

Managing nitrogen for sustainable development

X. Zhang, E. A. Davidson, D. L. Mauzerall, T. D. Searchinger, Patrice Dumas, Y. Shen

▶ To cite this version:

X. Zhang, E. A. Davidson, D. L. Mauzerall, T. D. Searchinger, Patrice Dumas, et al.. Managing nitrogen for sustainable development. Nature, Nature Publishing Group, 2015, 528 (7580), pp.51-59. 10.1038/nature15743 . hal-01262089

HAL Id: hal-01262089 https://hal-enpc.archives-ouvertes.fr/hal-01262089

Submitted on 8 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1		Managing nitrogen for sustainable development
2	X	in Zhang ^{1,2,3} , Eric A. Davidson ³ , Denise L. Mauzerall ^{1,4} , Tim D. Searchinger ¹ ,
3		Patrice Dumas ^{5,6} , Ye Shen ⁷
4	1.	Woodrow Wilson School of Public and International Affairs, Princeton
5		University, Princeton, NJ, USA
6	2.	Princeton Environmental Institute, Princeton University, Princeton, NJ, USA
7	3.	Appalachian Laboratory, University of Maryland Center for Environmental
8		Science, Frostburg, MD, USA
9	4.	Department of Civil and Environmental Engineering, Princeton University,
10		Princeton, NJ, USA
11	5.	Centre de coopération internationale en recherche agronomique pour le
12		développement (CIRAD), Paris, France
13	6.	Centre International de Recherche sur l'Environnement et le Developpement
14		(CIRED), Paris, France
15	7.	Department of Epidemiology and Biostatistics, College of Public Health,
16		University of Georgia, Athens, GA, USA
17		

18 **Preface**

19 Improvements in nitrogen use efficiency (NUE) in crop production are critical for 20 addressing the triple challenges of food security, environmental degradation, and 21 climate change. Such improvements depend not only on technological innovation, 22 but also on poorly understood socio-economic factors. Here we analyze historical 23 patterns of agricultural NUE and find a broad range of national pathways of 24 agricultural development and related pollution. We estimate examples of NUE and 25 yield targets by geographic region and crop type required to meet global food 26 demand and environmental stewardship goals in 2050. Furthermore, we discuss 27 socio-economic polices and technological innovations that may help achieve them. 28

29 The nitrogen challenge

30 More than half the world's people are nourished by crops grown with 31 synthetic nitrogen (N) fertilizers, which were made possible in the early 20th 32 century by the invention of the Haber-Bosch process to reduce atmospheric 33 nitrogen gas (N₂) to reactive forms of N (ref. 1). A reliable supply of N and other 34 nutrients essential for plant growth have allowed farmers to greatly increase crop 35 production per unit land over the past 100 years, thus promoting economic 36 development, allowing larger populations, and sparing forests that would likely 37 otherwise have been converted to agriculture to meet food demand². Despite this 38 progress, nearly one billion people remain undernourished³. In addition, the global 39 population will increase by 2-3 billion by 2050, implying that demands for N 40 fertilizers and agricultural land are likely to grow substantially^{2,4}. While there are 41 many causes of undernourishment and poverty, careful N management will be needed to nourish a growing population while minimizing adverse environmental 42 43 and health impacts.

Unfortunately, unintended adverse environmental and human health impacts
result from reactive N escaping agricultural soils, including groundwater
contamination, eutrophication of freshwater and estuarine ecosystems,
tropospheric pollution related to nitrogen oxides and ammonia gas emissions, and
accumulation of the potent greenhouse gas and stratospheric ozone depleting
substance, nitrous oxide⁵⁻⁹ (Fig. 1). Some of these environmental consequences,
such as climate change and tropospheric ozone pollution, can also negatively affect

51 crop yields^{10,11} and human health¹². Hence, too little N means lower crop 52 productivity, poor human nutrition, and soil degradation¹³, but too much N leads to 53 environmental pollution and its concomitant threats to agricultural productivity, 54 food security, ecosystem health, human health, and economic prosperity. 55 Improving nitrogen use efficiency (NUE), namely the fraction of N input 56 harvested as product, is one of the most effective means of increasing crop 57 productivity while decreasing environmental degradation^{14,15}. Indeed, NUE has 58 been proposed as an indicator for assessing progress in achieving the new 59 Sustainable Development Goals (SDGs)¹⁶. Fortunately, we have a large and growing 60 knowledge base and technological capacity for managing N in agriculture¹⁷, and 61 awareness is growing among both agricultural and environmental stakeholder 62 groups that N use is both essential and problematic¹⁵. This growing recognition 63 from multiple stakeholders and ongoing advances in agricultural technology are 64 creating a possible turning point where knowledge-based N management could 65 advance substantially throughout the world. However, improving NUE requires 66 more than technical knowledge. Poorly understood cultural, social, and economic 67 incentives for and impediments to farmer adoption of NUE technologies and best management practices are also needed and are only beginning to receive 68 attention¹⁵. 69

Here we analyze historical patterns (1961 – 2011) of agricultural N use in
113 countries to demonstrate a broad range of pathways of socio-economic
development and related N pollution. Our analysis suggests that many countries
show a pattern similar to an Environmental Kuznets Curve (EKC), in which N

74 pollution first increases and then decreases with economic growth¹⁸⁻²¹. So far, most 75 EKC analyses have focused on pollution from industrial and transportation 76 sectors^{19,22,23}; the present study is one of few to consider agricultural N pollution in 77 the EKC context^{24,25}, and to apply it globally. However, the patterns of N pollution 78 are neither automatic nor inevitable. Socio-economic circumstances and policies 79 vary widely among countries, affecting factors such as fertilizer to crop price ratios 80 and crop mixes, which, as our analysis shows, influence the turning points of the 81 EKC. While technological and socio-economic opportunities for NUE improvement 82 vary regionally, our analysis shows that average global NUE in crop production 83 needs to improve from ~ 0.4 to ~ 0.7 to meet the dual goals of food security and 84 environmental stewardship in 2050.

85 Patterns of nitrogen pollution

86 As a useful indicator of potential losses of N to the environment from agricultural soils^{26,27}, N surplus (N_{sur}) is defined as the sum of N inputs (fertilizer, 87 88 manure, biologically fixed N, and N deposition in kg N ha⁻¹ yr⁻¹) minus N outputs^{28,29} (the N removed within the harvested crop products, N_{yield} in kg N ha⁻¹ yr⁻¹, Fig. 1). 89 Some of the N_{sur} recycles within the soil, but most N_{sur} is lost to the environment 90 91 over the long term, because the difference between annual inputs and outputs is 92 usually large relative to changes in soil N stocks. The related term of NUE, also 93 called the output-input ratio of N, is mathematically defined as the dimensionless 94 ratio of the sum of all N removed in harvest crop products (outputs or N_{vield}) divided by the sum of all N inputs to a cropland^{30,31} (Fig. 1). The N_{sur} , NUE, and 95

N_{yield} terms can serve as environmental pollution, agricultural efficiency, and food
security targets^{32,33}, respectively, which are inherently interconnected through their
mathematical definitions³³ and their real world consequences (Fig. 1).

99 Variable turning points on the Kuznets curve

100 As an indicator of the extent of environmental degradation, N_{sur} aggregated 101 to a national average for all crops (kg N ha⁻¹ yr⁻¹) is closely related to income growth, 102 mainly in two contrasting pathways: On one hand, increasing income enables 103 demand for more food consumption³³, which drives up both production intensity 104 and extensity and consequently results in more N lost to the environment. On the 105 other hand, increasing income is often accompanied by a societal demand for 106 improved environmental quality, such as clean water and clean air, and is also 107 accompanied by access to advanced technology^{18,19}. Consequently, governments 108 may impose regulatory policies or offer subsidies and incentives targeted at 109 reducing local or regional N pollution, and farmers may adopt more efficient 110 technologies.

Therefore, we hypothesize that N_{sur} follows a pattern similar to the EKC: 111 N_{sur} increases with income growth and the quest for food security at early stages of 112 113 national agricultural development (first phase), but then decreases with further 114 income growth during a more affluent stage (second phase), eventually approaching 115 an asymptote determined by the theoretical limit of the NUE of the crop system 116 (third phase, Fig. 2). Sustainable intensification of agriculture has been advanced as 117 the key to achieving the second phase of the EKC, including use of cultivars best 118 adapted to the local soil and climate conditions, improved water management,

119	balancing N application with other nutrient amendments, precision timing and
120	placement of fertilizer and manure applications to meet crop demands, the use of
121	enhanced efficiency fertilizers, and support tools to calculate proper dosing ^{14,17,34} .
122	While N_{sur} is the EKC environmental degradation indicator, the mathematical
123	relationship between N_{sur} and NUE results in nearly mirror images in Fig. 2
124	(although see Section 1 in Supplementary Information for a discussion of situations
125	in which N_{sur} and NUE can both increase simultaneously).
126	Among the three phases of the N_{sur} trend, it is the second phase of
127	sustainable intensification with increasing affluence that is of greatest
128	contemporary interest, while the first phase of agricultural expansion is well
129	documented ^{30,31} , and the third phase cannot yet be evaluated. So far, no country has
130	yet approached the third phase, nor do we know how close to 100% efficiency the
131	use of N inputs could become. For the first phase, as incomes rise, virtually all
132	countries initially increase fertilizer use, N_{yield} , and N_{sur} while NUE decreases ^{30,31} .
133	To test the existence of the second phase, we examine whether the relationship
134	between GDP per capita and N surplus breaks away from the linearly (or
135	exponentially) increasing trend and follows more of a bell-shaped pattern over the
136	long term.
137	We tested the existence of a sustainable intensification phase (or an EKC
138	pattern) with a five-decade record (1961-2011) of N_{sur} and GDP per capita ^{28,35-40}
139	with a fixed effects model $^{41-43}$ across 113 countries for which sufficient data were
140	available and a regression model for each individual country $^{18,44-46}$ (See Sections 1

141 and 2 in Supplementary Information). The fixed effects model shows a significant

142	quadratic relationship between GDP per capita and N_{sur} (p<0.001, Supplementary
143	Table 9). Regressions between GDP per capita and N_{sur} for each individual country
144	fall into five response types (examples of each group are shown in Fig. 3). Of the
145	113 countries, 56 countries (Group 1) show bell-shaped relationships between N_{sur}
146	and GDP per capita, indicating that N_{sur} increased and then leveled off or decreased
147	as economic development proceeded, as expected for an EKC (two examples are
148	illustrated in Fig. 3a). Those 56 countries account for about 87% of N fertilizer
149	consumption and about 70% of harvested area of all 113 countries. These data
150	provide support for an EKC pattern for N pollution from agriculture, although as we
151	show below, the potential causes of EKC shapes and turning points are complex.
152	Furthermore for 28 of the 56 countries, by 2011 the rate of increase in N_{sur} had only
153	slowed or leveled off and had not yet actually decreased, indicating likely but still
154	uncertain conformance with an EKC (Supplementary Tables 5 and 6).
155	Countries with a linear or accelerating increase in N_{sur} (Group 3 and most
156	countries in Group 2) as GDP per capita grew have not yet approached an EKC
157	turning point (e.g., Fig. 3b), but could still follow an EKC in the future as their N
158	input growth slows and NUE increases. Most countries showing an insignificant
159	relationship between N_{sur} and GDP per capita (Group 4) or with a negative N_{sur}
160	(Group 5) have had such little income growth and use so little N that the EKC
161	concept cannot be evaluated yet due to limited change in the country's GDP per
162	capita (e.g., Fig. 3b).

163 Classic empirical studies on EKC, such as Grossman and Krueger (ref. 19),
164 have been criticized due to concerns regarding statistical analyses of time series

data that may be non-stationary⁴⁷⁻⁴⁹. Therefore, we examined the stationarity of our 165 166 data (Supplementary Table 7) and used the Autoregressive Distributed Lag 167 modeling approach (ARDL)⁵⁰, which is the most frequently used method for the 168 cointegration test in EKC empirical studies published in the last decade⁴³, to test 169 cointegration on a subset of the data. The ARDL regression models showed the 170 same long-term relationships between N surplus and GDP per capita as presented 171 above for all tested countries (Supplementary Table 8). The application of the ARDL 172 method in EKC studies has also been criticized recently for including the quadratic 173 term in the cointegration test, and some new methods have been proposed^{51,52}. 174 Further evaluation is needed on the limitations and performance of the ARDL and 175 newly proposed methods for EKC analyses.

176 Another common criticism of the EKC concept is that the turning point for 177 transitioning to declining environmental degradation is highly variable among 178 pollutants and among countries^{18,53,54}. Consistent with those observations, no 179 specific value of GDP per capita was a good predictor of turning points for N_{sur} on 180 the EKC among countries in the present study. For example, *N_{sur}* in Germany and 181 France started to decline when GDP per capita reached about \$25,000 in the 1980s, 182 while N_{sur} in the USA leveled off and started to decline more recently when GDP per 183 capita reached about \$40,000. Our analysis also shows that countries have widely different values of NUE and N_{sur} even when yields are similar. Some of this 184 185 variation is likely due to underlying biophysical conditions, such as rainfall 186 variability and soil quality, which influence crop choices, yield responses, and NUE.

187 However, cultural, social, technological, economic and policy factors also likely188 affect the turning points on the EKC trajectory of each country.

189 The turning point in European Union (EU) countries appears to have been 190 driven at least in part by policies⁵⁵. Beginning in the late 1980s and through the 191 early 2000s, increases in NUE and decreases in N_{sur} in several EU countries 192 coincided with changes in the EU Common Agricultural Policy, which reduced crop 193 subsidies, and adoption of the Nitrates Directive, which limited manure application 194 rates on cropland 56,57. Relying mostly on volunteer approaches in the USA, the 195 leveling off and modest decrease in N_{sur} since the 1990s is largely the result of 196 increasing crop yields while holding N inputs steady (Fig. 4a), which has resulted 197 from improved crop varieties, increased irrigation and other technological 198 improvements^{57,58}. A few state regulatory programs have required nutrient 199 management plans, placed limitations on fertilizer application dates and amounts, 200 and required soil and plant testing, with varying degrees of success⁵⁸⁻⁶⁰. Concerns 201 about water and air quality, estuarine hypoxic zones, stratospheric ozone depletion, 202 and climate change have also stimulated many outreach efforts by governments, 203 fertilizer industry groups, retailers, and environmental organizations to provide 204 farmers with information, training and innovative financial incentives to voluntarily 205 improve NUE (refs 15,59,61,62).

206 Fertilizer to crop price ratios

207 Policy can impact NUE not only through regulation and outreach, but also by 208 affecting prices at the farm gate. The ratio of fertilizer to crop prices (R_{fc}) has been 209 widely used in combination with data on yield responses to fertilizer application to

210	advise farmers on fertilizer application rates that yield optimal economic returns ⁶³⁻
211	⁶⁵ . In addition to influencing fertilizer application rates, R_{fc} also affects farmer
212	decisions regarding their choice of technologies and practices for nutrient
213	management, all of which affect NUE and N_{sur} (ref. 33). We tested whether the
214	influence of R_{fc} appears at the national level using two methods: one examines the
215	correlation coefficient of R_{fc} and NUE for individual countries, and the other applies
216	a fixed effects model to all data to test the correlation between R_{fc} and NUE with
217	and without considering GDP per capita and crop mix (see Section 2.3 in
218	Supplementary Information). Because both the fertilizer and crop prices are at the
219	farm gate, they include the effects of government subsidies ³⁵ . The results for maize,
220	for which the most data are available, indicate that the fertilizer to maize price ratio
221	is positively correlated with NUE using both statistical approaches (Supplementary
222	Table 12). We also found that maize prices are linearly correlated with prices of
223	most major crops, so we infer that the fertilizer to maize price ratio is likely a good
224	index for the long-term trend of R_{fc} for all crops. Indeed, we found a significant
225	positive correlation between historical values of R_{fc} for maize and the NUE
226	aggregated for all other crops. Moreover, this correlation is still significant after
227	adjusting for the effect of GDP per capita and crop mix (Supplementary Table 11).
228	Increases in R_{fc} since the 1990s, in both France and the USA (Fig. 4c),
229	coincided with increases in NUE (ref. 57) and may have affected the EKC turning
230	point. At the other extreme, both China and India have had declining values of R_{fc}
231	(Fig. 4c), owing to heavily subsidized fertilizer prices ^{25,66} . Fertilizer subsidies

232reached \$18 billion in China in 2010 (ref. 66). Rates of N inputs have now reached233levels of diminishing returns for crop yield in China (Fig. 4a), and China has the234largest N_{sur} and one of the lowest nationally averaged NUE values in the world235(Table 1). The very low R_{fc} in China incentivizes farmers to attempt to increase236crop yield by simply adding more N or by choosing more N-demanding cropping237systems (e.g. change from cereal production to greenhouse vegetable production⁶⁷)238instead of adopting more N-efficient technologies and management practices.

239 Not all fertilizer subsidies are inappropriate. Where infrastructure for 240 producing and transporting fertilizers is poor, as is the case for most of Africa, the 241 cost can be so high that fertilizer use is prohibitively expensive for small holder 242 farmers, resulting in low yield and small, even negative (soil mining) N surplus. In 243 these cases, there is room for fertilizer subsidies to increase N inputs, because 244 significant increases in N inputs could be absorbed and greatly increase crop yields 245 without much immediate risk of N pollution⁶⁸⁻⁷⁰. When properly drawn, temporary 246 fertilizer subsidies structured to build up the private delivery network and with a 247 built-in exit strategy can be an appropriate step⁷¹. The longer term question for 248 these countries will be whether they can "tunnel through" the EKC by shifting crop 249 production directly from a low-yield-high-NUE status to a high-yield-high-NUE 250 status. This shift will require leapfrogging over historical evolution of agricultural 251 management practices by employing technologies and management practices that 252 promote high NUE before N surpluses grow to environmentally degrading levels. 253 Acquiring and deploying such technologies, such as improved seed, balanced

- 254 nutrient amendments, and water management, will require investments in
- technology transfer and capacity building.

256 Importance of crop mix

257 Another factor that may confound EKC trajectories is the mix of crops 258 countries grow over time, which is affected by both demand and trade policies⁷². 259 For example, changing patterns of crop mixes help explain some of the differences 260 between China and the USA. Since the 1990s an increasing percentage of 261 agricultural land in China has been devoted to fruit and vegetable production, and N 262 application to fruits and vegetables now accounts for about 30% of total fertilizer 263 consumption^{38,73}, with an average NUE of only about 0.10 (which is below the 264 globally averaged NUE for fruits and vegetables of 0.14, and well below the global 265 averages for other major crops; Table 1)^{74,75}. At the same time, China has been increasingly relying on imported soybeans, a N fixing plant that has very low N_{sur} 266 267 (Table 1)⁷⁶. By contrast, US soybean production has been growing and now 268 accounts for about 30% of the harvested area for crop production (excluding land 269 devoted to forage production) in the USA. While fertilizer subsidies in China likely 270 account for much of the low NUE there, our analysis shows that the difference in 271 crop mix also accounts for nearly half of the NUE difference between China and USA 272 (Fig. 4b).

To address this issue globally, we tested the relationship between NUE and the fraction of harvested area for fruits and vegetables with a fixed effects model for the 113 countries (Supplementary Table 11). The fraction of harvested area for

fruit and vegetable production negatively correlates with NUE, and that relationshipis still significant even after adjusting for the effect of GDP per capita.

278 Meeting the growing challenge

279 Agriculture is currently facing unprecedented challenges globally. On one 280 hand, crop production needs to increase by about 60-100% from 2007 to 2050 to 281 meet global food demand^{3,77-79}. On the other hand, anthropogenic reactive N input 282 to the biosphere has already exceeded a proposed planetary boundary^{5,80}, and the increasing demand for food and biofuel is likely to further drive up N inputs. 283 284 Therefore, it is critical to establish global and national goals for N use in crop 285 production and to use those goals as reference points to evaluate progress made 286 and guide NUE improvement.

287 Global and national goals

288 The planetary boundary for human use of reactive N that can be tolerated 289 without causing unsustainable air and water pollution has been defined in mainly 290 two ways: 1) as the maximum allowable amount of anthropogenic newly fixed N in 291 agriculture that can be introduced into the earth system (62-82 Tg N yr⁻¹)^{5,80}, and 2) 292 as the maximum allowable N surplus released from agricultural production to the 293 environment. Calculations of planetary boundaries according to the first definition 294 require assumptions about nutrient use efficiency in agriculture. As NUE increases, 295 more N inputs would be manageable while still remaining within air and water 296 pollution limits as more applied N would be taken up by harvested crops. Therefore, 297 rather than focusing on a planetary boundary of allowable newly-fixed-N, which

298	varies depending on the NUE assumption, we follow the second approach by
299	estimating what NUE would be needed to produce the food demand projected for
300	2050 (ref 3; Table 1) while keeping N_{sur} within bounds estimated for acceptable air
301	and water quality. Over 60% of N pollution is estimated to originate from crop
302	production ⁷⁸ , so this is the primary sector that must be addressed to reduce N
303	pollution. Based on an analysis of the implications of N cycling in several "shared
304	socio-economic pathways ^{"81} , Bodirsky et al. (ref. 78) calculated that global
305	agricultural N_{sur} should not exceed about 50-100 Tg N yr ⁻¹ . Thus we use 50 Tg N yr ⁻¹
306	as an estimate of the global limit of N_{sur} from crop production.
307	Meeting the 2050 food demand of 107 Tg N yr $^{-1}$ projected by Food and
308	Agriculture Organization (FAO, ref. 3) while reducing N_{sur} from the current 100 Tg
309	N yr ⁻¹ to a global limit of 50 Tg N yr ⁻¹ (ref. 78) requires very large across-the-board
310	increases in NUE. Globally, NUE would increase from \sim 0.4 to \sim 0.7, while the crop
311	yield would increase from 74 to 107 Tg N yr ⁻¹ (Table 1). Recognizing regional
312	differences in crop production and development stage, this average could be
313	achieved if average NUE rose to 0.75 in the EU and USA, to 0.60 in China and the rest
314	of Asia (assuming they continue to have a high proportion of fruits and vegetables in
315	their crop mix), and to 0.70 in other countries, including not dropping below 0.70 in
316	Sub-Saharan Africa as it develops (Table 1). Similarly, NUE targets could be
317	established for individual crops, such as improving the global average from 0.14 to
318	0.40 for fruits and vegetables, and increasing the global average NUE for maize from
319	0.50 to 0.70 (Table 1).

320 The challenges in achieving these ambitious goals differ among countries. 321 Fig. 5 shows the trajectories of major crop producing countries on the yield-NUE 322 map for the last five decades. The x and y axes show the two efficiency terms in crop 323 production, while the grey scale displays *N_{sur}*. To compare the *N_{sur}* expressed on 324 the field scale in Fig. 5 (kg N ha⁻¹ yr⁻¹) to a global limit of 50-100 Tg N yr⁻¹, the 325 average N_{sur} target would need to be 39-78 kg N ha⁻¹ yr⁻¹ across the 2010 harvested 326 area of 1.3 billion ha. For the examples shown, the USA, France, and Brazil appear to 327 be on this trajectory, although further progress is still needed. In contrast, China 328 and India not only have not yet found an EKC turning point, but also have much 329 ground to make up to reduce their N_{sur} once they turn the corner on their EKC. 330 Although a great challenge, this could also be seen as an opportunity to reduce 331 fertilizer expenditures while increasing agricultural productivity. Malawi, like many 332 Sub-Saharan African countries and other least developed countries, has been on a 333 classic downward trajectory of decreasing NUE as it has started to increase N inputs, 334 although evidence from recent years suggest that this decline may have reversed, 335 which would be a necessary first step to tunnel through the EKC (Fig. 5).

336 Achieving nitrogen use efficiency targets

Achieving ambitious NUE targets while also increasing yields to meet future food demands requires implementation of technologies and management practices at the farm scale, which has been described widely and in considerable detail in the agricultural, environmental, and development literature¹⁷. Some common principles include the "4Rs" approach of applying the *right* source, at the *right* rate, in the *right* time, at the *right* place³⁴. However, the appropriate technologies and

343 management practices to achieve the 4Rs vary regionally depending on the local 344 cropping systems, soil types, climate, and socio-economic situations. Where 345 improvements in plant breeding, irrigation, and application of available 4R 346 technologies have already made large gains, new technological developments may 347 be needed to achieve further gains, such as more affordable slow-release fertilizers, 348 nitrification and urease inhibitors, fertigation, and high-tech approaches to 349 precision agriculture⁵⁸. It is promising that the development and the combination of 350 information technology, remote sensing, and ground measurements will make the 351 information about precision farming more readily available, accessible, affordable, 352 and site-specific⁸². In many cases, large gains could still be made with more 353 widespread adoption of existing technologies, but a myriad of social and economic 354 factors affecting farmer decision making regarding nutrient management have only 355 recently begun to receive attention and are critical in improving NUE (ref. 15). 356 Socio-economic impediments, often related to cost and perceived risk, as well as 357 lack of trust in recommendations by agricultural extension agents, often discourage 358 farmers from adopting improved nutrient management practices^{59,60,83,84}. 359 Experience has shown that tailoring regulations, incentives, and outreach to local 360 conditions, administered and enforced by local entities, and where local trust and 361 "buy-in" has been obtained is essential for the success of efforts designed to improve 362 NUE (ref. 15).

While much of the work must be done at the farm scale, there are important policies that should be implemented on national and multi-national scales. First, improving NUE should be adopted as one of the Sustainable Development Goals

366 (SDGs)¹⁶ and should be used in conjunction with crop yield and perhaps other soil 367 health parameters to measure the sustainability of crop production systems. As 368 part of their commitments to achieve a SDG on NUE, countries should be strongly 369 encouraged to routinely collect data on their N management in crop and livestock 370 production. These data should be used to trace trajectories of the three indices of 371 agricultural N pollution, agricultural efficiency, and food security targets (i.e. N_{sur}, NUE, and *N*_{vield}), as we have done here (Fig. 5) to demonstrate where progress is 372 373 being made and where stronger local efforts are needed. The data used to construct 374 Fig. 5 have served to demonstrate trends, but both improved data quality and 375 international harmonization of data standards are needed. Regular attention should 376 be given to these trends to establish national and local targets and policies. Just as protocols established by the Intergovernmental Panel on Climate Change permit 377 378 nations to gage their progress and commitment for reducing greenhouse gas 379 emissions, protocols for measuring and reporting on a SDG pertaining to NUE could 380 enable governments to assess their progress in achieving food security goals while 381 maintaining environmental quality.

Second, more attention is needed on nutrient management in livestock
operations and on human dietary choices. Here we have focused entirely on crop
production, largely because of availability of data, but the *N_{sur}*, NUE, and *N_{yield}*indices are equally important in livestock management⁸⁵. Indeed, soybeans and
some cereals have high NUE as crops, but when fed to livestock, efficient recycling of
the manure-N is challenging, resulting in lower integrated NUE for the croplivestock production system⁸⁶. The crop production scenario used here for 2050

389 (Table 1) makes assumptions about future dietary choices³, which are beyond the 390 scope of this study, but we note that future trends in diet will affect the demand for crop and livestock products, the crop mixes grown, and hence the NUE and N_{sur} of 391 392 future agricultural systems⁷². 393 Third, a similar approach to efficiency analysis would also be valuable for 394 phosphorus (P) fertilizer management, interactions of N and P management, and 395 reducing both N and P loading into aquatic ecosystems⁸⁷⁻⁹⁰. 396 Fourth, national and international communities should facilitate technology 397 transfer and promote agricultural innovation. Stronger international collaborations 398 and investments in research, extension, and human resources are urgently needed 399 for sharing knowledge and experience to create political and market environments 400 that help incentivize the development and implementation of more efficient 401 technologies. Technology transfer and capacity building will be needed to enable 402 Sub-Saharan African countries to tunnel through the EKC (Fig. 5). 403 These solutions to improving NUE will require cross-disciplinary and cross-404 sectorial partnerships, such as: (1) integrating research and development of 405 innovative agricultural technology and management systems with socio-economic 406 research and outreach needed for such innovations to be socially and economically 407 viable and readily adopted by farmers; (2) analyzing the nexus of food, water, 408 nutrients, and energy management to avoid pollution swapping and to optimize the 409 net benefits to farmers, the environment, and society; (3) promoting knowledge and

410 data sharing among private and public sectors to advance science-based nutrient

411 management; and (4) training the next generation of interdisciplinary agronomic

412 and environmental scientists equipped with broad perspectives and skills

413 pertaining to food, water, energy, and environment issues.

414 The Environmental Kuznets Curve has often been described as an optimist's 415 view of a world with declining environmental degradation. Here we have shown 416 that there is evidence, indeed, hope for the EKC pattern of declining N pollution with 417 improving efficiencies in agriculture. However, we have also shown that 418 continuation of progress to date is neither inevitable nor sufficient to achieve 419 projected 2050 goals of both food security and environmental stewardship. Turning 420 points and trajectories of national agricultural EKCs will depend largely on 421 agricultural, economic, environmental, educational, and trade policies, and these 422 will largely dictate the food and pollution outputs of future agriculture. 423

References:

425	1	Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a
426		century of ammonia synthesis changed the world. <i>Nature Geosci.</i> 1 , 636-639,
427		doi: 10.1038/Ngeo325 (2008).
428	2	Foley, J. A. <i>et al.</i> Solutions for a cultivated planet. <i>Nature</i> 478 , 337-342, doi:
429		10.1038/Nature10452 (2011).
430	3	Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the
431		2012 revision. <i>ESA Work. Pap</i> 3 (2012).
432	4	Mueller, N. D. <i>et al.</i> Closing yield gaps through nutrient and water
433		management. <i>Nature</i> 490 , 254-257, doi:10.1038/nature11420 (2012).
434	5	Steffen, W. et al. Planetary boundaries: Guiding human development on a
435		changing planet. <i>Science</i> , 1259855 (2015).
436		This paper provides the most recent updates on the research under the
437		planetary boundaries framework.
438	6	Galloway, J. N. <i>et al.</i> The nitrogen cascade. <i>Bioscience</i> 53 , 341-356, doi:
439		10.1641/0006-3568(2003)053[0341:Tnc]2.0.Co;2 (2003).
440		This is a classic paper on the many interacting environmental impacts
441		of reactive forms of nitrogen as they move through the biosphere.
442	7	Galloway, J. N. <i>et al.</i> Transformation of the nitrogen cycle: recent trends,
443		questions, and potential solutions. <i>Science</i> 320 , 889-892 (2008).
444	8	Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim.
445		<i>Change</i> 2 , 410-416, doi:10.1038/nclimate1458 (2012).
446	9	Griffis, T. J. et al. Reconciling the differences between top-down and bottom-
447		up estimates of nitrous oxide emissions for the U.S. Corn Belt. <i>Global</i>
448		Biogeochemical Cycles 27, 746-754, doi:10.1002/gbc.20066 (2013).
449	10	Avnery, S., Mauzerall, D. L., Liu, J. & Horowitz, L. W. Global crop yield
450		reductions due to surface ozone exposure: 1. Year 2000 crop production
451		losses and economic damage. Atmos. Environ. 45, 2284-2296 (2011).
452	11	Robertson, G. P. <i>et al.</i> Nitrogen–climate interactions in US agriculture.
453		Biogeochemistry 114 , 41-70 (2013).
454	12	Jerrett, M. <i>et al.</i> Long-term ozone exposure and mortality. <i>N. Engl. J. Med.</i> 360 ,
455	4.0	1085-1095 (2009).
456	13	Sanchez, P. A. & Swaminathan, M. Hunger in Africa: the link between
457		unhealthy people and unhealthy soils. <i>The Lancet</i> 365 , 442-444 (2005).
458	14	Cassman, K. G., Dobermann, A., Walters, D. T. & Yang, H. Meeting cereal
459		demand while protecting natural resources and improving environmental
460		quality. <i>Annual Review of Environment and Resources</i> 28 , 315-358, doi:
461	1 -	10.1146/Annurev.Energy.28.040202.122858 (2003).
462	15	Davidson, E. A., Suddick, E. C., Rice, C. W. & Prokopy, L. S. More Food, Low
463		Pollution (Mo Fo Lo Po): A Grand Challenge for the 21st Century. <i>J. Environ.</i>
464 465		Qual. 44, 305-311 (2015).
465 466		This paper reports outcomes of an interdisciplanary conference on the technical social and economic impediments to improving pitrogen use
400		technical, social, and economic impediments to improving nitrogen use

 series of papers addressing this issue. SDSN. Indicators and a monitoring framework of for Sustainable Development Goals - Revised working Draft, 16 January 2015. A report by the Leadership Council of the Sustainable Development Solutions Network. Sustainable Development Solutions Network. Available on-line: http://unsdsn.org/resources (2015). Newell Price, J. et al. An inventory of mitigation methods and guide to their effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture. Report prepared as part of Defra Project WQ0106, ADAS and Rothamsted Research North Wyke (2011). Binda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of Studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. et al. Economic growth, carrying capacity, and the environment. Science 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Zole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Envir	467		efficiency in crop and animal production systems, and it introduces a
 Development Goals – Revised working Draft, 16 January 2015. A report by the Leadership Council of the Sustainable Development Solutions Network. Sustainable Development Solutions Network. Available on-line: http://unsdsn.org/resources (2015). Newell Price, J. <i>et al.</i> An inventory of mitigation methods and guide to their effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture. <i>Report prepared as part of Defra Project WQ0106,</i> <i>ADAS and Rothamsted Research North Wyke</i> (2011). Dinda, S. Environmental Kuznets Curve hypothesis: A survey. <i>Ecol. Econ.</i> 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> and population on agrochemical use: evidence from post-liberalization India. <i>Environment, Development and Sustainability</i>, 1-17 (2015). Yan Beek, C., Brouwer, L. & Onema, O., The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Yan Beeke, C., Brouwer, L. & Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N_20 emissions: a ca	468		series of papers addressing this issue.
 the Leadership Council of the Sustainable Development Solutions Network. Sustainable Development Solutions Network. Available on-line: http://unsdsn.org/resources (2015). Newell Price, J. <i>et al.</i> An inventory of mitigation methods and guide to their effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture. <i>Report prepared as part of Defra Project WQ0106</i>, <i>ADAS and Rothamsted Research North Wyke</i> (2011). Binda, S. Environmental Kuznets Curve hypothesis: A survey. <i>Ecol. Econ.</i> 49, 431-455, doi:10.1016/j.ceolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of</i> <i>Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment,</i> <i></i>	469	16	SDSN. Indicators and a monitoring framework of for Sustainable
 Sustainable Development Solutions Network. Available on-line: http://unsdsn.org/resources (2015). Newell Price, J. <i>et al.</i> An inventory of mitigation methods and guide to their effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture. <i>Report prepared as part of Defra Project WQ0106</i>, <i>ADAS and Rothamsted Research North Wyke</i> (2011). Dinda, S. Environmental Kuznets Curve hypothesis: A survey. <i>Ecol. Econ.</i> 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment, Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-24	470		Development Goals – Revised working Draft, 16 January 2015. A report by
 http://unsdsn.org/resources (2015). Newell Price, J. et al. An inventory of mitigation methods and guide to their effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture. Report prepared as part of Defra Project WQ0106, ADAS and Rothamsted Research North Wyke (2011). Dinda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. Quarterly Journal of Economics 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. et al. Economic growth, carrying capacity, and the environment. Science 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O. The use of farmgate bala	471		the Leadership Council of the Sustainable Development Solutions Network.
 Newell Price, J. et al. An inventory of mitigation methods and guide to their effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture. Report prepared as part of Defra Project WQ0106, ADAS and Rothamsted Research North Wyke (2011). Dinda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. Quarterly Journal of Economics 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. et al. Economic growth, carrying capacity, and the environment. Science 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O., The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. &	472		Sustainable Development Solutions Network. Available on-line:
 effects on diffuse water pollution, greenhouse gas emissions and ammonia emissions from agriculture. Report prepared as part of Defra Project WQ0106, ADAS and Rothamsted Research North Wyke (2011). Dinda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment, Development and Sustainability</i>, 1-17 (2015). Van Breek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emiss	473		http://unsdsn.org/resources (2015).
 emissions from agriculture. <i>Report prepared as part of Defra Project WQ0106</i>, <i>ADAS and Rothamsted Research North Wyke</i> (2011). Dinda, S. Environmental Kuznets Curve hypothesis: A survey. <i>Ecol. Econ.</i> 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment, Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring	474	17	Newell Price, J. et al. An inventory of mitigation methods and guide to their
 emissions from agriculture. <i>Report prepared as part of Defra Project WQ0106</i>, <i>ADAS and Rothamsted Research North Wyke</i> (2011). Dinda, S. Environmental Kuznets Curve hypothesis: A survey. <i>Ecol. Econ.</i> 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment, Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring	475		effects on diffuse water pollution, greenhouse gas emissions and ammonia
 Dinda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. Quarterly Journal of Economics 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. et al. Economic growth, carrying capacity, and the environment. Science 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proceedings of the National Academy of Sciences 107, 8035-8040 <!--</td--><td>476</td><td></td><td></td>	476		
 Dinda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 49, 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. Quarterly Journal of Economics 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. et al. Economic growth, carrying capacity, and the environment. Science 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proceedings of the National Academy of Sciences 107, 8035-8040 <!--</td--><td>477</td><td></td><td>ADAS and Rothamsted Research North Wyke (2011).</td>	477		ADAS and Rothamsted Research North Wyke (2011).
 479 431-455, doi:10.1016/j.ecolecon.2004.02.011 (2004). 480 19 Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). 481 This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. 484 20 Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). 486 21 Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). 489 22 Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). 489 23 Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). 494 44 Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). 497 25 Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment</i>, <i>Development and Sustainability</i>, 1-17 (2015). 26 Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). 28 Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. <i>Proceedings of the Nati</i>	478	18	
 Grossman, G. M. & Krueger, A. B. Economic-Growth and the Environment. <i>Quarterly Journal of Economics</i> 110, 353-377, doi: 10.2307/2118443 (1995). This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment, Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Onema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. <i>Proceedings of the National Academy of Sciences</i> 100, 20882-20887 (2013). Liu, J.	479		
 481 Quarterly Journal of Economics 110, 353-377, doi: 10.2307/2118443 (1995). 482 This was among the first set of studies to provide empirical evidence for 483 the Environmental Kuznets Curve hypothesis. 484 20 Arrow, K. et al. Economic growth, carrying capacity, and the environment. 485 Science 15, 91-95 (1995). 486 21 Panayotou, T. Empirical tests and policy analysis of environmental 487 degradation at different stages of economic development. (International 488 Labour Organization, 1993). 489 22 Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an 490 empirical analysis. Environment and development economics 2, 401-416 491 (1997). 492 23 Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review 493 of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). 494 24 Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical 495 analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of 496 Environmental Science & Engineering, 1-12 (2014). 497 25 Singh, A. P. & Narayanan, K. Impact of economic growth and population on 498 agrochemical use: evidence from post-liberalization India. Environment, 499 Development and Sustainability, 1-17 (2015). 26 Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil 491 surface balances as estimator for nitrogen leaching to surface water. Nutr. 492 Cycl. Agroecosyst. 67, 233-244 (2003). 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. 400 Towards an agronomic assessment of N₂O emissions: a case study for arable 405 crops. Eur. J. Soil Sci. 61, 903-913 (2010). 28 Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus 402 cycles in agriculture induced by livestock production over the 1900-2050 403 period. Proceedings of the National Academy of Sciences 107, 8035-8040		19	
 This was among the first set of studies to provide empirical evidence for the Environmental Kuznets Curve hypothesis. Arrow, K. et al. Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of</i> <i>Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment,</i> <i>Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr.</i> <i>Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). Liu, J. <i>et al.</i> A high-resolution assessment on global ni			
 the Environmental Kuznets Curve hypothesis. Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment, Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. <i>Proceedings of the National Academy of Sciences</i> 100, 20882-20887 (2013). Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 			
 484 20 Arrow, K. <i>et al.</i> Economic growth, carrying capacity, and the environment. <i>Science</i> 15, 91-95 (1995). 486 21 Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). 22 Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. <i>Environment and development economics</i> 2, 401-416 (1997). 23 Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). 24 Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). 25 Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment, Development and Sustainability</i>, 1-17 (2015). 26 Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). 28 Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). 29 Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 			
 Science 15, 91-95 (1995). Panayotou, T. Empirical tests and policy analysis of environmental degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proceedings of the National Academy of Sciences 110, 20882-20887 (2013). Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040 		20	
 degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proceedings of the National Academy of Sciences 110, 20882-20887 (2013). Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040 	485		
 degradation at different stages of economic development. (International Labour Organization, 1993). Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proceedings of the National Academy of Sciences 110, 20882-20887 (2013). Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040 	486	21	Panayotou, T. Empirical tests and policy analysis of environmental
 Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences 110, 20882-20887 (2013). Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040 	487		
 empirical analysis. Environment and development economics 2, 401-416 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. Handbook of economic growth 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. Proceedings of the National Academy of Sciences 110, 20882-20887 (2013). Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040 	488		Labour Organization, 1993).
 (1997). Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment</i>, <i>Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	489	22	Cole, M. A., Rayner, A. J. & Bates, J. M. The environmental Kuznets curve: an
 Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment</i>, <i>Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	490		empirical analysis. <i>Environment and development economics</i> 2 , 401-416
 of theory and empirics. <i>Handbook of economic growth</i> 1, 1749-1821 (2005). Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment</i>, <i>Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr. Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	491		(1997).
 Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical analysis of the Environmental Kuznets Curve in agrochemicals. <i>Frontiers of</i> <i>Environmental Science & Engineering</i>, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment</i>, <i>Development and Sustainability</i>, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr.</i> <i>Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	492	23	Brock, W. A. & Taylor, M. S. Economic growth and the environment: a review
 analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of Environmental Science & Engineering, 1-12 (2014). Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environment, Development and Sustainability, 1-17 (2015). Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. Cycl. Agroecosyst. 67, 233-244 (2003). Yan Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences 110, 20882-20887 (2013). Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040 	493		of theory and empirics. <i>Handbook of economic growth</i> 1 , 1749-1821 (2005).
 496 Environmental Science & Engineering, 1-12 (2014). 497 25 Singh, A. P. & Narayanan, K. Impact of economic growth and population on 498 agrochemical use: evidence from post-liberalization India. Environment, 499 Development and Sustainability, 1-17 (2015). 500 26 Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil 501 surface balances as estimator for nitrogen leaching to surface water. Nutr. 502 Cycl. Agroecosyst. 67, 233-244 (2003). 503 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. 504 Towards an agronomic assessment of N₂O emissions: a case study for arable 505 crops. Eur. J. Soil Sci. 61, 903-913 (2010). 506 28 Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus 507 cycles in agriculture induced by livestock production over the 1900–2050 508 period. Proceedings of the National Academy of Sciences 110, 20882-20887 509 (2013). 510 29 Liu, J. et al. A high-resolution assessment on global nitrogen flows in 511 cropland. Proceedings of the National Academy of Sciences 107, 8035-8040 	494	24	Li, F., Dong, S., Li, F. & Yang, L. Is there an inverted U-shaped curve? Empirical
 497 25 Singh, A. P. & Narayanan, K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. <i>Environment</i>, <i>Development and Sustainability</i>, 1-17 (2015). 500 26 Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr.</i> <i>Cycl. Agroecosyst.</i> 67, 233-244 (2003). 503 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). 506 28 Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). 510 29 Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	495		analysis of the Environmental Kuznets Curve in agrochemicals. Frontiers of
 498 agrochemical use: evidence from post-liberalization India. <i>Environment</i>, 499 <i>Development and Sustainability</i>, 1-17 (2015). 500 26 Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil 501 surface balances as estimator for nitrogen leaching to surface water. <i>Nutr.</i> 502 <i>Cycl. Agroecosyst.</i> 67, 233-244 (2003). 503 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. 504 Towards an agronomic assessment of N₂O emissions: a case study for arable 505 crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). 506 28 Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus 507 cycles in agriculture induced by livestock production over the 1900–2050 508 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 509 (2013). 510 29 Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in 511 cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	496		Environmental Science & Engineering, 1-12 (2014).
 499 Development and Sustainability, 1-17 (2015). 500 26 Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutr. 502 Cycl. Agroecosyst. 67, 233-244 (2003). 503 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903-913 (2010). 506 28 Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences 110, 20882-20887 (2013). 510 29 Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040 	497	25	Singh, A. P. & Narayanan, K. Impact of economic growth and population on
 Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. <i>Nutr.</i> <i>Cycl. Agroecosyst.</i> 67, 233-244 (2003). Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	498		agrochemical use: evidence from post-liberalization India. Environment,
 501 surface balances as estimator for nitrogen leaching to surface water. <i>Nutr.</i> 502 <i>Cycl. Agroecosyst.</i> 67, 233-244 (2003). 503 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. 504 Towards an agronomic assessment of N₂O emissions: a case study for arable 505 crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). 506 28 Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus 507 cycles in agriculture induced by livestock production over the 1900–2050 508 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 509 (2013). 510 29 Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in 511 cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	499		Development and Sustainability, 1-17 (2015).
 502 <i>Cycl. Agroecosyst.</i> 67, 233-244 (2003). 503 27 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. 504 Towards an agronomic assessment of N₂O emissions: a case study for arable 505 crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). 506 28 Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus 507 cycles in agriculture induced by livestock production over the 1900–2050 508 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 509 (2013). 510 29 Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in 511 cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	500	26	Van Beek, C., Brouwer, L. & Oenema, O. The use of farmgate balances and soil
 Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C. Towards an agronomic assessment of N₂O emissions: a case study for arable crops. <i>Eur. J. Soil Sci.</i> 61, 903-913 (2010). Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 (2013). Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	501		surface balances as estimator for nitrogen leaching to surface water. Nutr.
504Towards an agronomic assessment of N20 emissions: a case study for arable505crops. Eur. J. Soil Sci. 61, 903-913 (2010).50628507Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus507cycles in agriculture induced by livestock production over the 1900–2050508period. Proceedings of the National Academy of Sciences 110, 20882-20887509(2013).51029Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040	502		
505crops. Eur. J. Soil Sci. 61, 903-913 (2010).50628507Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus507cycles in agriculture induced by livestock production over the 1900-2050508period. Proceedings of the National Academy of Sciences 110, 20882-20887509(2013).51029511Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040	503	27	Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K. & Van Kessel, C.
 506 28 Bouwman, L. <i>et al.</i> Exploring global changes in nitrogen and phosphorus 507 cycles in agriculture induced by livestock production over the 1900–2050 508 period. <i>Proceedings of the National Academy of Sciences</i> 110, 20882-20887 509 (2013). 510 29 Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in 511 cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	504		Towards an agronomic assessment of N_2O emissions: a case study for arable
507cycles in agriculture induced by livestock production over the 1900–2050508period. Proceedings of the National Academy of Sciences 110, 20882-20887509(2013).51029511Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences 107, 8035-8040	505		
508period. Proceedings of the National Academy of Sciences 110, 20882-20887509(2013).51029Liu, J. et al. A high-resolution assessment on global nitrogen flows in511cropland. Proceedings of the National Academy of Sciences 107, 8035-8040	506	28	Bouwman, L. et al. Exploring global changes in nitrogen and phosphorus
 509 (2013). 510 29 Liu, J. <i>et al.</i> A high-resolution assessment on global nitrogen flows in 511 cropland. <i>Proceedings of the National Academy of Sciences</i> 107, 8035-8040 	507		cycles in agriculture induced by livestock production over the 1900–2050
51029Liu, J. et al. A high-resolution assessment on global nitrogen flows in511cropland. Proceedings of the National Academy of Sciences 107, 8035-8040	508		period. Proceedings of the National Academy of Sciences 110 , 20882-20887
511 cropland. <i>Proceedings of the National Academy of Sciences</i> 107 , 8035-8040	509		(2013).
	510	29	Liu, J. et al. A high-resolution assessment on global nitrogen flows in
512 (2010)	511		cropland. Proceedings of the National Academy of Sciences 107 , 8035-8040
512 (2010).	512		(2010).

513	30	Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in
514		nitrogen use efficiency of world cropping systems: the relationship between
515		yield and nitrogen input to cropland. <i>Environmental Research Letters</i> 9 ,
516		105011 (2014).
517		This paper presentes the 50-year trend of nitrogen use efficiency and
518		the yield response to nitrogen input on country scale.
519	31	Conant, R. T., Berdanier, A. B. & Grace, P. R. Patterns and trends in nitrogen
520		use and nitrogen recovery efficiency in world agriculture. <i>Global</i>
521		Biogeochemical Cycles 27, 558-566, doi: 10.1002/Gbc.20053 (2013).
522		This study creates a global N input database by country and several
523		major crops and found no convergence in N use among countries.
524	32	Brouwer, F. Nitrogen balances at farm level as a tool to monitor effects of
525		agri-environmental policy. Nutr. Cycl. Agroecosyst. 52, 303-308 (1998).
526	33	Zhang, X., Mauzerall, D. L., Davidson, E. A., Kanter, D. R. & Cai, R. The economic
527		and environmental consequences of implementing nitrogen-efficient
528		technologies and management practices in agriculture. J. Environ. Qual. 44,
529		312-324 (2015).
530		This paper developes a bio-economic model to examine how
531		technological and socioeconomic factors influence farmer's decision
532		and the resulting evironment impact.
533	34	Snyder, C., Davidson, E., Smith, P. & Venterea, R. Agriculture: sustainable crop
534		and animal production to help mitigate nitrous oxide emissions. Current
535		Opinion in Environmental Sustainability 9 , 46-54 (2014).
536	35	Food and Agriculture Organization of the United Nations. FAOSTAT online
537		database, http://faostat.fao.org/ (accessed by April 2014 and Janurary
538		2015).
539	36	World Bank Group. <i>World Development Indicators 2012</i> . World Bank
540		Publications (2012).
541	37	Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen
542		cycle: 50-year trends. <i>Biogeochemistry</i> 118 , 225-241 (2014).
543	38	Heffer, P. Assessment of fertilizer use by crop at the global level. International
544		Fertilizer Industry Association, Paris, http://www. fertilizer. org/ifa/Home-
545		Page/LIBRARY/Publication-database. html/Assessment-of-Fertilizer-Use-by-
546		Crop-at-the-Global-Level-2006-07-2007-08. html2 (2009).
547	39	Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic
548		distribution of crop areas, yields, physiological types, and net primary
549		production in the year 2000. <i>Global biogeochemical cycles</i> 22 (2008).
550	40	Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological
551		nitrogen fixation in agricultural systems. <i>Plant Soil</i> 311 , 1-18, doi:
552		10.1007/S11104-008-9668-3 (2008).
553	41	Jayanthakumaran, K., Verma, R. & Liu, Y. CO 2 emissions, energy
554		consumption, trade and income: a comparative analysis of China and India.
555	10	<i>Energy Policy</i> 42 , 450-460 (2012).
556	42	He, J. & Wang, H. Economic structure, development policy and environmental
557		quality: An empirical analysis of environmental Kuznets curves with Chinese
558		municipal data. <i>Ecol. Econ.</i> 76 , 49-59 (2012).

559	43	Al-Mulali, U., Saboori, B. & Ozturk, I. Investigating the environmental Kuznets
560		curve hypothesis in Vietnam. <i>Energy Policy</i> 76 , 123-131 (2015).
561	44	Alam, M. S. & Kabir, N. Economic growth and environmental sustainability:
562		empirical evidence from East and South-East Asia. International Journal of
563		Economics and Finance 5 (2013).
564	45	Diao, X., Zeng, S., Tam, C. M. & Tam, V. W. EKC analysis for studying economic
565		growth and environmental quality: a case study in China. Journal of Cleaner
566		<i>Production</i> 17 , 541-548 (2009).
567	46	Song, ML., Zhang, W. & Wang, SH. Inflection point of environmental
568		Kuznets curve in Mainland China. <i>Energy policy</i> 57 , 14-20 (2013).
569	47	Wagner, M. The carbon Kuznets curve: a cloudy picture emitted by bad
570		econometrics? <i>Resource and Energy Economics</i> 30 , 388-408 (2008).
571	48	Müller-Fürstenberger, G. & Wagner, M. Exploring the environmental Kuznets
572		hypothesis: Theoretical and econometric problems. <i>Ecol. Econ.</i> 62 , 648-660
573		(2007).
574	49	Chow, G. C. & Li, J. Environmental Kuznets curve: Conclusive econometric
575		evidence for CO ₂ . Pacific Economic Review 19 , 1-7 (2014).
576	50	Pesaran, M. H., Shin, Y. & Smith, R. J. Bounds testing approaches to the
577		analysis of level relationships. <i>Journal of applied econometrics</i> 16 , 289-326
578		(2001).
579	51	Wagner, M. The environmental Kuznets curve, cointegration and
580		nonlinearity. Journal of Applied Econometrics (2014).
581	52	Wagner, M. & Hong, S. H. Cointegrating Polynomial Regressions: Fully
582		Modified OLS Estimation and Inference. <i>Econometric Theory</i> , 1-27 (2015).
583	53	Stern, D. I. The rise and fall of the environmental Kuznets curve. <i>World</i>
584		Development 32 , 1419-1439, doi:10.1016/j.worlddev.2004.03.004 (2004).
585	54	Cavlovic, T. A., Baker, K. H., Berrens, R. P. & Gawande, K. A meta-analysis of
586		environmental Kuznets curve studies. Agricultural and Resource Economics
587		<i>Review</i> 29 , 32-42 (2000).
588	55	Sutton, M. A. et al. The European Nitrogen Assessment. Cambridge University
589		Press, (2011).
590	56	Van Grinsven, H. et al. Management, regulation and environmental impacts of
591		nitrogen fertilization in northwestern Europe under the Nitrates Directive: a
592		benchmark study. <i>Biogeosciences</i> 9 , 5143-5160 (2012).
593	57	Van Grinsven, H. J. et al. Losses of Ammonia and Nitrate from Agriculture and
594		Their Effect on Nitrogen Recovery in the European Union and the United
595		States between 1900 and 2050. J. Environ. Qual. (2015).
596	58	Ferguson, R. B. Groundwater Quality and Nitrogen Use Efficiency in
597		Nebraska's Central Platte River Valley. J. Environ. Qual. (2014).
598	59	Osmond, D. L., Hoag, D. L., Luloff, A. E., Meals, D. W. & Neas, K. Farmers' Use of
599		Nutrient Management: Lessons from Watershed Case Studies. J. Environ.
600		Qual. (2014).
601	60	Perez, M. R. Regulating farmer nutrient management: A three-state case
602		study on the Delmarva Peninsula. J. Environ. Qual. 44, 402-414 (2015).
603	61	International Fertilizer Industry Association (IFA). The global "4R" nutrient
604		stewardship framework. Developing fertilizer best management practices for

605		delivering economic, social, and environmental benefits. IFA Task Force on
606		Fertilizer Best Management Practices. Paris, France. AgCom/09/44. (2009).
607	62	Davidson, E., Galloway, J., Millar, N. & Leach, A. N-related greenhouse gases in
608		North America: innovations for a sustainable future. Current Opinion in
609		Environmental Sustainability 9 , 1-8 (2014).
610	63	Sawyer, J. E. et al. Concepts and Rationale for Regional Nitrogen Rate
611		Guidelines for Corn. Iowa State University Extension, Ames, IA (2006).
612	64	Robertson, G. P. & Vitousek, P. M. Nitrogen in Agriculture: Balancing the Cost
613		of an Essential Resource. Annual Review of Environment and Resources 34 ,
614		97-125, doi: 10.1146/Annurev.Environ.032108.105046 (2009).
615	65	Setiyono, T. D. et al. Maize-N: A Decision Tool for Nitrogen Management in
616		Maize. <i>Agron. J.</i> 103 , 1276-1283, doi: 10.2134/Agronj2011.0053 (2011).
617	66	Li, Y. <i>et al.</i> An analysis of China's fertilizer policies: Impacts on the industry,
618		food security, and the environment. J. Environ. Qual. 42 , 972-981 (2013).
619	67	Ju, X., Kou, C., Christie, P., Dou, Z. & Zhang, F. Changes in the soil environment
620		from excessive application of fertilizers and manures to two contrasting
621		intensive cropping systems on the North China Plain. Environ. Pollut. 145,
622		497-506 (2007).
623	68	Hickman, J. E., Tully, K. L., Groffman, P. M., Diru, W. & Palm, C. A. A potential
624		tipping point in tropical agriculture: Avoiding rapid increases in nitrous
625		oxide fluxes from agricultural intensification in Kenya. Journal of Geophysical
626		Research: Biogeosciences (2015).
627	69	Hickman, J. E., Havlikova, M., Kroeze, C. & Palm, C. A. Current and future
628		nitrous oxide emissions from African agriculture. Current Opinion in
629		Environmental Sustainability 3 , 370-378 (2011).
630	70	Zhou, M. <i>et al.</i> Regional nitrogen budget of the Lake Victoria Basin, East
631		Africa: syntheses, uncertainties and perspectives. <i>Environmental Research</i>
632		<i>Letters</i> 9 , 105009 (2014).
633	71	Jayne, T. S. & Rashid, S. Input subsidy programs in sub - Saharan Africa: a
634		synthesis of recent evidence. <i>Agricultural Economics</i> 44 , 547-562 (2013).
635	72	Billen, G., Lassaletta, L. & Garnier, J. A vast range of opportunities for feeding
636		the world in 2050: trade-off between diet, N contamination and international
637		trade. Environmental Research Letters 10, 025001 (2015).
638	73	Heffer, P. Assessment of fertilizer use by crop at the global level 2010-
639		2010/11. International Fertilizer Industry Association, Paris,
640		http://www.fertilizer.org/En/Statistics/Agriculture_Committee_Databases.asp
641		x (2013).
642	74	Shi, WM., Yao, J. & Yan, F. Vegetable cultivation under greenhouse
643		conditions leads to rapid accumulation of nutrients, acidification and salinity
644		of soils and groundwater contamination in South-Eastern China. <i>Nutr. Cycl.</i>
645		Agroecosyst. 83 , 73-84 (2009).
646	75	Ju, XT. <i>et al.</i> Reducing environmental risk by improving N management in
647		intensive Chinese agricultural systems. <i>Proceedings of the National Academy</i>
648		of Sciences 106 , 3041-3046 (2009).

649 650	76	Drinkwater, L. E., Wagoner, P. & Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. <i>Nature</i> 396 , 262-265
651		(1998).
652	77	Searchinger, T. <i>et al.</i> Creating a Sustainable Food Future: A Menu of Solutions
653		to Sustainably Feed More than 9 Billion People by 2050. World Resources
654		<i>Report</i> 14 (2013).
655	78	Bodirsky, B. L. <i>et al.</i> Reactive nitrogen requirements to feed the world in
656	70	2050 and potential to mitigate nitrogen pollution. <i>Nature communications</i> 5
657		(2014).
658	79	Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the
659	/ /	sustainable intensification of agriculture. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 108 ,
660		20260-20264, doi:10.1073/pnas.1116437108 (2011).
661	80	de Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and
662	00	regional nitrogen boundaries related to food security and adverse
663		environmental impacts. Current Opinion in Environmental Sustainability 5,
664	01	392-402 (2013).
665	81	Nakicenovic, N. & Swart, R. Special report on emissions scenarios. <i>Special</i>
666		Report on Emissions Scenarios, Edited by Nebojsa Nakicenovic and Robert
667		Swart, pp. 612. ISBN 0521804930. Cambridge, UK: Cambridge University Press,
668	02	July 2000. 1 (2000).
669 (70	82	Mulla, D. J. Twenty five years of remote sensing in precision agriculture: Key
670	02	advances and remaining knowledge gaps. <i>Biosyst. Eng.</i> 114 , 358-371 (2013).
671	83	David, M. B. <i>et al.</i> Navigating the socio-bio-geo-chemistry and engineering of
672		nitrogen management in two Illinois tile-drained watersheds. <i>J. Environ. Qual.</i>
673	0.4	(2014).
674	84	Weber, C. & McCann, L. Adoption of Nitrogen-Efficient Technologies by US
675	05	Corn Farmers. J. Environ. Qual. (2014).
676	85	Powell, J., Gourley, C., Rotz, C. & Weaver, D. Nitrogen use efficiency: A
677		potential performance indicator and policy tool for dairy farms.
678	0.6	environmental science & policy 13 , 217-228 (2010).
679	86	Powell, J. & Rotz, C. Measures of nitrogen use efficiency and nitrogen loss
680		from dairy production systems. <i>J. Environ. Qual.</i> 44 , 336-344 (2015).
681	87	MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic
682		phosphorus imbalances across the world's croplands. <i>Proceedings of the</i>
683		<i>National Academy of Sciences</i> 108 , 3086-3091 (2011).
684	88	MacDonald, G. K., Bennett, E. M. & Taranu, Z. E. The influence of time, soil
685		characteristics, and land - use history on soil phosphorus legacies: a global
686		meta - analysis. <i>Global Change Biology</i> 18 , 1904-1917 (2012).
687	89	Cordell, D., Drangert, JO. & White, S. The story of phosphorus: global food
688		security and food for thought. <i>Global environmental change</i> 19 , 292-305
689		(2009).
690	90	Schoumans, O. et al. Mitigation options to reduce phosphorus losses from the
691		agricultural sector and improve surface water quality: A review. Sci. Total
692		Environ. 468 , 1255-1266 (2014).
693		
070		

694 Acknowledgements

695 We thank Gene M. Grossman, Mark W. Watson, Gregory Chow, Zhentao Shi, Oscar 696 Torres-Reyna, and Yulong Wang for their advice on economic data analysis. We 697 thank Elena Shevliakova, Fernando Gonzalez Taboada, David R. Kanter for 698 comments. This study was supported by the program in Science, Technology, and 699 Environmental Policy at the Woodrow Wilson School at Princeton University, the 700 United States Department of Agriculture (grant 2011-67003-30373), and the 701 National Oceanic and Atmospheric Administration, United States Department of 702 Commerce (award NA140AR4320106). The statements, findings, conclusions, and 703 recommendations are those of the authors and do not necessarily reflect the views 704 of the National Oceanic and Atmospheric Administration, the U.S. Department of 705 Commerce, or the U.S. Department of Agriculture. This is Scientific Contribution 706 number 5080 of the University of Maryland Center for Environmental Science 707 Appalachian Laboratory.

. . .

708 Author contributions

- X.Z., E.A.D., D.L.M., and T.D.S. designed the research. X.Z., T.D.S., and P.D. compiled
- the N database. X.Z., Y.S., and E.A.D. carried out the statistical analysis. X.Z. and E.A.D.
- led the writing of the paper with substantial input from D.L.M., T.D.S., P.D., and Y.S.

712 Author Information

- 713 Reprints and permissions information is available at www.nature.com/reprints. The
- authors declare no competing financial interests. Correspondence and requests for
- 715 materials should be addressed to xzhang@al.umces.edu and edavidson@umces.edu.

716 **Table**

Table 1. Nitrogen budget and Nitrogen Use Efficiency in crop production for different regions and major crop categories in 717 718 2010 and projected for 2050. The 2010 record is aggregated from our N budget database (see Supplementary Information Section 1 for detailed methodologies and data sources used for developing this database). The 2050 projected Harvested-N is 719 720 derived from a FAO projection of crop production to meet a scenario of global food demand³. The calculated target NUE values for 2050 are not meant to be prescriptive for particular countries or crops; rather, they are presented to illustrate the types of 721 NUE values that would be needed, given this assumption of food demand³, while limiting N surplus near the lower bound (50 722 Tg N yr⁻¹) of allowable N pollution estimated in planetary boundary calculations⁷⁸. Harvest-, input-, and surplus-N values are 723 724 rounded to the nearest Tg N yr⁻¹.

	Current (2010)				Projected (2050)			
	Harvest-N	Input-N	NUE	Surplus-N	Projected Harvest-N*	Target NUE	Required Input-N	Resulting Surplus-N
	Tg N yr-1	Tg N yr-1		Tg N yr ⁻¹	Tg N yr-1		Tg N yr-1	Tg N yr-1
				by regi	on§			
China	13	51	0.25	38	16	0.60	27	11
India	8	25	0.30	18	11	0.60	19	8
USA and Canada	14	21	0.68	7	19	0.75	25	6

Europe	7	14	0.52	7	10	0.75	13	3
Former Soviet Union	4	6	0.56	3	6	0.70	8	2
Brazil	6	11	0.53	5	10	0.70	15	4
Latin America (except Brazil)	7	12	0.52	6	10	0.70	15	4
Middle East and North Africa	3	5	0.48	3	4	0.70	5	2
Sub-Saharan Africa	4	5	0.72	2	9	0.70	13	4
Other OECD countries	1	2	0.52	1	2	0.70	2	1
Other Asian countries	8	19	0.41	11	10	0.60	17	7
Total	74	174	0.42	100	107	0.67	160	52
	by crop type¶							
Wheat	13	30	0.42	17	18	0.70	25	8
Rice	11	29	0.39	18	14	0.60	23	9
Maize	13	28	0.46	15	19	0.70	28	8
Other Cereal crops	5	9	0.53	4	7	0.70	11	3
Soybean	16	20	0.80	4	24	0.85	28	4
Oil Palm	1	1	0.46	1	1	0.70	2	1
Other Oil Seed	4	10	0.43	6	8	0.70	11	3
Cotton	2	5	0.37	3	3	0.70	5	1
Sugar Crops	1	5	0.19	4	2	0.40	4	2
Fruits and Vegetables	3	25	0.14	21	5	0.40	11	7
Other Crops	5	11	0.41	7	7	0.70	10	3
Total	74	174	0.42	100	107	0.68	157	50

* The projected Harvest-N is based on an FAO scenario³ for 2050 that assumes 9.1 billion people and increases in average caloric consumption to 3200 kcal/capita in

725 726 727 728 729 Latin America, China, the Near East, and North Africa, and an increase to 2700 kcal/capita in Sub Saharan African and India. Consumption of animal products increases in developing countries, but differences between regions remain.

§ The definition of the country group is in Supplementary Table 13

The crop group is defined according to IFA's report on fertilizer use by crop³⁸

730 Figures

731 Figure 1. An illustration of the N budget in crop production and resulting N species released 732 to the environment. Inputs to agriculture are shown as blue arrows and harvest output as 733 a green arrow. Nitrogen use efficiency (NUE) is defined as the ratio of outputs (green) to 734 inputs (blue). The difference between inputs and outputs is defined as the N surplus, which 735 is shown here as red arrows for N losses to the environment and as N recycling within the 736 soil (orange box). Abbreviations include: biological nitrogen fixation (BNF), ammonia 737 (NH_3) , nitrogen oxides (NO_x) , nitrous oxide (N_2O) , dinitrogen gas (N_2) , ammonium (NH_4^+) , 738 nitrate (NO_3^{-}), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON). 739 740 Figure 2 An illustration of an idealized Environmental Kuznets Curve for (a) N surplus and 741 (b) the related curve for Nitrogen Use Efficiency. The theoretical limit for NUE (assuming 742 no soil mining of nutrients) is unknown, but no biological system is 100% efficient, so the 743 aspirational NUE limit is shown as close to but less than unity.

744

Figure 3. Examples of historical trends of the relationship between GDP per capita and N

surplus. The observations are the record of annual N surplus (kg ha⁻¹ yr⁻¹) for each country;

the model results are the outcome of the regression using the following model:

748 $Y = a + bX + cX^2$, where the dependent variable (Y) is the country's N_{sur} (kg ha⁻¹ yr⁻¹) and

the independent variable (*X*) is the country's GDP per capita. We categorized the 113

countries into 5 groups, based on the significance and sign of the regression coefficients "b"

and "*c*" (see Supplemental Information sections 2.1 and 3.1). In this figure, we present (a)

France and USA as examples of group 1, which have significantly positive "*c*", thus
indicating that *N_{sur}* has started to level off or has declined; and (b) Brazil, Thailand, Malawi
and Algeria as the example of group 2 to 5, which increase non-linearly, increase linearly,
have no significant correlation, or have a negative surplus in 2007-2011, respectively (see
Supplementary Tables 5 and 6). The results for all countries can be found in the
Supplementary Figures.

758

759 Figure 4. A comparison of historical trends of (a) maize yield responses to N fertilizer input 760 (b) Nitrogen Use Efficiency (NUE) averaged across crops in China and the USA, and (c) 761 fertilizer to crop price ratios for China, India, USA, and France. The dashed blue line in 762 panel (a) shows a typical yield response function for maize based on fertilizer response 763 trials^{33,63}, which demonstrates diminishing return in yield as N inputs increase. Note that 764 the historical trend for China follows a similar pattern as a typical yield response function, 765 indicating that further increases in N application rates will result in diminishing yield 766 returns in China. In contrast, maize yield has increased in the USA since 2001 without 767 increasing nationally averaged N input rates, suggesting the yield improvement has been 768 achieved by adopting more efficient technologies or management practices that enable 769 shifting the yield response curve upwards³³. The dashed pink line in panel (b) shows what 770 the NUE in China would be if it achieved NUE values realized in the USA for all crops, but 771 with the crop mix in China. The gap between the dashed pink line and the black line (USA 772 record) is the difference between countries in NUE attributable to the differences in crop 773 mixes. The fertilizer to crop price ratio shown in panel (c) is determined by the nitrogen 774 price in urea divided by the nitrogen price in maize product (see Section 1.6 in

Supplementary Information for data sources and methodologies). The data are smoothedusing a ten-year window.

777

Figure 5. Historical trends of Yield-N, Nitrogen Use Efficiency, and N surplus, for a sample
of countries examined in this study. The grey scale shows the level of N surplus. The data
have been smoothed by ten years to limit the impact of year-to-year variation in weather
conditions. Curves moving towards the lower right indicate that those countries are
achieving yield increases by sacrificing NUE and increasing N surplus, whereas curves
moving towards the upper right indicate countries achieving yield increases by increasing
NUE and steady or decreasing N surplus.

Figure 1.

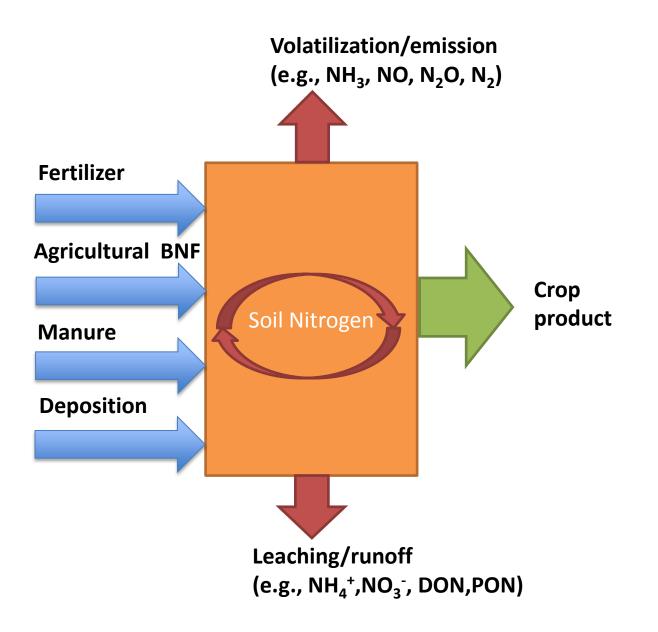
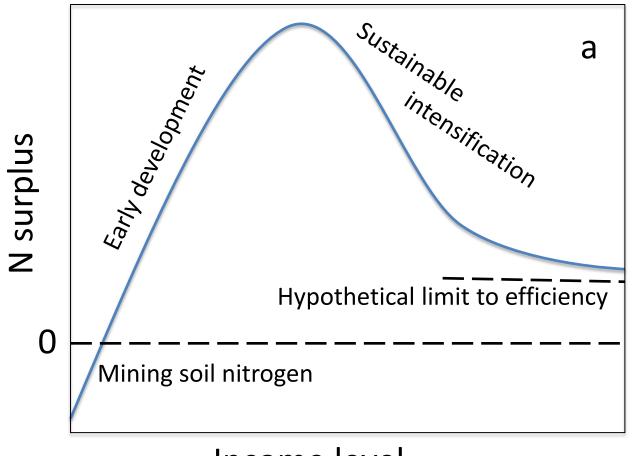
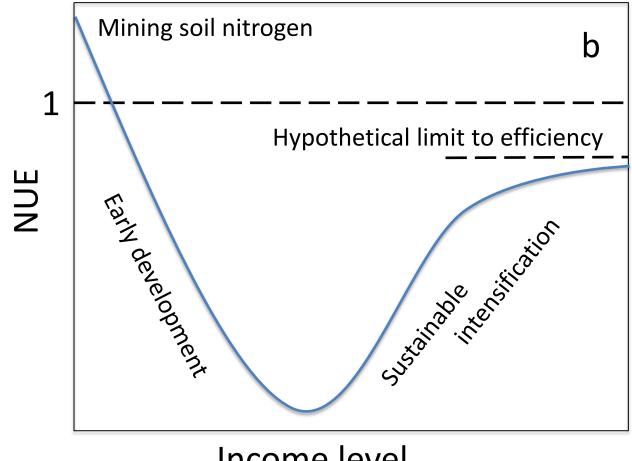




Figure 2.

Income level

Figure 2.

Income level

Figure 3.

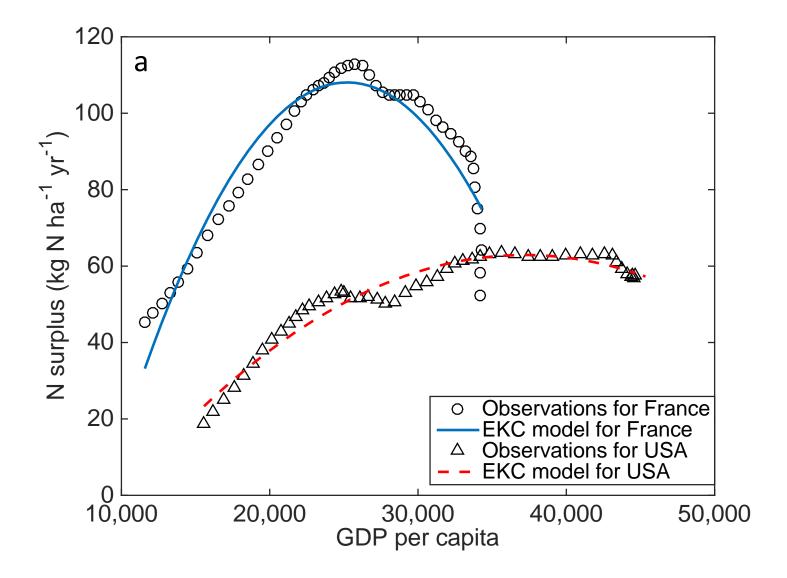


Figure 3.

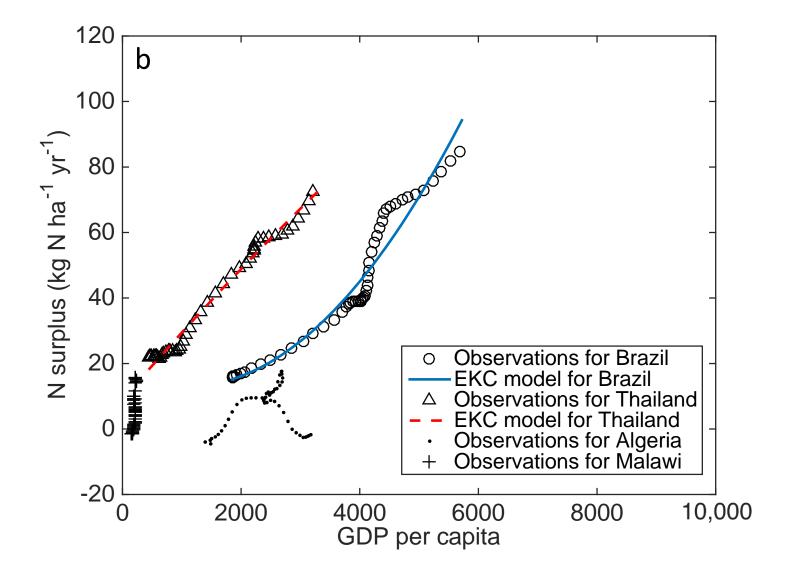


Figure 4.

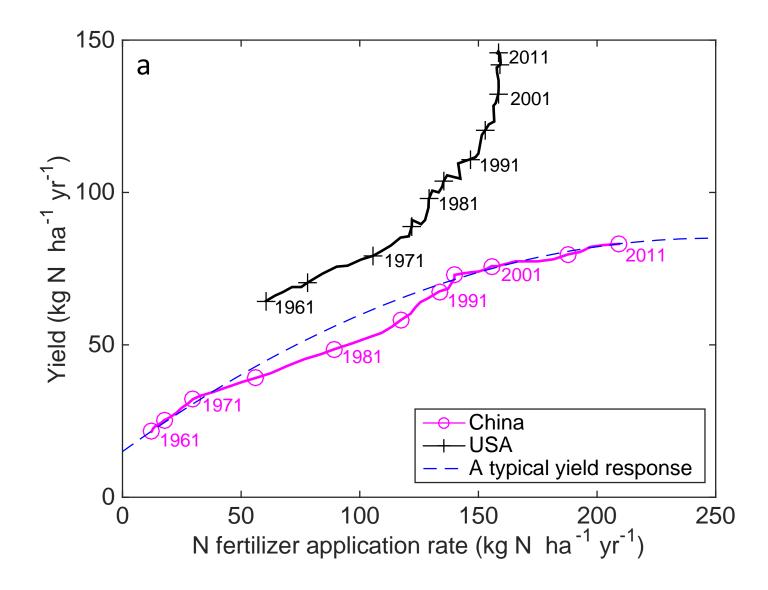


Figure 4.

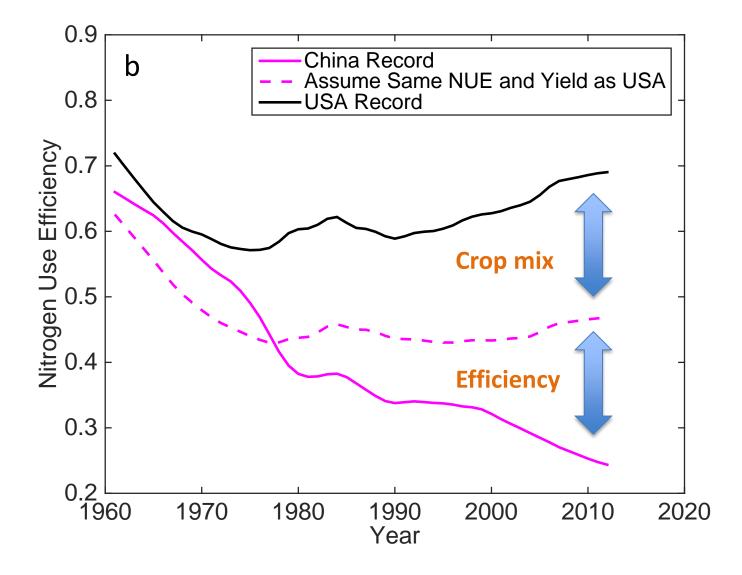


Figure 4.

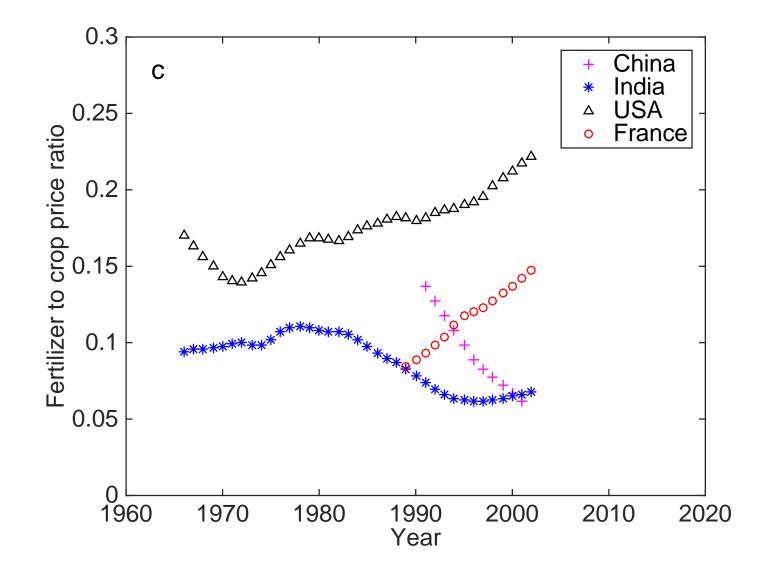
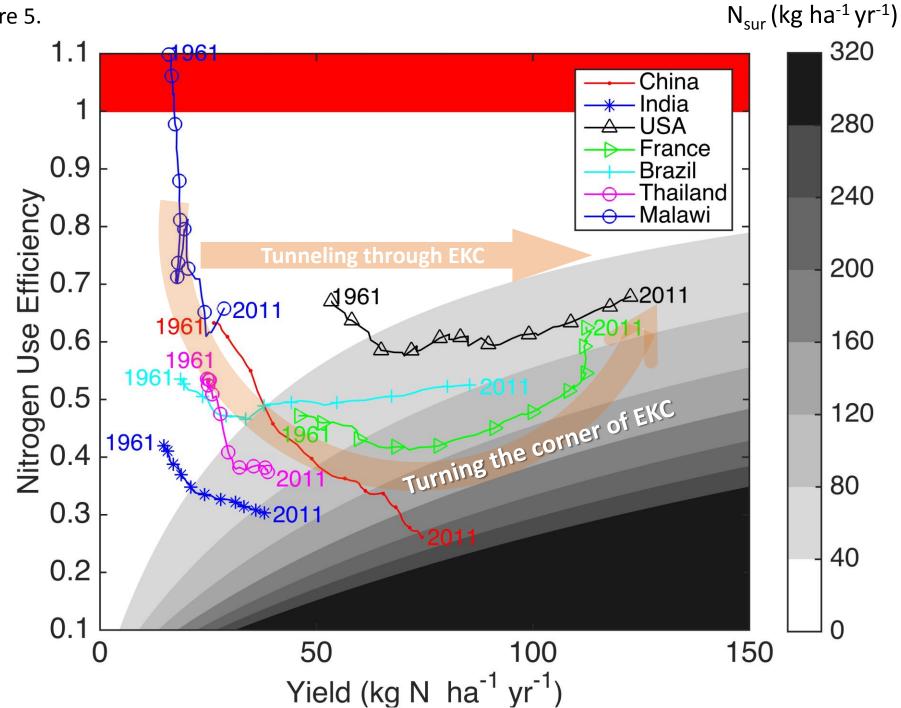



Figure 5.

