche A., Comparing Ontologies - Similarity Measures and a Comparison,

Internal Report 408, Institute AIFB, Karlsruhe University.

12. Staab S., Schnurr H.-P., Studer R., Sure Y., Knowledge Processes and Ontologies, IEEE

Intelligent Systems, 16(1), 2001. Special Issue on Knowledge Management

13. Stojanovic L., Stojanovic N., Handschuh S., Evolution of the Metadata in the

Ontology-based Knowledge Management Systems, In Proc. 0/ Experience Management

2002, Berlin, Mareh 7-8, 2002.

14. Stojanovic L., Stojanovic N., Volz R., Migrating data-intensive Web Sites into the

Semantie Web, ACM Symposium on Applied Computing SAC, pp. 1100-1108,2002.

15. Tallis M., Gil Y., Designing Seripts to Guide Users in Modii)'ing Knowledge-based

Systems, In Proc. 0/ the Sixteenth National Conforence on Artificial Intelligence (AAAI-

99), Orlando, FL, 1999.

16. Tamma V.A.M., Beneh-Capon T.J.M, A conceptual model to facilitate knowledge

sharing in multi-agent systems, In Proc. ofthe OAS 2001, Montreal, pp. 69-76.,2001

17. Wiederhold G., Genesereth M., Basis for Mediation, In Proc. COOP/S'95 Conference,

Vienna Austria, available from US West, Boulder CO, May 1995.

	MANAGING MULTIPLE ONTOLOGIES AND ONTOLOGY EVOLUTION IN ONTOLOGGING
	3. INTRODUCTION
	4. ARCHITECTURE
	5. MULTIPLE ONTOLOGIES
	6. EVOLVING ONTOLOGIES
	6.1 Evolution Ontology

	7. RELATED WORKAND CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

