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ABSTRACT 
Systems on a chip (SOCs) are rapidly evolving into larger networks on a 
chip (NOCs).   This work presents a new methodology for managing 
power consumption for NOCs.   Power management problem is 
formulated using closed-loop control concepts, with the estimator tracking 
changes in the system parameters and recalculating the new power 
management policy accordingly.  Dynamic voltage scaling and local 
power management are formulated in the node-centric manner, where  
each core has its local power manager that determines units power states.  
The local power manager’s interaction with the other system cores 
regarding the power and the QoS needs enables network-centric power 
management.  The new methodology for power management of NOCs is 
tested on a system consisting of four satellite units, each with the local 
power manager capable of both node and network centric power 
management.  The results show large savings in power with good QoS. 

1. INTRODUCTION 
Today’s systems-on-a-chip (SOCs) are designed as a tightly 
interconnected set of cores, where all components share the same 
system clock, and the communication between components is via 
shared-medium busses. As more and more cores are integrated 
into a single chip, it is becoming increasingly difficult to meet the 
design constraints while still using the old design methodologies 
for SOC designs.  Shared-medium busses that are used today do 
not scale well, and do not fully utilize potentially available 
bandwidth.  Even though design implementation is limited by 
wire density, currently wires toggle approximately only 10% of 
the time [2].  As the features sizes shrink, and the overall chip size 
relatively increases, the interconnects start behaving as lossy 
transmission lines.  Crosstalk, electro-magnetic interference, and 
switching noise cause higher incidence of data errors.  Line delays 
have become very long as compared to gate delays causing 
synchronization problems between cores. A significant amount of 
power is dissipated on long interconnects and in clocking 
network. This trend only worsens as the clock frequencies 
increase and the features sizes decrease.  Lowering the power 
supplies and designing smaller logic swing circuits decreases the 
overall power consumption at the cost of higher data errors.  

One solution to these problems is to treat SOCs as micro-

networks, or Networks On Chips (NOCs) where the 
interconnections are designed using an adaptation of the protocol 
stack [1,2,4].  Networks have a much higher bandwidth due to 
multiple concurrent connections.  They have regular structure, so 
the design of global wires can be fully optimized and as a result 
their properties are more predictable.  Regularity enables design 
modularity, which in turn provides a standard interface for easier 
component reuse and better interoperability.  Overall performance 
and scalability increase since the networking resources are shared.   
Scheduling of traffic on shared resources prevents latency 
increases on critical signals.  Networking model decouples the 
communication layers so that design and synthesis of each layer is 
simpler and can be done separately.  In addition, decoupling 
enables easier management of power consumption and 
performance at the level of communicating cores. 
This work presents a new methodology for managing power 
consumption in NOCs.  The power management optimization 
problem is formulated and solved using a closed-loop control 
model with a combination of node and network centric power 
management approaches. Each communicating core has its local 
power manager that consists of an estimator and a controller.  The 
estimator observes changes in the state of the local core, incoming 
traffic to the core  (node-centric) and the special requests for 
power management coming from the other cores on the network 
(network-centric).  Based on the changes detected, it recalculates 
the optimal control.  The optimal controller selects the appropriate 
power and performance states of the local core.   
The rest of the paper is organized as follows. Section 2 discusses 
related work in both NOC design, and system level power 
management areas. The details of the system-level power 
management implementation for NOCs is discussed in Section 3.  
Sample design of a power management system for NOC is 
presented in Section 4, along with experimental results.  Finally, 
the Section 5 summarizes the contributions of this work. 

2. RELATED WORK 
Design of Networks on Chips (NOCs) is a relatively new field 
with numerous challenges.  The first challenge is the design of the 
communication network between the cores in a NOC.  In current 
SOC designs AMBA [10] and CoreConnect [11] standards have 
been used for point-to-point connections on chip. The Virtual 
Socket Interface (VSI) alliance [6] defines a standard interface to 
be used in conjunction with the on-chip system buses, for point-
to-point connections between the high performance virtual 
components (VCs) or on-chip buses. Glue logic is needed to 
interface predesigned cores and busses to VSI interface.  Each 
core in the Sonics [5] MicroNetwork communicates with an agent 
in the Silicon Backplane using an Open Core Protocol (OCP).  
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Agents in turn communicate with each other using network 
protocols via TDMA rotating priority access control system.  
Cosy [7] defines interfaces at multiple levels of abstraction.  At 
the lower level it uses the Virtual Component Interface to adopt to 
the specific physical bus protocol. 

More recently, there have been a few publications that define the 
NOC architecture based on the packet communication model.  
The work presented in [3] uses fat tree router topology to form an 
integrated packet switched network with message passing protocol 
and  32 bit packet sizes.  Much larger packet sizes (256 data and 
38 control bits)  and tiled architecture are suggested in [2].  
Reservation of network resources such as buffers and bandwidth 
is done with flit-reservation flow control.  Higher level protocols 
are layered on top of the simple interface.   

The communication layers in NOCs can be partitioned much like 
the structure proposed by OSI Reference Model for the computer 
networks in [1,4]. MESCAL provides tools for correct-by-
construction protocol stack [1].  According to the Metropolis 
methodology, the SOC designer first describes or selects blocks 
that perform computations and then designs the communication 
among them using a successive refinement process [1].  The 
layers of protocols encapsulate original computation cores to 
maximize reusability.  Adapters are used to bridge the differences 
between communication needs of the cores.  An example 
implementation is Maia processor [8], which consists of 21 
satellite units connected via two-level hierarchical reconfigurable 
network.  Large energy savings were observed due  to the ability 
of Maia to reconfigure itself according to application needs.   

Reduction of energy consumption in NOCs is another challenge 
that needs to be considered, in tandem with the design of the on-
chip communication network. System-level power management is 
already a well known concept for larger systems, such as laptops.  
Many of the cores that are of interest in NOC design already have 
multiple power  and performance states.  For example, 
StrongARM processor [9] supports four power states (active, idle, 
sleep, off) and a set of eleven power-performance tradeoff states 
characterized by different core voltages and frequencies of 
operation while in the active state. An outline of possible 
approaches for energy savings in NOCs is presented in [4].  Two 
approaches are suggested: node-centric and network-centric, but 
no specific implementation issues are discussed.  In this work we 
present an optimal way to implement both node and network 
centric approaches using the closed-loop control model. 

The most commonly implemented power management policy at 
the system level is a timeout policy that transitions system 
components into low-power states when they are inactive for a 
preset amount of time.  Predictive policies developed for 
interactive terminals [12,13] force the transition to a low power 
state as soon as a component becomes idle if the predictor 
estimates that the idle period will last long enough. Both timeout 
and predictive policies are heuristic in nature, and thus do not 
guarantee optimal results. In contrast, approaches based on 
stochastic models can guarantee optimal results.  Stochastic 
models to date have been formulated with open-loop control 
model, where statistics of the system are collected and 
characterized ahead of time, and the control is derived based on 
those with no adaptation at run time[14, 16,17].  An exception is 
the adaptive approach presented in [15] that uses only memoryless 
distributions to describe the history-dependent system behavior.   

In addition to  transitioning components into low-power states 
during idle times, power manager can also adjust processing 
frequency and voltage in the active state (Dynamic Voltage 
Scaling – DVS).  Early DVS algorithms set processor speed based 
on the processor utilization of fixed intervals [18,19].  The 
approaches presented in [20,21,22] for real-time systems assume 
that all tasks run at their worst case execution time.  The workload 
variation slack times are exploited on task-by-task basis in 
[23,24]. Voltage scheduler at the task level is presented in [25].  
All DVS algorithms described so far set processor voltage and 
frequency on task basis. Algorithm presented in [26] adjusts 
optimally to the workload variation within tasks.     
This work blends the node and network centric approaches for 
managing the power consumption in NOCs, while at the same 
time introducing for the first time a stochastic closed-loop control 
model. More details regarding the design of the power 
management system for NOCs are discussed in the next section. 
 

3. POWER MANAGEMENT IN NOCs 
Networks on chips consist of a set of cores connected with the 
communication network.  As the chip sizes increase relative to the 
feature sizes, the data communication becomes inherently 
unreliable, as discussed in the Introduction.  As a result, 
deterministic design methodology used in today’s designs needs 
to be replaced by statistical modeling.  
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Figure 1. Network On a Chip 

 A statistical model of NOCs can be used as the basis for 
optimization of power consumption under QoS constraints.  
Figure 1 shows a sample NOC.  The NOC can be modeled as a 
queuing network with a number of service points representing 
cores.  Each core can be modeled using Renewal model much like 
the one presented in [17] for portable devices.  Renewal theory 
studies stochastic systems that have a state called  renewal state, 
in which the process statistically begins anew. The time between 
successive visits to renewal state is called renewal time, and one 
cycle from renewal state, through other states and then back is 
called a renewal.  In policy optimization for dynamic power 
management, the complete cycle of transition from the idle state, 
through the other power states and then back into the idle state 
can be viewed as one renewal of the system.  The main advantage 
of Renewal model is that it guarantees globally optimal results 
with very fast optimization time.   



 The Renewal model for each core is shown in Figure 2. Incoming 
workload is represented with arrival arcs, while core’s service is 
represented with departure arcs.  Each node shows the core’s 
queue (local buffer) and power states. Table 1 lists the 
distributions that model the transitions between the states shown 
in Figure 2.  Detailed measurement results supporting the model 
have been presented in [17]. In the idle state, when the queue is 
empty, Pareto distribution (see Equation 3) describes the expected 
length of the idle time.  As soon as a workload request arrives, the 
core enters active state and the remaining arrival and service times 
are then governed by the exponential distribution.  The transition 
times between core’s active, idle and sleep states are governed 
with the uniform distribution that does not change at run time, as 
it is predetermined by the core’s design characteristics   

Table 1. System Model 

Component State Distribution 

Workload Queue > 0 Exponential 

 Queue = 0 Pareto 

Core Active Exponential 

 Transition Uniform 
 

The model described so far does not express how to manage 
energy and QoS. Management of energy consumption under QoS 
constraints can be formulated as a closed-loop stochastic control 
problem. This is in contrast to previous work [14,16,17] where 
power management policies are obtained by solving an open-loop 
control problem.  Control theory defines three different entities in 
a closed-loop control system: a system under control, an estimator 
and a controller.  Power manager, as shown in Figure 3, contains 
the controller, and the estimator.  The power manager’s controller 
gives commands to the core that determine its performance and 
energy characteristics (frequency and voltage) in the active state, 
and chooses when to transition the core into one of the available 
low-power states when the core is idle.   The estimator observes 
the requests coming into the core’s queue (Core Traffic in Figure 
3), the state of the core and the incoming power management 
requests from the network (Network PM Request in Figure 3).  
Based on the observations, it estimates the parameters needed to 
recalculate the power management policy and thus closes the 
control loop.   The next sections discuss how estimation and 
control are formulated for both node and network centric portions 
of NOC power management.   
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Figure 3. Local Power Manager 

 

3.1 Node-centric power management 
This section presents first the estimator and then the controller 
implementations for node-centric power management.  Good 
estimation is most critical for modeling the workload and service 
behavior in the active and the idle states since their distribution’s 
characteristics can change at run time. 
In the active state, the workload is modeled using exponential 
distribution. Both interarrival (λworkload) and servicing (λcore) rate 
changes can be tracked using the log of maximum likelihood 
estimator shown in Equation 1. This estimator guarantees optimal 
results with parameters defined as follows: w is the size of the 
window that holds the last set of interarrival times ∆t, c is the 
point in the past when the change in rate occurred, λn is the new 
rate, and λo is the old rate.   

The new estimated rate is used to set the voltage and frequency of 
the processor so that the processing delay shown in Equation 2, 
and thus the number of tasks to be processed in the buffer, are 
kept constant.  Typically the workload servicing rate’s (λcore) 
relationship to processor frequency is fixed for a given 
application, and thus needs to be estimated only once per each 
new application. Run-time estimation is primarily done for the 
core’s workload incoming rate (λworkload). 

)( coreworkloadworkload

coreDelay
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The distribution of workload idle times has to be modeled with 
the heavy-tailed distribution, such as the Pareto distribution. 
Figure 4 shows the log-log plot of the tail of two experimental 
distributions collected by observing idle times in the 
communication packet arrivals over a period of two hours and the 
Pareto fits to each set of data.  The top two lines represent the first 
set of experimental results and the corresponding Pareto fit, while 
the bottom two are the second set.  Clearly, the characteristics of 
the two distributions are quite different since the usage patterns 
changed during the collection period.  Previous work [17] 
assumed that the workload is stationary and then based on a priori 
analysis developed the optimal policy. When the workload is not 
stationary, as shown by this example, the policy developed in such 
a way will not be optimal.  Thus it is important to be able to 
estimate Pareto parameters at run time, and then to recompute the 
optimal policy.     
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Figure 2. Renewal Model 
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Figure 4. Experimental and Pareto Distributions 

The tail of the Pareto distribution with characteristic index a and 
normalizing constant b is shown in Equation 3.  The tail of a 
distribution gives the probability that the idle time will be as long 
or longer the a given time.   

atbttP iii
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(3) 

The parameters of Pareto distribution can be estimated using 
least-squares method on N samples of idle times ∆t as shown in 
Equation 4. Note that on the log plot (see Figure 4) Pareto 
distribution is a straight line with slope a and intercept b.  On 
every new idle time sample, only the related probability value, P,  
needs to be updated before recalculating parameters a and b. 
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The estimators presented track system changes.  When a change is 
detected, the power management control has to be recalculated. 
The formulation of policy optimization for Renewal model is 
shown in Equation 5, where p(j) is the probability of transitioning 
into low-power state after the system has been idle for time j∆t, 
d(j) is the expected performance penalty, t(j) is the expected time 
until renewal, e(j) is the expected energy consumed, and Pconstr is 
the power constraint.  An open-loop policy optimization problem 
similar to this one has already been solved for portable systems in 
[17] by using a linear program solver.  The optimal policy is 
obtained in tens of seconds, which is much too long for 
implementation of the closed-loop power management control 
presented in this work. 

 

  

A much faster way to solve the original optimization problem is to 
formulate the dual of its Lagrangian as shown in Equation 6 [27]. 
Variables v, u and λ are the Lagrangian multipliers.  A minimum 
crossing point of a set of lines specified by Equation 7 is the 
solution to the dual.  The indexes of Lagrangian multipliers which 
form the solution are used back in the original constraints shown 
in Equation 5 to obtain values of probabilities of transitioning into 
low-power state, p(j).  Using this method the optimal solution can 
be calculated in a matter of milliseconds, in contrast to linear 
program solvers that takes tens of seconds.  In this way closed-
loop control can be implemented in real-time.  

The final output of optimization is a table that specifies 
probabilities of transitioning a core into low-power states, to be 
used in addition to a table that gives frequency and voltage 
settings as a function of arrival and service rates.  Both tables can 
be accessed from either software or hardware, depending on how 
the local power management controller is realized.  An example of 
optimal control for transition to low-power state is shown in Table 
2 (lightly shaded region is for node-centric power management 
only). Software implementation of the controller can be described 
as follows. The controller generates a  pseudo-random number 
when the core becomes idle. The core remains idle until either the 
probability of transition to the low-power state is greater than the 
random number generated, or until workload arrival forces the 
core’s transition into the active state. When the core is in the low-
power state, it stays there until the first arrival, at which point it 
transitions back into the active state.  The same functionality can 
also be implemented in hardware, as is presented in Section 4.2. 

3.2 Network-centric power management 
The main advantage of implementing network-centric power 
management is the ability to make better predictions about the 
future workload.  Node-centric power manager does not have any 
information about the future service requests from the other cores.  
In contrast, with network-centric approach each local estimator 
receives other core’s service requests in advance and is given a 
signal when the service is no longer needed.   
The network-enhanced estimator, shown in Figure 3, has two 
ports – the current core workload input (Core Traffic), and the 
network power management request  port (Network PM Request) 
that is both an input and an output.   The networking interface has 
to be defined in such a way that protocols support passing power 
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Table 2. Sample controller 

Source Idle Time (ms) Transition Probability

Node 0 0.0 

 70 0.3 

 120 1.0 

Network  Any time 1.0 



management messages between the cores.  The design of 
networking protocol for NOCs is beyond the scope of this paper, 
but has been addressed in [2,3]. Network power management adds 
very few overhead packets to the overall communication stream 
between cores.   
A network message in effect forces the local PM to make a 
deterministic decision instead of randomized decision made when 
only node-centric power management is used. Table 2 gives an 
example of controller implementation for decision on when to 
transition into low-power state when both node and network 
centric power management approaches are implemented (darkly 
shaded row).  When local power manager receives a request for 
service by another core, it starts waking up the core if it was in a 
low-power state (with probability 1.0 as shown in Table 2).  
Otherwise the core verifies that it is ready to receive requests.  
The cost of waking up the core can be masked, as the other 
network elements may be able to notify the local core ahead of 
time when it’s services are needed.  Once the core’s services are 
not required anymore, the local PM can be notified via a network 
message.  At that point, if no other requests are pending, the core 
can enter a low-power state without any additional idle time.  As a 
result, the amount of energy wasted while the core is idle is 
reduced, as the local PM knows ahead of time that no requests are 
arriving in near future.  
Clearly, the best results are obtained when all cores can 
communicate ahead of time their needs to each other.  
Unfortunately, that is not always possible, since ultimately the 
final decisions on what the system will be doing next are made by 
the users of the system who are inherently non-deterministic.  
Thus the best approach for managing power consumption in 
NOCs is a  combination of node and network centric techniques, 
such as the one presented in this work. The results discussed in 
the next section highlight this conclusion. 

4.  RESULTS 
The power management methodology presented in this work is 
implemented for the sample NOC system shown in Figure 1. The 
system consists of four large cores: communication, speech 
processing, MPEG audio and video core. Power and performance 
characteristics of each core are shown in Table 3.  Three power 
states supported by each core: active, idle, and sleep.  The 
transition time from active to sleep and back to active state 
(shown in Table 3 as A-S-A time)  is on the order of  tens of 
milliseconds, which is slow enough to allow for dynamic 
parameter estimation and periodic policy recomputation.  Number 
of DVS settings reflects the discrete frequency and voltage points 
each cores processing unit can be set to.  The transition time 
needed to change from one to other frequency point is on the 
order of hundreds of microseconds (labeled as DVS switch time).   

Each core in NOC has a local power manager, that in turn consists 
of an estimator and a controller.  The primary estimators job is to 
estimate the parameters needed to recalculate optimal control 
depending on the changes in the core’s environment.  The 
environment includes incoming traffic from the chip network, and 
special power management requests from other cores.  The 
controller implements the optimal system control.  The results 
first discuss the quality of the estimators, followed by the 
controller implementation.  Finally, energy savings are contrasted 
when using only the node-centric approach with the combined 
node and network-centric power management. 

Table 3. NOC Specifications 

Specification  Audio   Video  Comm. Speech Total 

Active P(mW) 700 1885 1500 1055 5140 

Idle P(mW) 216 235 1000 208 1659 

Sleep P(mW) 0.3 1.4 100 0.6 102.2 

A-S-A time(ms) 45.6 54.6 40 54.6 54.6 

# DVS Settings 11 11 3 11 11 

DVS switch (us) 150 150 100 150 150 
 

4.1 Estimator 
There are two core states in which power management decisions 
are made:   appropriate service level is determined in the active 
state, while the decision on when to transition into the sleep state 
occurs in the idle state.  The quality of both decisions depends on 
the estimation accuracy and speed.  We first evaluate the 
estimation of the arrival rate, followed by the estimation of the 
parameters needed to model the distribution of idle times.  

The estimator uses maximum likelihood ratio shown in Equation 
1 to detect a change in incoming arrival frame rate of the MPEG 
video core from 12 frames/sec to 28 frames/sec.  Window size (w 
in Equation 1) varies from 10 to 20 frame arrival times.  When the 
ratio is evaluated on every frame arrival, the detection is delayed 
by only one frame, while when it is evaluated every five or more 
frames, it has maximum five frame delay.  The rate detected is 
exact when the window size is between 10 and 20 frames.  The 
computation overhead of detection is small  as compared to the 
frame decoding time.   
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Figure 5. Dynamic Pareto Parameter Estimates 

Distribution of length of time spent in the idle state is also 
estimated at run time.  This distribution has heavy-tailed behavior, 
so Pareto distribution with its two parameters is used in 
estimation.  Figure 5 shows how the estimator detects a change in 
the idle time distribution on communications core when the traffic 
pattern changes between two examples shown in Figure 4.  The 
change is most clearly observed in the intercept value, as the 
characteristic slope stays nearly constant. Figure 6 shows the 
accuracy of Pareto parameter estimates over a large number of 
samples.  The error is defined as the difference between a Pareto 
fit done using off-line versus run-time analysis.  Average error is 
about 2%.   Since characteristic slope varies less, the estimate of it 
is also more accurate than the estimate of intercept.    
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Figure 6. Errors in Pareto Parameter Estimates 

4.2  Controller 
The local power manager’s controller can be realized in software, 
hardware or a combination of the two.  For policies where critical 
parameters change very often, the control and the estimator should 
be realized in software.  Realizing a part of, or the whole 
controller in hardware lowers the control overhead, with very 
minor additions to an already existing hardware power manager 
(e.g. ARM cores) or an on-chip FPGA. This approach is very 
attractive especially for cores where the policy does not change 
much at run time, and thus does not need to be recomputed very 
often.  Since the software implementation has already been 
discussed in Section 3.1, we focus on the hardware 
implementation next. 
There are three different components to the optimal controller: the 
random number generator, the policy and the timer.  The timer is 
used to measure the length of idle period before the policy is 
evaluated.  Typically core’s processors already have 
programmable timers aboard that can be used by the hardware 
controller.  Thus only the policy and the random number 
generator need to be implemented in hardware.  The simplest 
hardware implementation for random number generator is to use 
Linear Feedback Shift Register (LFSR).  Figure 7 shows the 
tradeoff between the number of bits in LFSR (and thus larger 
area) and cost in terms of power and performance penalty.  The 
cost is calculated as the percent deviation from the optimal values.  
Even with as little as 8 bits, the hardware LFSR gives results 
within 5% of optimal. 
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Figure 7. Probability Resolution Error 

 

Table 4. Local PM Policy FPGA Synthesis Results 

LFSR LFSRRegs Policy   

Bits # LABs Max ns # LABs Max ns 

5-15 1 4 2 35 
 

Results of controller synthesis into Altera’s EPM7032 FPGA are 
shown in Table 4.  Policy and LFSRs take up only 3 Logic Array 
Blocks (LABs) for LFSR sizes ranging from 5 to 15 bits. In 
addition, the time it takes to arrive at the decision is in the range 
of nanoseconds, while the minimum idle times the power manager 
would respond to are on the order of milliseconds.  The same 
policy evaluates even faster when synthesized into gates using 
Synopsis tools as shown in Table 5. In this case, the LFSR area is 
consistently about 12-14% of the total power management area.  
The policy includes the finite state machine needed to make the 
decisions and the comparator.  Even the largest design takes only 
15 registers and 855 gates. 

4.3 Network-centric Power Management 
Table 6 shows energy savings obtained for the NOC shown in 
Figure 1, with specifications listed in Table 3.  The results were 
obtained by simulating the power states of the NOC system as a 
whole, with real workload traces collected from each respective 
core as input to the simulator.  The results report a factor of 
savings in energy with reference to not using any power 
management.  The lightly shaded portion of the table reports 
results when using only node-centric approach, while the darker 
shaded row reports results for a combined node and network-
centric approaches.   

Table 6. Energy Savings for PM in NOCs 

 

PM  PM Type  MP3  MPEG2 Comm. Speech Total 

None None         1.0          1.0        1.0         1.0       1.0 

Node DVS only         1.4          2.0        1.0         3.9       1.2 

Centric DPM only         2.0          1.5        3.0         2.0       2.4 

  DVS&DPM         3.4          3.5        4.0         5.9       3.6 

Network DVS&DPM         3.7          3.6        4.2         6.4       4.1 

In node-centric PM, controlling only processing frequency and 
voltage at run time (DVS results) gives between a factor of 1.4 to 
a factor of almost 4 in savings.  Note that communications core 
does not allow voltage and frequency scaling.  When only control 
of transition into the sleep state is implemented (DPM only 
results), savings range from a factor of 1.5 to a factor of 3.  The 
smallest savings are in video core, as it tends to have very few idle 
times.  Combining the DVS and DPM gives overall savings of a 
factor of 3.6.   

Table 5. Local PM Policy Synopsis Synthesis Results 

LFSR Regs Policy  

#FFs % area #gates % area 

5 14% 193 86% 

9 14% 417 86% 

15 12% 855 87% 
 



When network power management is included with the node-
centric approach (the last row in Table ), the savings in energy 
grow to a factor of 4.1 with performance penalty reduced by 
minimum 15%.  The performance penalty of a core is the time the 
rest of the system has to wait in order for the core to become 
available after either changing processing frequency or waking up 
from the sleep state. 

5. CONCLUSIONS 
This work presented a new methodology for managing power 
consumption in NOCs. The power management optimization is 
formulated using closed loop control concepts, with blended node 
and network centric approaches. The new methodology is tested 
on a design of a NOC system consisting of four satellite units, 
each with the local power manager consisting of the estimator and 
the controller.  The estimator implementation has been shown to 
have average error of 2% when estimating Pareto parameters, and 
is right on target when estimating exponential frame arrival rate 
changes.  Optimal control is formulated using a Renewal model 
that can be recalculated in a matter of milliseconds when 
distribution parameters change. An efficient hardware 
implementation of the local PM controller is presented that has 
negligible delay in control implementation with a very small 
increase in hardware area.  The final implementation of node and 
network centric power management approaches shows savings of 
a factor of four at system level while improving performance. 
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