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Abstract

This study contributes a many-objective analysis of the tradeoffs associated with
using the portfolio planning approach for managing the urban water supply risks
posed by growing population demands and droughts. The analysis focuses on
four supply portfolio strategies: (1) portfolios with permanent rights to reservoir
inflows, (2) adaptive options contracts added to the permanent rights, (3) rights,
options, and leases, and (4) rights, options, and leases subject to a critical reliability
constraint used to represent a maximally risk averse case. The portfolio planning
strategies were evaluated using a Monte Carlo planning simulation model for a
city in the Lower Rio Grande Valley (LRGV) within Texas, USA. Our solution
sets provide the tradeoff surfaces between portfolios’ expected values for cost, cost
variability, reliability, surplus water, frequency of using leases, and dropped (or
unused) transfers of water. Using a severe drought scenario, this work shows that
leases and options can reduce the potential for critical supply failures when urban
supply systems must contend with unexpected and severe extremes in both demand
and water scarcity. In summary, this thesis contributes a framework that couples
interactive visualization and many-objective optimization to innovate urban water
portfolio planning under uncertainty. Many-objective analysis of the LRGV case
study shows that effective water portfolio planning can simultaneously improve
the costs, the efficiency, the reliability, the adaptability and the resiliency of urban
water supplies.
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Chapter 1

Introduction

Milly et al. clearly capture the growing concern over the risks posed to our wa-

ter supply systems by growing population demands and climate change [1]. The

Intergovernmental Panel on Climate Change (IPCC) has highlighted that these

risks and the associated vulnerabilities of water resources systems emphasizes the

need for improved water management through non-structural adaptation strate-

gies. Specifically, the IPCC report highlights that water marketing and portfolio-

based management strategies should be used to reduce water supply vulnerabilities

and avoid the environmental and fiscal burdens associated with structural increases

to the water supply (new reservoirs, etc.) [2]. Although the climate change context

brings these issues to the forefront [3–5], water scarcity has long motivated inter-

est in the use of water markets to confront the uncertainties, risks, and growing

demands on urban water supplies [6–16]. Water markets seek to allocate water re-

sources to their “highest-value use” [17–20] by transferring volumes of water across

regions [19] or user sectors [21]. As noted in [22], droughts have been the dominant

factor that has motivated the emergence of water markets as well as innovations in

the types of transfers considered in water portfolio planning such as spot market

leases [23] or adaptive options contracts [24, 25].

Spot market leases are a very flexible water supply portfolio planning instru-

ment, where short-term transfers of water are purchased for prices that vary sub-

stantially subject to supply and demand conditions. Options provide a mechanism

for reducing the price volatility associated with leases. An options contract allows

water portfolio planners to reserve a fixed price for a set quantity of water, all or
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some of which can be used later in the year to purchase water transfers (i.e., “exer-

cise” the option). Beyond price volatility, options also provide the added benefit of

allowing planners to delay transfer purchase decisions until they have a better un-

derstanding of the state of their water supply systems. Several studies have shown

that water portfolio planning with both options and leases can reduce the costs

associated with maintaining reliable urban water supplies [11–13, 26–28]. These

prior studies have used a range of deterministic and stochastic single-objective

planning formulations to minimize the expected costs of reliably meeting urban

water demand. In this thesis, we build on this body of work to contribute a “many-

objective” [29, 30] exploration of the tradeoffs inherent to the portfolio planning

problem. The term many-objective refers specifically to the consideration of 3 or

more planning objectives in management problems.

This study explores the uncertainty and tradeoffs associated with up to six

conflicting water portfolio planning objectives over a ten-year planning horizon

for a single city in the Lower Rio Grande Valley (LRGV) in Texas, USA. Our

work distinguishes four cases, Case A: permanent rights to reservoir inflows as the

sole source of supply, Case B: permanent rights and adaptive options, Case C:

a combination of permanent rights, adaptive options, and leases, and Case D: a

critically constrained (or highly risk averse) version of Case C (see Table 3.1). The

problems have been explored using a linked chain of multiobjective formulations,

meaning that Case A is a sub-space of Case B, Case B is a sub-space of the

six objective formulation of Case C, and Case D is a highly constrained version of

Case C. Our solution sets provide the tradeoff surfaces between portfolios’ expected

values for cost, cost variability, reliability, surplus water, frequency of using leases,

and dropped (or unused) transfers of water. This work contributes clear evidence

that options and leases have a dramatic impact on the marginal costs associated

with improving the efficiency and reliability of urban water supplies. Moreover,

our many-objective analysis permits the discovery of a broad range of high quality

portfolio strategies. In addition to identifying tradeoff sets, this thesis draws from

recommendations in [1], by using scenario analysis [31] to illustrate how leases and

options can reduce the potential for critical failures when urban supply systems

must contend with unexpected and severe extremes in both demands and water

scarcity.



3

Our drought scenario analysis highlights that the severe risk aversion that typ-

ifies water supply planning problems yields significant mathematical challenges,

especially when considering growing uncertainties from environmental and socioe-

conomic variability and limitations in predicting future conditions. Our analysis

demonstrates that severe risk aversion and uncertainties can cause the emergence

of highly discrete and discontinuous “feasibility islands” for the portfolio planning

problem. Our use of the term feasibility island in this study refers to portions of

the portfolio planning problem’s solution space where small, discontinuous clus-

ters of feasible solutions reside. These types of spaces are of concern because often

they indicate that optimal solutions’ performance may degrade rapidly with small

changes in decisions. Traditional deterministic optimization methods could fail to

identify these discontinuous solution clusters or in the worst case identify critically

sensitive water supply optima that could actually increase water supply failure

risks. These challenges were addressed in this work using many-objective prob-

lem formulations, multi-objective evolutionary algorithms (MOEAs), and interac-

tive high-dimensional tradeoff visualizations. The water resources community has

commonly recognized challenges associated with “nonstationarity” in hydrologic

systems’ forcing and response due to change, as well as modifications in land cover

and the impact of built systems that effect the hydrologic cycle. However, there

is an additional challenge regarding the “nonstationarity” in how we define water

management problems. Given the increasingly severe uncertainties, dependencies

and decision tradeoffs for complex urban water supply systems, design paradigms

must evolve to better elucidate the consequences, compromises, and hypotheses

that emerge with new information and knowledge. Broadly, a new design paradigm

is needed that better accounts for the structural uncertainty and nonstationarity

of the mathematical spaces (or topologies) that define water management tradeoff

analysis. These spaces are nonstationary in the sense that as designers make new

discoveries about system properties or planning objective conflicts, they are likely

to form new hypotheses that represent human-guided structural changes in their

mathematical formulations (i.e., the definition of optimality changes) [32]. We have

used our “chain” of formulations in Cases A-D to demonstrate the importance and

value of exploring the structural (or topological) nonstationarity in management

problem formulations.
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Figure 1.1. The solution shown in figure 1a minimizes a single-objective formulation.
The same solution when plotted with respect to a two-objective formulation often maps
to an inferior value assuming that objective 1 does not strongly dominate decision pref-
erences. Adapted from [33]

The idea of adding human-guided structural changes to evolving management

formulations relates directly to the body of knowledge that has emerged from the

“joint cognitive systems” literature [34]. The motivating question is: how should

we combine human intelligence and the expanding explorative power of comput-

ers in a complementary manner that enhances decision quality, promotes design

discoveries, and expands the complexity of the systems that can be addressed ef-

fectively? Formally, two challenging issues must be considered. Initial design pre-

conceptions can strongly bias and limit human-guided search. Gettys and Fisher

termed this phenomenon “cognitive hysteresis” where decision makers seek alter-

natives that confirm their initial problem knowledge, which consequently limits

experts from making new discoveries and generating (or falsifying) key hypotheses

on system performance [35]. The second issue addresses spatial (or dimensional)

limits as a key concern for engineering problem formulations. Brill et al. [33] clearly

highlight that for complex systems with ill-defined evaluative criteria and quan-

titative objectives, solutions classified as being optimal in lower dimensions (i.e.,
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using fewer criteria) are often considered inferior by decision makers if new criteria

are added for their analysis (see Figure 1.1). Topologically, a lower dimensional

problem structure causes a form of “cognitive myopia” [36] where decision quality

decreases as a consequence of a too narrowly focused problem analysis. As the com-

plexity of urban water supply problems increases, more modeled and unmodeled

criteria will emerge as being important for testing system performance hypotheses

and for generating design innovations [33–39]. We demonstrate in this thesis that

coupling interactive tradeoff visualizations and many-objective optimization has

a strong potential for overcoming cognitive challenges in decision making under

uncertainty and for facilitating the discovery of innovative design compromises for

improving the long-term sustainability of our urban water supplies.

This thesis is adapted from a paper submitted to Water Resources Research

coauthored by Patrick Reed, Brian Kirsch, and Gregory Characklis submitted in

April 2009. In the remainder of this thesis, chapter 2 provides a detailed overview

of the Lower Rio Grande water market case study and the Monte Carlo simulation

used to evaluate water supply portfolio alternatives. Chapter 3 provides a detailed

description of the many-objective problem formulations, the MOEA solution tool,

and the computational experiment used to generate our portfolio planning tradeoff

results. Chapters 4 and 5 present the results and discuss their implications for

improving urban water portfolio planning given the growing concerns over severe

droughts. Chapter 6 presents the conclusions, and chapter 7 suggests future work

that can be undertaken as an extension of this study.



Chapter 2

Lower Rio Grande Case Study

This study examines water marketing in the Lower Rio Grande Valley (LRGV) in

southern Texas, USA. An overview of the market is given in [18], [40], and [41].

Because of limited groundwater reserves in the region, the primary stores of water

in the LRGV are the Falcon and Amistad reservoirs in which the reservoirs’ water

is governed by a 1944 treaty between the United States and Mexico. The region’s

water resources are primarily used by agriculture, constituting 85% of the total

regional use.

While water marketing in the LRGV may help municipalities effectively al-

leviate drought conditions, efficient use of the market poses planning challenges

to the region’s water managers. For example, Characklis et al. observed that

municipalities tend to acquire a significant surplus of water rights due to their

risk aversion associated with supply failures [40]. Improvements in water portfolio

planning strategies have the potential to help municipalities lower their required

water surplus while maintaining high levels of supply reliability. This blend be-

tween lowered surplus and improved supply reliability can then facilitate water

availability for other non-urban water uses, such as the maintenance of ecological

flows as noted by [42] and [8].

The case study presented in this thesis focuses on a single city and creates

planning goals that attempt to maximize the efficiency of the city’s water sup-

ply, while reducing its supply costs and maximizing its reliability. The case study

represents a hypothetical city with an average water use of 21,000 acre feet (af)

per year in the LRGV, participating in a water market that allows transfers from
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the agricultural sector to municipal water supply. The planning goals developed

and evaluated in this study help the city alleviate risks from growing population

demands and drought conditions. In the LRGV case study, we analyze efficiency

in two ways. First, we consider volumetric efficiency by quantifying the surplus

water held by the city including excess transfers of water from the market that

expire from non-use. Secondly, we analyze the city’s logistical efficiency defined

in terms of transactions costs [43] and the city’s exposure to cost variability that

may result from use of market-based augmentations to its water supply. Region-

ally, concerns over the decreasing flow from Mexican tributaries into the LRGV’s

reservoir system [41] motivate the importance of improving the efficiency of water

supply portfolios, in order to help mitigate the risks posed by regional decreases

in reservoir storage.

The population in the LRGV is projected to grow by a factor of three from

1990 - 2050 [40]. The associated increase in urban water demands with grow-

ing population requires a flexible planning strategy that addresses the risks posed

by uncertain demand projections [44]. The cascading uncertainties of growing

population demand, variable hydrologic inputs, and market pricing distributions

are addressed in this work by evaluating supply portfolios within a probabilistic

framework. Previous studies have presented supply reliability from the consumer’s

standpoint [26,45], and this work extends this treatment by addressing how uncer-

tainty affects the probability of shortfalls using a Monte Carlo simulation of the

LRGV.

The Monte Carlo simulation evaluates how supply strategies exploit the water

market to meet the city’s planning goals for efficiency and reliability. The model

is governed by anticipatory planning strategies that use risk-based thresholds for

supply decisions, and Monte Carlo draws of historical data to develop distributions

of plausible futures for the city. The historical data and computational model are

adapted from a multi-year planning scenario developed in a study by Kirsch et

al. [28].

Historical data from the LRGV drives this study’s water supply model.

Monthly draws are performed that simulate 10 years of water supply decisions,

such that a reservoir mass balance, municipal demand, lease pricing distribution,

and portfolio performance is tracked for each of the 120 simulation months. In a
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given month t, the city’s supply is denoted by St and the city’s expected supply,

based on historical averages for permanent rights allocation, is denoted by SEt
.

The initial condition in the model specifies a starting reservoir volume and volume

of water for the city’s supply, Nro
. In this study, the initial condition for the water

supply Nro
was set to 0.3 times the city’s permanent rights, consistent with [28].

In effect, this initial condition assumes that the city will always have thirty percent

of its permanent rights in the account at the beginning of the simulation. For the

multi-year planning scenario, Nro
also represents the water that the city has in

its supply account in the beginning of each subsequent simulation year. Reservoir

water is allocated to the city from a simulated reservoir balance, where the total

reservoir volume Rt in a month t is related to the previous month’s level, simulated

inflow (it), outflow (ot), and reservoir losses (lt) (as shown in equation 2.1).

Rt = Rt−1 + it − ot − lt (2.1)

The reservoir mass balance is calculated at each month to determine whether or

not there is sufficient water available to allocate a volume to the city’s municipal

supply. The reservoir level also impacts lease pricing consistent with [27]. The

initial condition for the reservoir level in this work is set to 0.8 million acre-feet

(af), representing a restrictive and disadvantageous situation for the city following

the prior assumptions of Characklis et al. [27].

The city’s water supply portfolio consists of three supply instruments: perma-

nent rights to reservoir inflows, an adaptive options contract that guarantees a

fixed price for water acquisitions at a specified point in the year, and spot leases

acquired at any month in the year with a variable price. The decision variables

relating to each of the supply instruments are summarized in Table 2.1.

The city’s permanent rights, denoted by NR, are allocated as a percentage

of the total reservoir inflow, so that if the city owns 10% of the total regional

water rights, the city will be allocated 10% of the reservoir’s inflow for the month

(after accounting for evaporative and conveyance losses). This pro rata nature of

reservoir allocations means that the specified volume of rights held by the city is

not always allocated its full volume, with a volume of 0.725 af of water allocated

on average per 1 af of the city’s permanent rights [27]. An important aspect of
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Table 2.1. Model Decision Variables

Decision
Variable Range Cases Description

NR 30,000 - 60,000 A, B, C and D Volume of
Permanent Rights [af]

NOlow
0 - 20,000 B, C and D Low-Volume Options

Contract Alternative [af]

NOhigh
NOlow

- 2.0NOlow
B and C High-Volume Options

Contract Alternative (af)

ξ 0.1 - 0.4 B, C and D Low to High Options
Threshold

αMay−Dec 0.0 - 3.0 B, C and D Lease/Options Strategy for
May-Dec. (“when to acquire?”)

βMay−Dec α2 - 3.0 B, C and D Lease/Options Strategy for
May-Dec. (“how much to acquire?”)

αJan−Apr 0.0 - 3.0 C and D Lease Strategy for
Jan.-Apr. (“when to acquire?”)

βJan−Apr α - 3.0 C and D Lease Strategy for
Jan.-Apr. (“how much to acquire?”)

the permanent rights implementation in this thesis is that permanent rights are

constrained here to always be greater than the average yearly water demand for

the city. A lower-bound permanent rights volume of 30,000 af as shown in table

2.1 should be allocated at least the 21,000 af of average demand. The permanent

rights have a fixed price per acre foot, pR, equal to $22.60 per af [28]. Each of the

prices, p, in this chapter are reported as a price per acre foot of water.

The second water supply instrument, the adaptive options contract, is analo-

gous to a European call stock option, in which the city pays an up-front fee for the

right to later acquire water at a set exercise price. Examples of existing options

contracts in water markets are provided in [22] and [25]. In this model, a single

adaptive options contract is agreed upon by the city for the entire planning period.

The consistent ten year options contract used in this work reflects the trend that

long-term water transfers are becoming more popular in water markets [46]. The

adaptive options contract identifies either a high-volume (NOhigh
) or low-volume

(NOlow
) option purchase building on [28]. The choice between exercising the high-

volume or low-volume option is determined using a threshold, ξ, that compares the
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volume of water in the city’s account at the beginning of a simulation year, Nro
,

to the percentage of the city’s permanent rights (as shown in equation 2.2 below).

NO =

{

NOlow
if Nro

NR
> ξ

NOhigh
if Nro

NR
< ξ

(2.2)

If city’s available supply is higher than this threshold, the city uses the low-volume

alternative in the contract, and if it is lower than the threshold, the high-volume

alternative is available to the city. The options contract has two associated prices,

the up-front cost paid, pO, set at $5.30 per af, and the option exercise price, px, of

$15.00 per af. An options contract provides some security against high lease prices,

since the lease pricing can fluctuate with demand. The city pays the up-front cost

equal to either the high-volume or low-volume of optioned water as determined

by the threshold, multiplied by pO, to have the right to exercise water from the

contract during the planning year. In the options exercise month, set to May for

this study, the city has the ability to exercise all or part of the volume of water in

the contract, paying a price of px. The initial options price, pO, was set according

to Black-Sholes option pricing theory [47] relative to the options exercise price px;

a more thorough discussion of the options pricing in the model is presented in [27].

The third water supply instrument in the city’s portfolio is a spot lease of

water, which represents a volume of water that can be acquired at the end of any

month and is transferred to the city for use in the following month. Lease pricing

is a random variable p̂l drawn from the Monte Carlo distribution. The lease prices

are based on distributions for each month, reflecting actual lease prices obtained

from the LRGV watermaster’s office from 1994-2003. One distribution of lease

prices exists when the reservoir level is high, and another distribution exists for a

low reservoir level, stemming from previous work where regional water pricing was

correlated to reservoir levels (see [27]).

In the LRGV management simulation, the decisions to exercise water in the

options contract or purchase leases is made using an anticipatory strategy of ratios

between supply and demand. The value for αk in planning period k is used for the

city to decide “when” to purchase leases and exercise options, while the decision

on “how much” to purchase or exercise is governed by βk. The following equation

relates the expected supply and demand in the t + 1st month to the αk and βk
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Figure 2.1. Boxplots of monthly historical data for Demand and New Water measured
in acre feet (af). The median is shown with a horizontal line in each plot. The boxes
show quartiles, while whiskers show data within 1.5 of the interquartile range (IQR),
and outliers beyond 1.5 times the IQR are shown for each data set with crosses at each
data point.

planning decisions:

If :
SEt+1

∑12
j=t+1 d̄j

< αk

Purchase transfers, s.t. : SEt+1
= βk

12
∑

j=t+1

d̄j (2.3)

where SEt+1
is the city’s expected water supply in month t + 1, and d̄j is the

historical average demand for the jth month. First, the ratio of expected supply

to expected demand is compared to the alpha threshold. If the supply to demand

ratio is lower than specified by the αk decision variable, the city purchases leases

and exercises options such that the month’s expected supply is equal to the βk

ratio (as indicated in equation 2.3). Consistent with previous work, this study

constrains βk decision variables to be greater than or equal to the associated αk

variable.

This work creates two sets of alpha and beta planning variables. The variables

αJan−Apr and βJan−Apr represent the thresholds for January through April, and

αMay−Dec and βMay−Dec represent May (the options exercise month) through the

end of the year. Two sets of alpha and beta ratios represent a simple anticipatory
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model, but the approach can be adapted to more complex models or situations.

Figure 2.1 shows an example of the input data that drives the LRGV case

study’s model. Figure 2.1a shows the distribution of monthly demand in the his-

torical record. The demands were modeled using unique normal distributions for

each month of the year, which were developed based on historical data for the re-

gion. Figure 2.1b gives the historical distributions of the volume of water that can

be allocated to the total region’s water rights in each month. The figure illustrates

the out-of-phase timing in the water system; when the water demand tends to be

highest, the available “new water” for allocation tends to be low. The anticipa-

tory portfolio planning approach used in this work allows urban water planners to

efficiently blend leasing and options to augment permanent rights allocations in

months that tend to have supply shortfalls and higher demand. A schematic of

the optimization and simulation framework is provided in figure 2.2. The figure

illustrates that the model evaluations are embedded in a multiobjective evolution-

ary algorithm (MOEA) that evolves a population of solutions to have improved

objective function performance. Note that each solution evaluation involves an

independent ensemble of M Monte Carlo samples; each Monte Carlo sample con-

tains 120 months of hydrology, demands, and lease pricing data used to evaluate

the planning strategies.
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Our use of the LRGV case study model in this thesis is subject to several

assumptions that have an impact on the results of our analysis. Characklis et

al. [27] and Kirsch et al. [28] outline many of these assumptions and should be

consulted for further information. The first set of assumptions has to do with

how the market operates. We model an active market in which there is always

water available for the city to use, both with the options contract and with spot

leasing. The city has the ability to purchase an options contract within the range

given in table 2.1, with the largest possible contract having a 20,000 af low-volume

alternative and a 40,000 af high-volume alternative. There is no upper limit on

the volume of leases the city can acquire, but the city is constrained to keep at

least 30,000 af of permanent rights per year. The city’s use of the market is

subject to the assumption that the city exerts no influence on water pricing in

the market; it must accept the quoted price for any volume of water it purchases.

Another set of assumptions addresses the input data to the model. An analysis in

Characklis et al. [27] showed that there are only weak correlations between inflow,

reservoir storage, and reservoir outflow. Following this analysis and consistent with

previous work, Monte Carlo draws of the different input variables are independently

performed from each historical monthly distribution. An implicit assumption of

the anticipatory strategies used in the work is that the historical average supply

and demand predictions are appropriate for acquiring supply (i.e., there is no trend

in the data that is used in the portfolio strategies). Modifications in the relative

magnitude of the alpha and beta strategy variables, though, can represent the

city’s assumption on the likelihood of a higher demand or lower supply than would

be expected. That is, a more conservative set of alpha/beta variables can account

for the simplistic nature of predictions based on the average data.



Chapter 3

Methods

This thesis analyzes the LRGV case study using four alternative problem for-

mulations that successively increase the number of modeled supply instruments,

planning objectives, and system constraints. Section 3.1.1 gives specific details

on the objective formulations. Section 3.1.2 discusses the supply constraints used

in our study. Section 3.2 provides a summary of the multiobjective evolution-

ary algorithm (MOEA) used to solve all of the multiobjective problem formula-

tions considered in this thesis. Section 3.3 provides a detailed discussion of the

MOEA’s parameterization (section 3.3.1), constraint handling (section 3.3.2) and

the drought scenarios used to rigorously test the performance of potential water

portfolio alternatives (section 3.3.3).

3.1 Problem Formulation

Table 3.1 illustrates our use of four problem formulations labeled Cases A, B, C, and

D to distinguish how adding potential supply instruments, planning objectives, and

formulation constraints impacts the LRGV city’s portfolio planning alternatives.

Cases A - C focus on the effects of the adding new alternative supply instruments,

using three- to six-objective problem formulations. Case D extends this analysis by

adding a restrictive constraint to the full set of instruments in Case C to analyze

the dynamics of these instruments during a highly risk-averse planning scenario.

This full complexity formulation, Case D, is summarized in the following equations;

note that cases A - C are subsets of this full formulation.
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F(x) = (fcost, frel, fsurplus,

fcostvar, fdropped, fleases) (3.1)

∀x ∈ Ω

x = (NR, NOlow
, NOhigh

, ξ,

αJan−Apr, βJan−Apr,

αMay−Dec, βMay−Dec)

Subject to : crel : frel > 0.98 (3.2)

ccostvar : fcostvar < 1.1 (3.3)

ccritrel : Pr[Si,j > 0.6di,j] = 1.0

∀i ∈ [1, T ] and j ∈ [1, 12] (3.4)

In case A, the city is restricted to using permanent rights to fulfill its water

supply. Portfolios in Case A have a single decision variable, the volume of per-

manent rights (NR) and are evaluated with respect to total supply cost (fcost),

reliability (frel), and average volume of surplus water at the end of each simulation

year (fsurplus).

Case B adds adaptive options contracting in addition to the permanent rights

planning decision. The city may utilize the options contract to exercise water at

a fixed price in May of each simulation year. In addition to the permanent rights

decision, Case B adds decision variables for the low-volume alternative in the op-

tions contract, NOlow
, the high-volume options alternative, NOhigh

, and the thresh-

old to decide between the two alternatives, ξ. The risk-based decision variables

αMay−Dec and βMay−Dec governing how options are exercised are also considered in

Case B. For Case B, the first three objectives from Case A are maintained, and

additional objectives are added to minimize cost variability (fcostvar) and minimize

dropped transfers (the exercised options-contract water that expires after one year

of nonuse, fdropped).

Case C represents a fully flexible portfolio planning formulation, with perma-

nent rights supplemented by the adaptive options contract and spot leasing in any

of the 120 months of the simulation. For Case C, the decision variables from Case
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Table 3.1. Problem Formulations: Cases A, B, C, and D

Case Supply Instruments Objectives Constraints

A rights fcost, frel, fsurplus crel

B rights, options fcost, frel, fsurplus, crel, ccostvar

fcostvar, fdropped

C rights, options, leases fcost, frel, fsurplus, crel, ccostvar

fcostvar, fdropped, fleases

D rights, options, leases fcost, frel, fsurplus, crel, ccostvar, ccritrel

fcostvar, fdropped, fleases

B are maintained, with the αMay−Dec and βMay−Dec controlling lease acquisitions in

addition to how options are exercised from May to December. For lease decisions

made in January through April, a second set of variables is introduced, αJan−Apr

and βJan−Apr. These decision variables allow planners to account for differences

in early year versus late year hydrologic inputs and demands. A sixth objective

is added in Case C, which minimizes the number of leases purchased on the spot

market (fleases) as a proxy for transactions costs. Note that fdropped for Case C also

includes expired transfers from leased water in addition to water from exercised

options.

Case A is subject to a single constraint, crel. This constraint denotes that the

portfolios’ reliability, frel, must be higher than 98%. Cases B and C are also sub-

ject to the ccostvar constraint that limits the the cost variability objective, fcostvar

to be less than 1.1 (see equation 3.3 and table 3.1). Case D modifies the formu-

lation from Cases A - C by employing the critical reliability constraint ccritrel in

equation 3.4. The goal of Case D is to identify how critical failures affect water

portfolio alternatives. Small failures could be mitigated by water conservation or

other practices, but larger failures present a greater challenge to the municipality.

Critical failures, as defined in [27], occur in any month when the city fails to meet

more than 60% of their required demand with their available supply. Equation 3.4

therefore requires the supply Si,j to fulfill at least 60% of the simulated demand,

di,j for a month i in the year j. The constraint then forces this inequality for all

120 months in the simulation. The definition ensures that even if failures occur,

the failures occurring in Case D will not be critical. The purpose of Case D is
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to demonstrate that many-objective analysis can help overcome the severe search

challenges that emerge when accounting for the extreme risk aversion that typifies

urban water supply problems.

3.1.1 Planning Objectives

This section provides a detailed description of the individual planning objectives

listed in equation 3.1. Recall that our LRGV case study objectives are evaluated

under uncertainty using a Monte Carlo simulation ensemble of regionally-derived

hydrology, demand, and lease pricing data. The supply strategies developed are

evaluated for a planning period of T years. The planning horizon T used in this

study is 10 years, and in the following equations the index i runs from year 1

through year 10. In this section, we use the expectation notation E[]i to denote

the average value for a variable of interest with respect to all the Monte Carlo

samples used to simulate the ith year. Planning decisions are evaluated with a

monthly timestep using index j, which starts at 1 in the month of January.

COST. The cost function for each candidate solution is defined as a sum of the

expected values of cost for each simulation year. In each Case A through D, the

cost objective is defined as:

Minimize : fcost(x) =
T

∑

i=1

E

[

NRpR + NOi
pO

+Nxi
px +

12
∑

j=1

(

Nli,j p̂li,j

)

]

i

(3.5)

The city’s water supply cost has four components. The first component charges

the city a set price per acre foot, pR, for the entire volume of its permanent rights,

NR. This component is the only cost for Case A and is included for cases A -

D. In cases B through D, the city is also charged for the upfront options cost

pO regardless of the actual volume exercised. The value of pO used in this cost

calculation fluctuates based on the percentage of Monte Carlo draws that caused

the city to use the high-volume or low-volume alternatives in their options contract

(see equation 2.2). The third component, also used in cases B through D, quantifies

the costs when exercised options are added to the city’s supply at the fixed strike
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price, px. Finally, cases C and D account for the costs associated with the monthly

volume of leases acquired by the city. Spot leases of water are assigned a random

variable lease price p̂l from a Monte Carlo draw multiplied by the individual lease

volume, Nli,j specific to month j in the ith year.

RELIABILITY. In a year i, portfolio reliability ri is defined following the for-

mulation of [27] (see equation 3.6):

ri = 1 −
nfaili

12
(3.6)

where nfaili represents the expected number of monthly failures in the year i. For

example, a reliability of 98% is equivalent to a failure occurring in 2% of the Monte

Carlo simulations for year i. Therefore, if the performance of year i continued, an

operator could expect a failure at a rate of every 4.2 years. A failure here is defined

as a city’s supply falling short of the simulated demand in a given month t:

St < dt (3.7)

where St is the total supply in the city’s account in a month t and dt is simulated

demand from a Monte Carlo draw for the month t. Note that calculation of frel

does not account for the severity of the failure, but the ccritrel constraint will address

the severity of failures later in this thesis.

The reliability objective, for all cases A-D, is given in equation 3.8:

Maximize : frel(x) = min
i∈[1,T ]

(E[ri]i) (3.8)

Equation 3.8 maximizes the lowest expected reliability, ri in the ith year of the

T year planning period. This max-min formulation ensures that water portfolio

alternatives will perform as well or better than the representative worst year while

also maximizing the worst year’s performance. The max-min formulation attempts

to avoid choosing alternatives that show adequate average performance over the

full planning period but may yield lower reliability in individual years.

SURPLUS WATER. The third objective common to Cases A, B, C and D

minimizes the water held by the city at the end of each simulation year. This

volume of water, which includes volumes of water from permanent rights, options,
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and leases, is minimized in this study to free water for other uses (such as ecological

flows), as discussed in [27]. Formally, the objective takes an average for the T

years of the simulation, by taking an average of the annual expected surplus water

volumes:

Minimize : fsurplus(x) =
T

∑

i=1

1

T

(

E[St]i

)

, t = 12 (3.9)

Recall that the city’s water supply is denoted with the variable St, so that this

objective is minimizing the expected supply at the end of each year, in the month

of December. The purpose of this objective is to reduce the surplus water carried

over from year to year.

COST VARIABILITY. Case A represents a deterministic cost structure, since

the price of permanent rights is known and the volume of permanent rights pur-

chased does not change during the simulation. However, cost variability in cases B

through D stems from fluctuations in the volume of options and leases acquired as

well as uncertainties associated with lease pricing. To analyze this variability, the

objective calculation uses the Contingent Value at Risk (CVAR), defined as the

average of costs in the Monte Carlo simulation above the 95th percentile. That

is, if there were 1,000 Monte Carlo members, this cost would equal the average of

the most expensive 50 samples in a given simulation year [28]. The cost variability

objective for Cases B - D is then measured with the following equation:

Minimize : fcostvar(x) = max
i∈[1,T ]

[ CVARi

favg. yearly costi

]

(3.10)

This equation minimizes cost variation for the year with the highest variability

(i.e., the highest value of CVAR) in the overall planning period. This min-max

objective formulation ensures that the remaining years in the full planning period

will have a lower average cost variability than the worst performing year. The

CVAR cost is normalized by the average yearly cost, favg. yearly costi
, which is similar

to the cost objective presented in equation 3.5 evaluated for a given year i. The

purpose of normalization is to ensure that years with high costs and years with

lower magnitudes of cost have their variability evaluated evenly.

DROPPED TRANSFERS. Since the leases and exercised options in this study

expire after a year of non-use (one year without being used to fulfill the city’s
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demand), we quantify the city’s loss of this water using the “dropped” transfers

objective. To illustrate how the transferred water expires, consider a large spot

lease purchased in April of the first simulation year. Starting in May, the city

considers this volume of water as part of its expected supply to fulfill demand

through the rest of the year. The city attempts to fulfill May’s demand with water

from its permanent rights first. If the permanent rights water was insufficient to fill

monthly demand, it will use the water in its leases and options account that was

acquired first. Our hypothetical spot lease will expire when subsequent monthly

demand is not high enough to trigger water use from the options and leases account

– from May of the first simulation year to April of the second simulation year. We

define the variable a as the age of the water in this account, so that when a > 12,

the water has not been used for 12 months and therefore expires.

The dropped transfers objective, for Cases B through D, is computed as the

sum of the annual expected volume of dropped transfers.

Minimize : fdrop(x) =
T

∑

i=1

(

E

[

{Nxi
: a > 12}

+

12
∑

j=1

{Nli,j : a > 12}

]

)

(3.11)

Equation 3.11 takes a sum of the expected volume of dropped transfers for all T

simulation years. This volume of dropped transfers has two components, a volume

of water from exercised options (one value in the ith year, Nxi
) and leased water

(acquired in the jth month of year i, Nli,j ). An important note here is that a

partial volume of an acquired lease or exercised option can be considered in the

dropped transfers objective; if the city purchases a 1,000 af lease and only uses 300

af, for example, the lapsed volume of 700 af will be counted in the calculation of

equation 3.11.

NUMBER OF LEASES. Cases C and D allow for leases to be added to the city’s

supply portfolio, which can be purchased in any month of the 120 month planning

period. An inherent hypothesis when generating a model that uses anticipatory

strategies for lease acquisitions is that an efficient strategy would require the city

to purchase several leases in critical months as a way of efficiently augmenting
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supply in specific months within a drought. To further examine this idea, we

minimize the number of times the city would be required to go to the spot market

to obtain leases, as a function of the anticipatory decision variables from the city’s

supply portfolio. Minimizing transfers in this manner can be seen as a proxy for

the transactions costs associated with acquiring leases, as noted in section 2. The

leases objective is shown in equations 3.12 and 3.13 below:

Minimize : fleases(x) =
T

∑

i=1

(

E

[ 12
∑

j=1

φi,j

]

)

(3.12)

φi,j =

{

1 if Nli,j > 0

0 otherwise
(3.13)

Here, φ accounts for whether or not a lease was acquired, regardless of its volume.

There is a 0 or 1 value for each month j in every simulation year i. Similar to

other objectives in this study that take a sum over all of the T planning years,

expectations are first calculated for each simulation year independently and then

summed to compute the final objective value.

3.1.2 Constraints

The reliability constraint crel (equation 3.2) requires that the reliability of candi-

date portfolios, frel must be higher than 98%, consistent with previous work [27,28].

It is utilized in each of the cases A through D. While the reliability constraint was

explored in prior work, a contribution of the many-objective approach presented

here is that our analysis explicitly quantifies multivariate tradeoffs for a range

of portfolio reliabilities from the constrained minimum (i.e., 98%) to the poten-

tial maximum of 100%. These reliability tradeoffs are generated without having

to specify multiple constrained single objective formulations, through use of the

MOEA described in chapter 3.2.

The cost variability constraint ccostvar (equation 3.3) is employed in Cases B

through D and limits cost variability for the worst-case simulation year to be no

more than 10% of the portfolio’s total cost in that simulation year. In Case D,

portfolios must fulfill the reliability constraint (crel), the cost variability constraint

(ccostvar), and a critical reliability constraint denoted by ccritrel. As shown in equa-
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tion 3.4, the ccritrel constraint forces the monthly supply to always fulfill at least

60% of simulated demand. The probability of occurrence of a critical failure (when

supply reaches a shortfall under this limit) in any ensemble member of the Monte

Carlo simulation must effectively be zero, to enforce a “critical” portfolio reliability

of 100%.

3.2 Multiobjective Evolutionary Algorithms

Quantitative tradeoffs for the objectives and constraints presented in section 3.1

are developed in this study using a state-of-the-art multiobjective evolutionary

algorithm (MOEA), the epsilon Non-Dominated Sorting Genetic Algorithm II (ε-

NSGAII) [48,49]. This section will introduce how nondominated sorting is used to

generate alternatives that satisfy each of the planning objectives.

The objectives that characterize water resources planning problems often con-

flict with each other. The tradeoffs between these conflicting objectives can be

complex and reveal surprising interactions, even between different measures of

quality that would not be expected to conflict [50, 51]. The concept of Pareto

optimality is used to define multiobjective tradeoffs for a system. A solution x1

is Pareto optimal (or non-dominated) if no other solution x in the solution space

gives a better value for one objective without also having degraded performance in

at least one other objective. MOEAs are heuristic search algorithms that evolve an

approximation to the Pareto optimal set using operators such as crossover, selec-

tion, and mutation that mimic natural selection in populations of organisms in na-

ture. The evolutionary algorithm search process is an iterative process of selection,

which preserves and reproduces high-quality solutions, and variation, to introduce

innovation in order to improve the population of solutions. There are many exam-

ples of MOEAs used to solve complex non-linear and non-convex multiobjective

problems (a detailed review is given in [52]). Examples of application areas in

water resources engineering include groundwater monitoring design [29,48,53,54];

groundwater remediation [55–57]; and water resources systems management [42].

The ε-NSGAII represents an improvement to the original NSGA-II developed

in [58] by incorporating epsilon-dominance archiving [59] and adaptive population

sizing [60]. Epsilon-dominance archiving helps reduce the computational demand
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Figure 3.1. A two-objective minimization problem illustrating the concept of epsilon
dominance. The user-specified epsilon resolution is shown with dashed grid lines. The
algorithm eliminates redundant solutions in each grid block (solution C dominates so-
lution D), as well as performs sorting with respect to whole grid blocks (solution B
block-dominates A). Note that solutions B, C, and E block-dominate the intersecting
gray shaded areas.

of solving high-dimensional optimization problems [49] by allowing the user to con-

trol the resolution at which the objectives are evaluated and ranked. Figure 3.1

illustrates this process. Solutions A through E are shown in a simple two-objective

minimization example. Note that since both objectives are being minimized, pre-

ferred solutions are located toward the lower left hand corner of the figure. Each

gray circle represents objective function values for a solution to the hypothetical

optimization problem. First, the user specifies values for ε1 and ε2 that represent

an objective resolution to be used in evaluations (these epsilon values represent a

significant precision for solution ranking). Next, redundant solutions in each grid

block are eliminated. For example, solution D is eliminated since solution C is

closer than solution D to the lower left hand corner of the block containing both

solutions. Finally, nondominated sorting is performed with respect to entire grid

blocks. Solution A is eliminated (or epsilon block-dominated) since the grid block

containing solution B dominates the entire shaded area. The gray shading in figure

3.1 reflects this block dominance, showing that the block containing solution B will

dominate each of the blocks directly above it, or directly to the right of it. The
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successive shaded areas in the figure illustrate that the final epsilon-nondominated

set would include solutions B, C, and E. Our use of epsilon-dominance is important

from a theoretical perspective when solving many-objective applications. Evalua-

tions of dominance using epsilon blocks ensures finite solution set sizes, direct user

control of computational demands, and improved diversity in search [49, 59].

A large population size in evolutionary algorithms can provide enough new can-

didate solutions for populations to generate high-quality solutions, but this also

increases the computational demand of using the algorithm. The adaptive popu-

lation sizing approach used in the ε-NSGAII automatically increases or decreases

this population size through a series of “connected runs”, changing population

size in accordance with problem difficulty. The population size is increased by

injecting new randomly generated candidate solutions into a population that con-

tains solutions from an epsilon-dominance archive of high-quality solutions. This

reduces the number of parameters that the user must set in order to properly use

the MOEA, and introduces new candidate solutions to aid further search (i.e., a

time continuation operator as recommended by [61]).

Another benefit of using MOEAs for this problem formulation is their known

efficacy at solving problems under uncertainty. Robust evolutionary algorithm

optimization is discussed in [62], where robustness is defined as the insensitiv-

ity of objective function performance to small perturbations in uncertain decision

variables. In addition to decision variable uncertainty, the uncertainty in char-

acterizing natural or built system parameters has been explored using single and

multiobjective evolutionary algorithm approaches [55, 56, 63, 64]. Each study uses

a very small number of Monte Carlo draws to effectively generate solutions to

risk-based water resources applications. For the current study, uncertainty stems

from our estimates of the reservoir mass balance and available water to the city

on a monthly basis, as well as fluctuations in lease pricing and volumetric water

demand. Independent Monte Carlo sampling is used here to help find the most

robust solutions, with a large enough sample size to lower the oscillations (or un-

certainty) in design objective evaluations. The evolutionary analogy is appropriate

for optimization under uncertainty since good solutions must robustly perform for

exponentially increasing numbers of MC samples during the search process. In

successive iterations (generations) of evolutionary search new, independent Monte
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Carlo draws are used to evaluate objective function values for each solution. There-

fore, if a solution makes it to the final generation, it has already been evaluated for

an exponentially increasing number of realizations based on its ability to survive

and propagate in the search population [65].

3.3 Computational Experiment

3.3.1 Parameterization of Multiobjective Search

The first phase of the analysis presented in this thesis is to generate the multiob-

jective tradeoffs for Cases A through D. By generating these tradeoffs, this thesis

will show the interactions between planning objectives and decisions to provide

decision makers a broader understanding of the potential implications of using

the adaptive water portfolio management approach to cope with rising population

demands and drought risks.

We enumerated the tradeoff for Case A by calculating the values for each of the

three planning objectives for candidate solutions with each discrete integer value

of NR ranging from 30,000 af to 60,000 af in 1 af increments. Recall that the lower

bound of 30,000 af represents a constraint that the volume of permanent rights will

be adequate to meet the city’s average annual demand. Each candidate solution

was evaluated for 5,000 independent Monte Carlo samples from the historical or

assumed data distributions. While the cost objective fcost for Case A is determin-

istic, the values for the reliability objective, frel, and the surplus water objective,

fsurplus, are based on the results of this Monte Carlo sample. A nondominated

sort was performed on the set of 30,000 candidate solutions in order to obtain

the Pareto optimal set of solutions with respect to the three planning objectives

specified for Case A (see table 3.1).

The ε-NSGAII was used to generate high-quality approximations to the Pareto

sets for Cases B through D. Table 3.2 summarizes the algorithm’s parameters used

in this study. Similar to the calculations for Case A, each potential portfolio is

evaluated with 5,000 Monte Carlo samples. Because of the large Monte Carlo

sample size, the objective function calculations are strongly representative of their

expected values. A smaller sample size, though, could also generate useful results,
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Table 3.2. Parameters for this study

Symbol Value Description

MC 5,000 Monte Carlo Sample Size
T 10 Planning Period [years]
pm (Case B) 1/6 Probability of mutation (Case B)
pm (Case C) 1/8 Probability of mutation (Cases C and D)
pc 1.0 Probability of crossover
ηc 15 Distribution index (crossover)
ηm 20 Distribution index (mutation)
εcost 0.0001 Epsilon Resolution: cost
εrel 0.0001 Epsilon Resolution: rel
εsurplus 0.0001 Epsilon Resolution: surplus
εcostvar 0.001 Epsilon Resolution: costvar
εdropped 0.0001 Epsilon Resolution: dropped
εleases 0.001 Epsilon Resolution: leases

especially when coupled with variance reduction techniques as in [28]. We were

highly conservative in this study with the number of Monte Carlo samples used

per portfolio evaluation because we had sufficient parallel computational resources

to do so. Moreover we wanted to rigorously explore the mathematical complexities

that arise when accounting for the severe risk aversion that typifies water planning

problems.

Epsilon dominance is used to set the resolution of the planning objectives in

the following manner. Each of the objectives is first scaled to the range 0 to 1 for

use in the MOEA. The epsilon resolution used in ε-NSGAII for the kth objective,

denoted by εk, reflects this transformation. The value of εcost is set to 0.0001,

equivalent to a cost resolution in actual dollars of $10,000. A resolution for the

reliability objective, εrel = 0.0001, represents scaling of the reliability in increments

of 0.01 percent. The values for εsurplus and εdropped are set to 0.0001, representing

a resolution of 100 af for each objective. The cost variability objective is set to

an epsilon resolution, εcostvar, of 0.001, representing 0.01 of the cost variability

index reported in this work (for example, 1.1 compared to 1.2). The resolution of

the leases objective represents a difference of 0.1 in the expected value of leases

(εleases = 0.001).

The operators within ε-NSGAII are parameterized following the recommenda-
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tions of [49], [48], and [66]. The crossover probability, pc is set to 1.0 [67]. The

mutation probability is set as a function of the number of decision variables being

searched [68]. Case B has 6 decision variables and the probability of mutation was

set to pm = 1
6

and Cases C and D (with 8 decision variables) have pm = 1
8
. The

crossover distribution index ηc is set to 15 and the mutation distribution index,

ηm, is set to 20. The adaptive population sizing framework begins each algorithm

run with an initial population of 12 individuals. Each connected run is performed

for 250 generations, with randomly generated population members introduced af-

ter every run at a ratio of 4 random members to every 1 archive member (the

adaptive population sizing ratios were set according to recommendations in [69]).

Connected runs with this adaptive population sizing are performed for cases B

through D for a total of 100,000 function evaluations across the generations of

search. Recall that each function evaluation constitutes a Monte Carlo ensemble

of 5,000 members. Cases B through D, therefore, each used 500 million simulations

of the LRGV case study per single random trial (or initialization seed).

As a population-based search technique, MOEAs require generation of an initial

random population of candidate solutions, and the adaptive population sizing with

ε-NSGAII also requires input of new random solutions. In addition, the operators

used within the algorithm are probabilistic and require random numbers at each

iteration. The collection of solutions at the end of an algorithm run therefore

depends on the random numbers generated during the search process; that is, the

search process will yield different results for successive trials of the same algorithm

parameters. To reduce these effects, we used 50 trial runs to rigorously generate

reference sets for the tradeoffs presented in Cases B-D. An example of the 50-seed

reference set generation technique is provided in [66]. A non-dominated sorting

routine is then used to compare results across different random seed trial runs. The

tradeoffs represent our best approximation to the true Pareto-optimal set using 50

random trials for each problem subset (i.e., 50 seeds with 500 million simulations

per seed yields 2.5×1010 simulations per case). Our goal is to very carefully explore

the high dimensional spaces of Cases B-D. Again our computational experiment is

very conservative and good approximations can be attained using single trial runs

with smaller Monte Carlo samples. We were conservative in our analysis because of

our expectation that Case D’s critical reliability constraint would promote discrete
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feasibility islands that pose a significant search challenge.

3.3.2 Constraint Handling in Search

This section introduces the constraint handling approach used in this thesis; for

more detail, please refer to [58]. During the binary tournament selection used in the

ε-NSGAII, two solutions are evaluated to see which has better objective function

performance. The approach used in the thesis handles constraints by modifying

the definition of domination. Since constraints determine whether or not a solution

is feasible (that is, whether or not it violates a constraint), Deb et al. define three

cases for when a solution a dominates a second solution denoted by b [58]. In the

first instance a is feasible but b is not (regardless of the objective values of a).

The second is that both a and b are infeasible but the magnitude of the constraint

violation of a is lower than b. The third is that both a and b are feasible but a

dominates b (comparing objective function values using the traditional concept of

nondomination).

As an example of calculating a constraint violation, consider the reliability

constraint crel, which requires a solution’s reliability to be higher than a certain

threshold. The constraint violation, vk associated with a constraint ck is defined

in equation 3.14.

vk = min(
yk

yconstrk

− 1.0, 0) (3.14)

A value of interest for constraint ck is given by yk. In our example, yk equals the

portfolio reliability, frel. This value is divided by the constraint threshold yconstrk
.

For the reliability constraint, yconstrrel is set to 0.98. If this ratio is less than one,

subtracting 1.0 yields a negative value for v. Otherwise, the constraint is met and

v is set to zero.

In a formulation with multiple constraints, the values for each of the constraint

violations are added together. The benefit of this constraint handling approach

is that feasible solutions are always preferred over infeasible solutions, but the

method allows infeasible solutions to be modified through variation operators to

become feasible in subsequent generations during the search process. The method

also requires no a priori knowledge of how much to penalize solutions or manually

modify them to meet the constraints.
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3.3.3 Evaluation of Portfolio Performance Using Drought

Scenarios

The second phase of this work evaluates individual water supply portfolios under

a severe drought scenario. Four candidate solutions from the highly-constrained

Case D representing different portfolio types had their performances independently

tested for the driest calendar year on record in the LRGV. We coupled this year

with the highest possible demand for each month, adjusted for population growth

to reflect the tenth year of the multi-year planning scenario. The drought scenario

proposed in this section is a very severe test and statistically unlikely. By assuming

maximum monthly demands, the scenario maximizes predictive errors in demand

projections based on Monte Carlo sampling. The reservoir inflows that consti-

tute the driest calendar year are also unlikely to be selected from a probabilistic

standpoint, and the existence of this year in the historical record shows that it

could realistically happen in a similar manner in the future. The scenario created

here severely tests the adaptive power of the anticipatory rules used in the evolved

portfolios, since the rules for exercising options and purchasing leases are based on

assumptions of average demand and reservoir allocations.



Chapter 4

Results

This chapter presents the results of our many-objective analysis of the LRGV case

study. Section 4.1 presents the multiobjective tradeoffs for each of the problem

formulations while section 4.2 presents results from the drought study, in which

an extreme drought scenario was used to test the performance of representative

portfolio planning solutions.

4.1 Multiobjective Tradeoffs

This section presents the solution sets for Case A (figure 4.1), Case B (figure 4.2),

and Case C (figure 4.3). These results focus on how permanent rights, options,

and leasing supply instruments affect the city’s water supply tradeoffs.

4.1.1 Case A: Permanent Rights Only

Case A begins with the city using solely permanent rights for the water supply

where all potential portfolio solutions have permanent rights volumes (NR) ranging

from 30,000 af to 60,000 af. The tradeoff shown in figure 4.1 was attained by

enumerating all 30,000 designs using 1 af increments. Each candidate portfolio

was evaluated with respect to its cost (fcost), reliability (frel), and surplus water

(fsurplus) planning objectives. The concept of epsilon-dominance was then used to

determine the epsilon-nondominated set for Case A, presented in figure 4.1. Note

that while we evaluated 30,000 alternatives, we present only those solutions within
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Figure 4.1. Tradeoff for Case A, determined by enumerating discrete integer values of
permanent rights volumes. Each cone represents a portfolio planning strategy (a volume
of rights). The axes of the figure plot cost, reliability, and surplus water objectives and
the color plots the volume of permanent rights: low volumes in blue to high volumes in
red. Solution 1 is the high-cost solution in Case A.
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the constrained range of reliability (98% to 100%) that are epsilon-nondominated.

The reliability (frel), cost (fcost, from 9 million USD to 13 million USD) and surplus

water (fsurplus, from 10,000 af to 60,000 af) are plotted on the primary axes. Each

of the figures 4.1 through 4.3 have uniform plotting ranges. The coordinates of each

solution represent its relative objective function value. The color of each cone in the

figures represents the volume of permanent rights from blue (low permanent rights)

to red (high permanent rights), indicated with the colorbar in the figures’ legend.

Using color in this manner has been shown to be an effective way to represent

trends in plotted data [51, 70]. Furthermore, visualizing formal objective values

simultaneously with decision variables or model output can be helpful for decision

makers who often view these analysis components as being interchangeable [71].

This also allows analysts to examine trends or concerns that were not reflected in

the original model formulation [72]. The goal is to elucidate the balance between

the objectives as a function of the increasing volume of permanent rights. A

unique contribution of this work is the ability to move beyond the traditional

cost-reliability analysis [73, 74] and consider a broader suite of design objectives.

Solutions in Case A with low permanent rights generally started with a suf-

ficient surplus in the beginning of the simulation to meet demand requirements.

As the simulation continued, though, the volume of surplus water would decrease,

indicating that failures and shortages were diminishing the city’s water supply.

Sixty percent of the solutions that were enumerated did not have adequate supply

to meet the crel reliability constraint. The solutions that were able to meet the

constraint (with volumes of permanent rights greater than 48,000 af) did so with

a large surplus that increased as a function of the simulation year. Solution 1

exemplifies this trend and is plotted in figure 4.1 and summarized in table 4.1. For

near-100% reliability, the portfolio had a cost of $13 million and a surplus water

objective function value of 61,471 af (the average yearly surplus volume). Its asso-

ciated volume of end-of-year water is 29,965 af at the end of year one, but 87,099 af

in year 10. This large increasing reserve of surplus water has negative implications

for the region’s other water demands (e.g., water available for environmental flow

requirements). Examining the full range of solutions shown in figure 4.1 shows

that the marginal cost of increasing reliability increases dramatically for achieving

reliabilities near 100%.
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4.1.2 Case B: Permanent Rights and Adaptive Options

Contracts

Case B adds adaptive options contracting to the permanent rights supply approach

used in Case A. The additional decision variables include the low-volume options

contract alternative, NOlow
, the high-volume options contract alternative, NOhigh

,

and the contract threshold, ξ (see equation 2.2). The Case B formulation also adds

the risk-based decision variables αMay−Dec and βMay−Dec for options exercising. Ta-

ble 3.1 shows that Case B adds the dropped transfers objective fdropped and the

cost variability objective fcostvar with an additional constraint on cost variability,

ccostvar. Prior work has shown that adding temporary transfers such as options and

leases can reduce the city’s supply cost while maintaining high reliability [27, 28].

The purpose of this section is to provide a broader understanding of the cost effec-

tiveness and efficiencies provided by the adaptive options contract. The objectives

are visualized simultaneously with volumetric permanent rights and exercised op-

tions variables to relate objective function performance with the relative volumes

of each supply instrument specified by the portfolio’s strategy.

Figure 4.2 maintains the spatial plotting axes and color plotting with the ranges

of figure 4.1 but additionally plots the expected volume of exercised options, Nx,

by using the orientation of each cone. Cones pointing downward indicate a low

volume of exercised options (0 af) and cones oriented upwards indicate a high

volume of exercised options (160,000 af) cumulatively over the ten year planning

period. The value of Nx plotted here represents a sum of the yearly expected values

of exercised options for the 10-year simulation for each candidate solution. This

value is dependent on the monthly Monte Carlo simulation of inflow and demand,

as well as the available water in the city’s supply account due to its permanent

rights.

Similar to Case A, the high cost solutions near 100% reliability for case B

require high volumes of permanent rights (greater than 50,000 af) with costs of

approximately 12 to 12.7 million USD. These portfolios lower the volume of per-

manent rights required to achieve near 100% reliability by exercising options in

a small number of the Monte Carlo draws. While these solutions have minimal

volumes of dropped transfers, their values for surplus water are still quite high as
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Figure 4.2. Tradeoff for Case B determined by using an MOEA to find nondominated
solutions that mix permanent rights and options. Each cone represents a portfolio plan-
ning strategy. The axes of the figure plot cost, reliability, and surplus water objectives
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up representing low to high exercised options). Solution 2 is a representative Case B low
permanent rights solution.
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shown in figure 4.2. The permanent rights-dominated portfolios (shown as green

to yellow solutions) have high costs and require high volumes of surplus water.

Overall, exercised options lower the cost and surplus water associated with every

level of reliability compared to the Case A results in figure 4.1. The blue solutions

between 9 and 11 million USD cost also have a lower marginal cost of reliability

in addition to the surplus water savings.

Solution 2 is a representative solution for Case B (see table 4.1). The cost

objective has a value of 10 million USD, with a cost variability of 1.02 and a surplus

water objective value of 16,171 af. For this portfolio, the city had a permanent

rights volume of 30,089 af. Its adaptive options contract specifies a low volume

alternative of 18,666 af with the high volume alternative of 20,533 af, and the ξ

threshold set to 0.25 for choosing which alternative to use. The specified value

obligates the city to choose the high-volume alternative in its options contract

when its available supply at the beginning of a simulation year is less than 25%

of its permanent rights (see equation 2.2). Carryover of water from the options

contract led to the city almost always choosing the low-volume options contract

(it only chose the high-volume alternative in 1.1% of the Monte Carlo simulations

in an average simulation year). However, an average of 4931 Monte Carlo draws

per year (out of a possible 5000) resulted in exercising options from the contract in

Solution 2. This led to a total expected value of 147,237 af in exercised options over

the ten-year planning horizon (see figure 4.2). The consistent exercising of options

provides stability from a planning standpoint (i.e., low cost variability), but the

strategy also resulted in a value of 71,756 af for the dropped transfers objective.

This tradeoff shows that the city consistently exercises a volume of water that

exceeds their demand needs to limit their risks. Interestingly, the consistent level

of optioned water that expires at a periodic rate leads to a minimized surplus water

objective. An interesting result of the Case B tradeoff is the emergence of diverse

and distinctly different portfolio strategies. One set of strategies, identified by

dark blue solutions, is described by minimal permanent rights and high exercised

options. Cyan solutions represent an increase in permanent rights and moderate

volumes of options. The remaining solutions have higher permanent rights and

low options yielding higher costs to achieve near-100% reliability.
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4.1.3 Case C: Permanent Rights, Options, and Leases

The problem formulation for Case C adds leases to the city’s water portfolio yield-

ing a total of eight decision variables: the volume of permanent rights (NR), the

low and high alternatives in the options contract (NOlow
and NOhigh

) with the high-

low contract threshold (ξ), and two sets of alpha/beta variables for the beginning

and end of the year (αJan−Apr, βJan−Apr, αMay−Dec, βMay−Dec). The anticipatory al-

pha and beta rules are used to exercise options and acquire leases based on Monte

Carlo forecasts of the expected ratios of supply to demand. More details on the

decision variables used in each formulation can be referenced in table 2.1 and

equations 2.2 and 2.3.

Figure 4.3 is formatted similarly to figures 4.1 and 4.2, where the plot axes show

values of reliability (frel), cost (fcost), and surplus water (fsurplus). Again the color

of the cones represents the volume of permanent rights, NR, and the orientation

of the cones represents the volume of exercised options. An additional plotting

mechanism for this tradeoff shows the expected volume of acquired leases with

cone size. Small cones represent 0 af of leases while the largest cones represent

25,000 af for the entire simulation. The visualization in figure 4.3 demonstrates

how leases dramatically transform the portfolios’ performance. Recall that the

Case C formulation was solved for a total of six objectives with two constraints

(see table 3.1).

At first glance, the tradeoff for Case C shares some similarity with the results

of Cases A and B. High permanent rights solutions still exist that have both high

reliabilities and the highest costs. The yellow and green solutions figure 4.3 used

a very limited number of leases and exercised options (less than 3000 af exercised

options and 1700 af leases, as shown visually with each of the solutions pointing

downwards and having a small size). Note that even a small number of leases and

options significantly lowers the volume of permanent rights (and cost) required to

maintain reliability. For example, a solution with 49,514 af of permanent rights

achieved 99.96% reliability with fleases = 0.3 (less than one lease during the whole

120 month planning period). Volumetrically, this solution exhibited expected val-

ues of acquired leases of 796 af, with 527 af of exercised options on average. In

contrast to these yellow and green high-permanent rights solutions, we also see

blue and cyan solutions that have similar properties to Case B, with the damp-
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Figure 4.3. Tradeoff for Case C determined by using an MOEA to find nondominated
solutions that mix permanent rights, options, and leases. Each cone represents a port-
folio planning strategy. The axes of the figure plot cost, reliability, and surplus water
objectives and the color plots the volume of permanent rights: low volumes in blue to
high volumes in red. Additionally, the orientation of the cones plots the exercised options
(down to up representing low to high exercised options) and the size of the cones plots
the expected volume of leases (small representing zero leases to large representing the
most leases acquired).
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ened marginal cost of increasing reliability and low volumes of surplus water.

There are significant trends, however, that are unique to case C and are not

found with solely permanent rights and options portfolios. Note that there is a

distinct break (in terms of cost and surplus water) between the blue and cyan

solutions with higher leases and options and the aforementioned yellow and green

high-permanent rights solutions. This break does not represent a search failure.

It demonstrates a potential discovery of the dramatic influence of leasing on the

actual geometry of the objective tradeoffs, not known a priori in our formulation

of Case C. Such a break occurs due to the difference between a discrete decision to

purchase permanent rights and exercise options at the beginning of the year versus

the monthly flexibility of acquiring leases. Relative to Case B (figure 4.2), many

portfolios in Case C have dramatically lower costs and surplus water. Leases help
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the city avoid acquiring excess exercised options to maintain reliability. In fact,

the only way that the city can achieve near 100% reliability in Case B is to plan

for having a large ratio of exercised options water for 12-month periods to meet

excess demand when allocations are low (see the timing lag in the summer months

of figure 2.1). In case C, though, the city can acquire leases closer to when the

water is actually needed. The complexities of this monthly augmentation strategy

motivate looking at all six of the planning objectives simultaneously (figure 4.4).

Figure 4.4 presents a parallel line plot, which is helpful for viewing all of

the Case C portfolios’ six objectives simultaneously. The parallel line plot-

ting technique has been demonstrated as an effective way to view multiple vari-

ables [30,75,76]. Each line represents a solution to the planning problem (equiva-

lent to the cones in figure 4.3). The lines are colored similar to the tradeoff figure,

but with the permanent rights range scaled from 30,000 af to the highest perma-

nent rights existing in the epsilon-nondominated Case C set, 54,000 af. Therefore,

low permanent rights solutions are still blue in color and they transition to high

permanent rights solutions in green, yellow, and red.

Conflicts and interdependency between the objectives can be readily explored

using parallel line plots [30]. For example, consider the two minimization objectives

surplus water (fsurplus) and dropped transfers (fdropped) where the objectives are

plotted with optimal values near the bottom of the plot. If a conflict did not

exist between these objectives, a solution with optimal values for both objectives

would have a horizontal line near the bottom of the plot. However, we can observe a

conflict between the objectives, in which minimal surplus water cannot be achieved

without having a higher value for dropped transfers. This is an interesting result

for water managers who may assume that purchasing leases and exercising options

that tend to expire is wasteful. The result presented in figure 4.4 shows that red

(high permanent rights solutions) tend to have high costs with minimal numbers

of leases, but maximize surplus water while minimizing their dropped transfers.

We can see that there are low permanent rights solutions that minimize cost and

surplus water, but do so by having higher values for the number of leases and

dropped transfers objectives. Moving from the dropped transfers objective to

reliability and cost variability, we note that in high permanent rights solutions,

small decreases in permanent rights at high reliability require a slightly higher
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cost variability, due to those portfolios’ reliance on options and leases to meet

their demand requirements. It should be noted that on average over the full 120-

month planning period fewer than 9 leases would be expected to be used across

all of the nondominated solutions. Figure 4.4 also highlights that many-objective

analysis can falsify preconceptions on system performance. Operationally it would

seem intuitive to minimize dropping transfers of water but in reality this could

maximize costs and supply shortfall risks.

Using the parallel line plot, we find that the presence of more than three ob-

jectives can highlight groups of planning goals that represent tradeoffs between

different system operating heuristics and conceptions about how to best operate

the system. At a high level of reliability, we see that there is a set of objectives that

captures risk aversion (having near optimal values for dropped transfers, cost vari-

ability, and leases but allowing inferior performance in cost and surplus water) and

a set of objectives that captures a more flexible approach by having near optimal

performance with respect to cost and surplus water while trading off degradations

in performance with respect to dropped transfers, cost variability, and the number

of leases. The visualization of figure 4.4 provides a direct feedback, therefore, in

furthering system understanding and allowing the decision maker to modify their

problem formulation and conceptual understanding of the system.

4.1.4 Case D: Portfolio Planning Under A Critical Relia-

bility Constraint

The Case D problem formulation maintains the supply instruments, evaluative

performance objectives and constraints of Case C but adds the restrictive ccritrel

constraint (see table 3.1). Equation 3.4 requires that the “critical” reliability

of candidate portfolios is 100%, equivalent to ensuring that the supply in each

month of the 120 month simulation is at least 60% of the simulated demand. This

requirement mathematically abstracts severe risk aversion and is challenging given

the large Monte Carlo ensemble size used in this study. The portfolio strategies

are required to be robust enough to have supply even when low reservoir inflows

are coupled with high water demand. Of the set shown in figure 4.5, the lowest

reliability identified was 99.5%, indicating that the lower reliabilities (between
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98% and 99.5%) would often yield a nonzero probability of having a critical failure

during the simulation. We recognize that in reality there will always be some

nonzero likelihood of a critical failure; our analysis in this section seeks to explore

only the most extreme reliability alternatives.

The limited range of reliability identified in Case D motivated different plotting

axes for the tradeoff. Two of the primary axes, plotting cost (fcost) and surplus

water (fsurplus), are similar to figures 4.1, 4.2 and 4.2. The key difference is that the

dropped transfers objective (fdropped) from 0 af to 80,000 af has been plotted on

the remaining axis. Recall that the dropped transfers objective is calculated as a

sum of the expected value of dropped transfers in each simulation year. Solutions

3 through 6 exemplify the different regions of this objective tradeoff and capture

the maximally different alternatives [33] for satisfying extreme risk aversion.

Similar to figure 4.3, a distinct break in terms of surplus water and cost is seen

between yellow and green solutions (the groups that contain solutions 3 and 4) and

the blue and cyan solution group (that contains solutions 5 and 6). The figure also

indicates a similar discontinuity with respect to the dropped transfers objective.

While Case D’s tradeoff behavior is similar to the Case C portfolios’ objective value

performance, an important result for the Case D analysis is that we identified many

high-quality solutions with very high reliability in the reduced permanent rights

region (blue and cyan solutions). These solutions each have near 100% reliability

while maintaining the same relative volume of surplus water. In this region of the

objective space, we find that at a given volume of dropped transfers, increasing

the permanent rights represents a cost increase, and a gradual increase in surplus

water commensurate with the increase in NR. The level of dropped transfers can be

controlled by the adaptive strategy for a given portfolio, as the city uses temporary

transfers in place of permanent rights to manage shortfalls. This result shows that

there is a certain level of dropped transfers that are required to fulfill the critical

reliability constraint for the water planners, but the cost savings and surplus water

savings to do so are significant and worthwhile. It is also interesting to note that the

discrete spacing of the different portfolio types mathematically represents isolated

islands of feasible solutions that would be difficult to discover using one-at-time

single objective analysis and more narrowly-defined views of “optimality”.
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4.2 Drought Scenario Performance

An important assumption of the anticipatory planning approach used in our LRGV

case study model is that the ratio of expected supply to expected demand is used

when planning augmentations to the city’s water supply through options and leases.

This rule is analogous to many traditional planning approaches in water manage-

ment that assume stationarity in future performance with respect to the historical

record [1]. We identified the solutions based on their objective performance in

the 10-year problem formulation described in section 3.1, with values shown in

table 4.1. However, by changing the supply and demand scenario, we will test the

generality of the portfolio strategies and whether or not the planning alternatives

identified in the prior sections are appropriate given an independent performance

test based on a plausible but extremely unlikely scenario according to the LRGV

historical data and demand assumptions. Testing planning strategies is important

as municipalities seek a risk management approach to coping with drought, as dis-

cussed in [77]. As described in section 3.3.3, this section uses the driest calendar

year on record coupled with the largest feasible demand in every month’s assumed

distribution that accounts for maximum population growth as modeled in the 10th

year of the Monte Carlo simulation.

We chose four solutions from Case D for the drought analysis. Table 4.1 sum-

marizes the decision variables, objective function performance, and model output

from these solutions (including the example solutions discussed in Cases A and B).

The primary question to be answered is: how will the identified long-term high

performance portfolios perform during an extreme drought event? Generally, this

question tests the validity of an optimization model that uses mean behavior as

a predictor of future challenges for water management. Recall that our portfolio

strategies specify the supply decisions for a single city. This section will briefly

discuss the solutions’ performance in the 10-year simulation model and we will

compare this performance to the drought scenario we specified. Solution 3 was se-

lected from the high permanent rights group. With 49,289 af of permanent rights,

the city supplemented its supply in this portfolio with 1,259 af of leases on av-

erage and exercised its options contract in only 0.9% of the Monte Carlo draws

on average. Note that even the small volume of leases and options in this port-
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Table 4.1. Selected Solutions’ Performance in 10-Year Model

Solution 1 2 3 4 5 6

Case A B D D D D

fcost(10
6 $) 13.0 10.0 11.5 12.5 11.0 9.2

frel(%) 99.99 99.97 99.99 100.00 99.99 99.56
fsurplus (af) 61,471 16,170 37,038 33,858 21,031 12,271
fdropped (af) 0 71,756 598 60,892 54,025 37,713
fcostvar 1.00 1.02 1.10 1.05 1.09 1.10
fleases 0.0 0.0 0.5 0.7 1.1 4.8

NR 57,696 30,089 49,289 45,737 39,851 30,011
ξ N/A 0.25 0.15 0.30 0.10 0.15
NOlow

N/A 18,666 5,615 19,450 16,363 14,644
NOhigh

N/A 20,533 7,861 38,900 22,908 19,037

αMay−Dec N/A 1.6 1.1 2.1 1.6 1.5
βMay−Dec N/A 1.8 1.3 2.8 2.0 1.5
αJan−Apr N/A N/A 1.8 1.8 1.6 1.5
βJan−Apr N/A N/A 2.0 1.8 1.7 1.5

% NOhigh
N/A 1.1 1.4 10.9 0 0

% Nx N/A 98.624 0.9 38.3 56.7 82.7
Nx (af) 0 147,237 264 59,074 66,562 90,125
Nl (af) 0 0 1,259 11,772 12,672 18,966

folio was able to save the city 1.5 million dollars throughout the 10-year scenario

versus the high-cost, permanent-rights supply portfolio in Case A. Solution 4 is

characterized by high permanent rights and high leases and was chosen from the

group of isolated solutions in the top region of figure 4.5. This compromise region

was not artifically created but is a result of the non-dominated ranking in our

many-objective analysis, since these solutions have lower values of cost variability

than each of the other identified Case D solutions, allowing them to survive in the

evolutionary search. Solutions 5 and 6 are from the low permanent rights region.

Solution 5 represents the cyan region where lower options and an increased use of

permanent rights are used to meet the critical reliability constraint. Alternatively

solution 6 uses an increased volume of exercised options and reduced permanent

rights.
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Figure 4.6 presents the results from each of the solutions during the drought

year. The bar charts represent a water balance for the city’s water supply in each

month of the simulation. In January, the city begins with the modeled initial

condition of SJan equal to 30% of the portfolio’s permanent rights, as a surrogate

for the water that is often left in the city’s water supply account from the previous

year. This water is indicated as “carry over” water in the figure and shaded dark

gray. In February through December, the hashed lines represent water allocated to

the city’s permanent rights in the previous month available for use in the current

month. Similarly, the light gray and white boxes represent leased and optioned

water purchased by the city in the previous month and available for use in the

current month. The Monte Carlo prediction of demand (based on the historical

average) is shown with a circle symbol in each month. The “true” or scenario’s

maximum demands are designated with an x symbol. Note we are degrading the

predictive value of the Monte Carlo projections used in the risk-based alpha/beta

calculation for lease acquisition and options exercising. A failure happens, then,

when the demand (x symbol) falls higher than the supply (of carried over water,

rights allocations, options, and leases) indicated by the bar. Due to the nature of

the adaptive planning strategies, the city cannot forecast the drought conditions

and only allocates water according to the ratio of expected supply and expected

demand for a given month.

Figure 4.6a shows that Solution 3 would be typically forced to rely on a large

volume of surplus water, or water carried over in its account, to fulfill supply. In

years with high permanent rights allocations, this would be sufficient to build a

level of water that would be adequate to meet demand, similar to the volume that

it begins with in January. However, in this scenario the allocations to permanent

rights are low, and the city specifies lease purchases for the months of August,

September, and November. These allocations are insufficient to avoid a small

failure in the month of December. Examining the portfolio strategy summarized

in table 4.1, we see that this failure was partially due to the relatively low values

of alpha and beta in this strategy. Interestingly, water from the options contract

was also not exercised here due to the high volume of water the city initially had

in its account as a function of the initial condition.

Solution 4 specified a large volume of rights, options, and leases in the multiyear
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scenario with the high values for alpha and beta as well. An interesting consequence

of the problem formulation identified in this work is that some portfolios with low

cost variability would also have high average costs, since cities that purchase high

volumes of options consistently would have a low level of variability in their costs.

This conservative strategy was a success here, with no failure occurring and a large

quantity of water at the end of the year due to the large volume of options exercised

in this scenario.

Solutions 5 and 6 use a combination of leases and options to cope with the

drought, with a slightly higher initial condition for solution 5 due to its higher

permanent rights. The lower initial condition for solution 6 triggered some lease

purchases for the months of July, August, and September, but these purchases

were not enough to avoid the small shortfall in May. For each of the solutions, no

leases were purchased until after the options exercising in May due to the initial

condition related to the permanent rights in this scenario. The benefit of solution

6, though, was that its supply strategy exhibited resilience by providing adequate

supply after the failure in May. This demonstrated flexibility is important since

this solution had low cost and surplus water in the ten-year scenario as well as

good performance during the drought scenario.



Chapter 5

Discussion

The discussion in this chapter focuses on three major themes: the value of water

portfolio planning (section 5.1), the value of many objective analysis (section 5.2),

and the value of the constructive decision aiding paradigm (section 5.3).

5.1 The Value of Water Portfolios

The LRGV case study presented in this work demonstrates the efficiency and ef-

fectiveness of water supply portfolio planning using adaptive options contracting

and spot leases. This flexible approach is helpful for municipalities like those in

the LRGV that face rising supply development costs under increasing hydrologic

uncertainty [1]. The addition of leases and options had a dramatic effect on the

range of portfolios and alternatives identified. Leasing and adaptive options sup-

ply instruments can significantly lower water supply costs and improve reliability

while enhancing the overall efficiency of alternatives (both logistically and volu-

metrically). The work confirmed the cost savings at high reliability suggested in

prior studies [27, 28]. Our “many-objective” analysis shows that cost savings ap-

peared even in portfolios that followed a more conservative water supply approach

by using leases and options sparingly as a supplement to the city’s permanent

rights. This work moves beyond the standard cost-reliability analysis by using

volumetric and logistical metrics to measure the city’s efficiency in using leases

and options. Reductions in permanent rights with increases in leases and options

yielded decreases in surplus water and dramatic cost savings. The demonstrated
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logistic efficiency of these portfolios can help to alleviate some concerns over trans-

actions costs in using a portfolio approach, since the portfolio with the highest

number of leases specified less than 9 leases in a 120 month planning scenario. Be-

yond the benefits of leases and options, the many-objective analysis has a strong

potential for providing decision makers with feedbacks on limitations in their in-

tuitive heuristic planning rules and system preconceptions [36–38]. For example,

we modeled temporary transfers of water in this study to expire after 12 months

of nonuse. The costs associated with dropped transfers analyzed in Cases C and

D are negligible compared to their benefits in overall cost-savings, reduced surplus

water, and system reliability. These benefits could be lost by a water manager’s

hesitancy to purchase these “wasted” transfers.

Historically, many water management applications focusing on deterministic,

least cost analysis have noted the “flat” or well behaved solution spaces for planning

problems [78]. The six-objective, critical risk analysis in Case D of this study does

not support this view. The inclusion of severe risk aversion for critical failures in

Case D showed that many of the failures of Case C were in fact critical failures.

This is a clear example of the systems planning risk of “standing on the point

of a needle”, meaning that shifts towards extreme system states [1] may severely

degrade the forecasted behavior of deterministic optima, exposing water managers

to severe failures.

Our modeling of extreme risk aversion and portfolio performance for an ex-

treme drought scenario is an important contribution of this work. The scenario

limited the predictive power of the city’s planning strategy, creating an unexpected

supply shortfall under conditions of extreme demand. We found that the leases

and options provided a way for the city to cope with the drought even in port-

folios that had minimal use of these temporary instruments during the multiyear

planning scenario. Solution 3, identified in case D (see figure 4.5a) with high per-

manent rights and low expected number of leases, specified that the city purchase

three leases in the drought year. So in fact a decision maker heuristic of seeking to

minimize dependence on transfers would inadvertently make their system critically

dependent on several leases for extreme system states (i.e., timid use of the market

and inaccurate forecasts of the success of reservoir storage, see [79]). Solutions 4

- 6, which represented portfolios that relied more heavily on leases and options,
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provided a more resilient performance during the scenario, ironically using fewer

leases than solution 3 in the drought scenario year. This portion of our analysis

shows that managers should be cognizant of the risk management decision heuris-

tics inherent in their portfolio planning to ensure robustness in unexpected and

extreme situations.

5.2 The Value of Many-Objective Planning

Our analysis identified interesting relationships between planning objectives that

were not previously known, such as minimizing dropped (or wasted) transfers can

dramatically increase costs and risks for supply failures. Adding objectives can

prove that the “optimal” solution to a single objective problem can appear in the

inferior region with respect to broader problem formulations [33]. Using many

objectives suggests a paradigm of discovery and negotiation, in which decision

makers can learn about the structure of the problem itself, challenge preconceptions

used in their decision making, and “shop” for solutions that can allow them to learn

more about their planning problem.

By specifying six objectives in case C or D, we are solving more than 60 prob-

lems simultaneously in each case, including the six single objective problems, fifteen

two objective problems, twenty three-objective problems, and so on. It would be

difficult to specify each of these combinations a priori, but with proper visualiza-

tion the decision maker can identify clear trends and relationships between the

objectives in the whole space of the problem or any of its subspaces. This study

builds on the visualization analysis in [51] and contributes an understanding of

the relationship between volumetric water supply instruments and evaluative wa-

ter supply planning objectives. After probing the solution sets created with the

evolutionary algorithm, we chose several representative solutions to be analyzed

under the drought scenario, as has been successfully demonstrated in prior stud-

ies [29, 51, 70]. Our visualization combined with many-objective analysis can pro-

vide decision heuristic feedbacks and reduce the potential for cognitive myopia [36]

that may result from narrowly-defined delineations among decision variables, ob-

jectives, constraints, and other metrics. Moreover, we have solved a linked chain

of formulations as an example of how to account for the nonstationarity of man-
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agement problem formulations [32] and as a tool to reduce cognitive hysteresis in

decision making [35].

5.3 The Value of Constructive Decision Aiding

Our combination of optimization, visualization, and explorative analysis of in-

teresting solutions represents a direct attempt to demonstrate the constructive

decision aiding paradigm [80] for a water resources management application. Roy

highlights that objectives, decisions, and preferences of decision makers are rarely

well-defined at the beginning of analysis [80]. This study has presented a flexi-

ble approach in which an evolving “chain” of problem formulations helps planners

understand the dynamics of their system and planning problem. The problem for-

mulations we identified were each a subset of the most complex formulation, but

the stepwise approach in this thesis helps shed light on the relative contribution of

options independent of leases, and the effect of adding a restrictive critical reliabil-

ity constraint. An important feedback between the analysis and visualization exists

where the trends learned in visualization of the many objective analysis inform fu-

ture analyses and promote new problem formulations. This result highlights the

importance of management model structural uncertainties [81] that can only be

dealt with using diverse hypotheses and problem views to reduce the risks associ-

ated with decision-making errors. By combining a flexible, evolving approach to

the problem structure (i.e. multiple formulations) we were able to evolve planning

strategies that proved robust even when evaluated through metrics that were not

originally included in the analysis [72].



Chapter 6

Conclusion

Water markets seek to allocate water resources to their highest value use and pro-

vide a mechanism for water planners to improve the reliability of urban water

supply. The increasing risks posed by drought have encouraged a broader range

of market-based supply management tools being made available to water portfolio

planners including mixtures of permanent rights to fixed percentages of uncertain

reservoir inflows, spot market leases, and adaptive options contracts. Spot mar-

ket leases offer a highly flexible, but potentially price volatile supply instrument

for short term water transfers. Options address the price volatility of leases by

allowing planners to reserve a fixed price for a set volume of water that may be

transferred later in a planning year. Beyond reducing price volatility, options also

provide planners with more time to assess the state of their system before exercising

options and transferring water into their systems. The flexibility of these supply

instruments when used to augment traditional permanent rights is both a challenge

and an opportunity for effective water resources planning and management under

the risks posed by growing population demands and climate change.

This thesis contributes the first “many-objective” analysis of how to manage

the flexibility, uncertainty, and risks inherent in water portfolio planning from a

city’s perspective within a Lower Rio Grande Valley case study. All supply alterna-

tives were evaluated in this work using regional data and Monte Carlo simulation

of demands, pricing, and supply variability in the LRGV. This work contributes

a unique example of how to “chain” or evolve problem formulations to clearly

demonstrate the impacts of permanent rights, options, and leasing on a broad
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array of performance metrics. Tradeoff surfaces are both quantified and visual-

ized that capture the impacts of up to six objectives. These surfaces clarify the

dependency structure of each portfolio’s cost, cost variability, reliability, surplus

water volumes, frequency of leasing, and dropped (or wasted) transfers. Drawing

on growing concerns of the nonstationarity in forcing characteristics and response

of hydrologic systems, this study uses a severe drought scenario to demonstrate

that leases and options dramatically reduce the costs associated with avoiding crit-

ical failures in urban water supply systems when confronted with unexpected and

severe extremes in both water demands and water scarcity.

Our drought scenario analysis demonstrates that the combination of severe risk

aversion typical of urban water supply planners and the potential for growing un-

certainties yields significant mathematical challenges for water portfolio planning

using traditional tools. In this study, these challenges manifested themselves in the

form of complex discontinuities in the search problem and the potential for severe

supply failures. These challenges were overcome in this work by combining multi-

objective evolutionary optimization, interactive high-dimensional tradeoff visual-

ization, and evolving problem formulations. Additionally, as noted above, severe

drought scenario analysis was used to verify the adaptability, cost-effectiveness,

reliability, and resilience of a diverse suite of portfolio planning strategies identi-

fied in our results. Another unique contribution of this work is the exploration

of nonstationarity in how we define and solve water management problems. This

stems from the dynamic nature of water management problems; as designers make

new discoveries, they can create new hypotheses and subsequently introduce struc-

tural changes in their mathematical formulations. The structural nonstationarity

(or uncertainty) is both a challenge and an opportunity for innovating how we

conceptualize and solve future water management problems. In this thesis, we

demonstrate that evolving many-objective problem formulations and interactive

tradeoff visualization has strong potential for confronting many of the cognitive

challenges posed by decision making under uncertainty while facilitating both dis-

coveries and negotiation in water planning problems.



Chapter 7

Future Work

This study represented an effective way to analyze the tradeoffs and uncertain-

ties associated with a single city’s water supply portfolio strategies. Future work

can continue to address the challenges that a single city would face under grow-

ing population demands and increasing hydrologic variability. In this thesis, the

sensitivity of the adaptive planning strategies to changes in the hydrologic forcing

(i.e., an extreme drought scenario) demonstrated the need for improved planning

strategies for municipalities to use water markets. These new strategies could help

the city to augment its supply even when historical data does not provide sufficient

predictive power [1] and extreme conditions warrant a more diversified portfolio

strategy to provide reliable supply. An extension of this framework would be to

incorporate the interactivity in the optimization process itself, adding interactive

decision steering [82] to guide the generation of alternatives in real-time or using

visualization as an a posteriori analysis tool as demonstrated in [29,51]. In either

case, this interactive visualization involves the decision maker in the planning pro-

cess by facilitating new hypotheses and examining interesting potential solutions.

The modular framework would allow further modifications in the problem struc-

ture such as new assumptions about drought or population pressure to the system

in order to test the robustness of selected solutions and decision making heuristics.

These advanced tools for single-city planning will ultimately need to be ex-

tended to a regional approach to improve the sustainability of water supply at

larger scales [6]. Regional environmental concerns such as the degradation of

ecosystems coupled with myriad conflicting uses for our water resources magnify
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the socioeconomic and climate change factors that threaten our engineering sys-

tems. Future work extending from this thesis will need to address regulatory

issues associated with these water resources conflicts. In particular, we need to

formulate hypotheses on how changes in understanding of our environmental sys-

tems (see [83] for an interesting discussion) impact the built system that sustains

economic growth. The evolving chain of problem formulations suggested in this

thesis could be extended to test hypotheses about increasing model complexity

and its effect on our ability to predict risks to water supply, water allocation, and

environmental sustainability.
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