
Managing Power Consumption in Networks on Chips
Tajana Simunic

HP Labs & Stanford University
1501 Page Mill Rd., MS 3U-4

Palo Alto, CA 94304
(650) 236-5537

tajana@stanford.edu

Stephen Boyd
Stanford University

Packard 264
Stanford, CA 94305

(650) 723-0002
boyd@stanford.edu

ABSTRACT
Systems on a chip (SOCs) are rapidly evolving into larger networks on a
chip (NOCs). This work presents a new methodology for managing
power consumption for NOCs. Power management problem is
formulated using closed-loop control concepts, with the estimator tracking
changes in the system parameters and recalculating the new power
management policy accordingly. Dynamic voltage scaling and local
power management are formulated in the node-centric manner, where
each core has its local power manager that determines units power states.
The local power manager’s interaction with the other system cores
regarding the power and the QoS needs enables network-centric power
management. The new methodology for power management of NOCs is
tested on a system consisting of four satellite units, each with the local
power manager capable of both node and network centric power
management. The results show large savings in power with good QoS.

1. INTRODUCTION
Today’s systems-on-a-chip (SOCs) are designed as a tightly
interconnected set of cores, where all components share the same
system clock, and the communication between components is via
shared-medium busses. As more and more cores are integrated
into a single chip, it is becoming increasingly difficult to meet the
design constraints while still using the old design methodologies
for SOC designs. Shared-medium busses that are used today do
not scale well, and do not fully utilize potentially available
bandwidth. Even though design implementation is limited by
wire density, currently wires toggle approximately only 10% of
the time [2]. As the features sizes shrink, and the overall chip size
relatively increases, the interconnects start behaving as lossy
transmission lines. Crosstalk, electro-magnetic interference, and
switching noise cause higher incidence of data errors. Line delays
have become very long as compared to gate delays causing
synchronization problems between cores. A significant amount of
power is dissipated on long interconnects and in clocking
network. This trend only worsens as the clock frequencies
increase and the features sizes decrease. Lowering the power
supplies and designing smaller logic swing circuits decreases the
overall power consumption at the cost of higher data errors.

One solution to these problems is to treat SOCs as micro-

networks, or Networks On Chips (NOCs) where the
interconnections are designed using an adaptation of the protocol
stack [1,2,4]. Networks have a much higher bandwidth due to
multiple concurrent connections. They have regular structure, so
the design of global wires can be fully optimized and as a result
their properties are more predictable. Regularity enables design
modularity, which in turn provides a standard interface for easier
component reuse and better interoperability. Overall performance
and scalability increase since the networking resources are shared.
Scheduling of traffic on shared resources prevents latency
increases on critical signals. Networking model decouples the
communication layers so that design and synthesis of each layer is
simpler and can be done separately. In addition, decoupling
enables easier management of power consumption and
performance at the level of communicating cores.
This work presents a new methodology for managing power
consumption in NOCs. The power management optimization
problem is formulated and solved using a closed-loop control
model with a combination of node and network centric power
management approaches. Each communicating core has its local
power manager that consists of an estimator and a controller. The
estimator observes changes in the state of the local core, incoming
traffic to the core (node-centric) and the special requests for
power management coming from the other cores on the network
(network-centric). Based on the changes detected, it recalculates
the optimal control. The optimal controller selects the appropriate
power and performance states of the local core.
The rest of the paper is organized as follows. Section 2 discusses
related work in both NOC design, and system level power
management areas. The details of the system-level power
management implementation for NOCs is discussed in Section 3.
Sample design of a power management system for NOC is
presented in Section 4, along with experimental results. Finally,
the Section 5 summarizes the contributions of this work.

2. RELATED WORK
Design of Networks on Chips (NOCs) is a relatively new field
with numerous challenges. The first challenge is the design of the
communication network between the cores in a NOC. In current
SOC designs AMBA [10] and CoreConnect [11] standards have
been used for point-to-point connections on chip. The Virtual
Socket Interface (VSI) alliance [6] defines a standard interface to
be used in conjunction with the on-chip system buses, for point-
to-point connections between the high performance virtual
components (VCs) or on-chip buses. Glue logic is needed to
interface predesigned cores and busses to VSI interface. Each
core in the Sonics [5] MicroNetwork communicates with an agent
in the Silicon Backplane using an Open Core Protocol (OCP).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DATE ’02, March 1-3, 2002, Paris, France.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

Agents in turn communicate with each other using network
protocols via TDMA rotating priority access control system.
Cosy [7] defines interfaces at multiple levels of abstraction. At
the lower level it uses the Virtual Component Interface to adopt to
the specific physical bus protocol.

More recently, there have been a few publications that define the
NOC architecture based on the packet communication model.
The work presented in [3] uses fat tree router topology to form an
integrated packet switched network with message passing protocol
and 32 bit packet sizes. Much larger packet sizes (256 data and
38 control bits) and tiled architecture are suggested in [2].
Reservation of network resources such as buffers and bandwidth
is done with flit-reservation flow control. Higher level protocols
are layered on top of the simple interface.

The communication layers in NOCs can be partitioned much like
the structure proposed by OSI Reference Model for the computer
networks in [1,4]. MESCAL provides tools for correct-by-
construction protocol stack [1]. According to the Metropolis
methodology, the SOC designer first describes or selects blocks
that perform computations and then designs the communication
among them using a successive refinement process [1]. The
layers of protocols encapsulate original computation cores to
maximize reusability. Adapters are used to bridge the differences
between communication needs of the cores. An example
implementation is Maia processor [8], which consists of 21
satellite units connected via two-level hierarchical reconfigurable
network. Large energy savings were observed due to the ability
of Maia to reconfigure itself according to application needs.

Reduction of energy consumption in NOCs is another challenge
that needs to be considered, in tandem with the design of the on-
chip communication network. System-level power management is
already a well known concept for larger systems, such as laptops.
Many of the cores that are of interest in NOC design already have
multiple power and performance states. For example,
StrongARM processor [9] supports four power states (active, idle,
sleep, off) and a set of eleven power-performance tradeoff states
characterized by different core voltages and frequencies of
operation while in the active state. An outline of possible
approaches for energy savings in NOCs is presented in [4]. Two
approaches are suggested: node-centric and network-centric, but
no specific implementation issues are discussed. In this work we
present an optimal way to implement both node and network
centric approaches using the closed-loop control model.

The most commonly implemented power management policy at
the system level is a timeout policy that transitions system
components into low-power states when they are inactive for a
preset amount of time. Predictive policies developed for
interactive terminals [12,13] force the transition to a low power
state as soon as a component becomes idle if the predictor
estimates that the idle period will last long enough. Both timeout
and predictive policies are heuristic in nature, and thus do not
guarantee optimal results. In contrast, approaches based on
stochastic models can guarantee optimal results. Stochastic
models to date have been formulated with open-loop control
model, where statistics of the system are collected and
characterized ahead of time, and the control is derived based on
those with no adaptation at run time[14, 16,17]. An exception is
the adaptive approach presented in [15] that uses only memoryless
distributions to describe the history-dependent system behavior.

In addition to transitioning components into low-power states
during idle times, power manager can also adjust processing
frequency and voltage in the active state (Dynamic Voltage
Scaling – DVS). Early DVS algorithms set processor speed based
on the processor utilization of fixed intervals [18,19]. The
approaches presented in [20,21,22] for real-time systems assume
that all tasks run at their worst case execution time. The workload
variation slack times are exploited on task-by-task basis in
[23,24]. Voltage scheduler at the task level is presented in [25].
All DVS algorithms described so far set processor voltage and
frequency on task basis. Algorithm presented in [26] adjusts
optimally to the workload variation within tasks.
This work blends the node and network centric approaches for
managing the power consumption in NOCs, while at the same
time introducing for the first time a stochastic closed-loop control
model. More details regarding the design of the power
management system for NOCs are discussed in the next section.

3. POWER MANAGEMENT IN NOCs
Networks on chips consist of a set of cores connected with the
communication network. As the chip sizes increase relative to the
feature sizes, the data communication becomes inherently
unreliable, as discussed in the Introduction. As a result,
deterministic design methodology used in today’s designs needs
to be replaced by statistical modeling.

Router

Communications

MAC
controller

Baseband
DSP

Radio

Embedded
CPU

RAM Flash

PM

EEPROM

MPEG Video Core

DSP

RAM

PM

ARM
Core

Flash

DMA
Controller

Display
Controller

MPEG Audio Core

ARM
Core

PM

PCM
Buffer

Flash

RAM

DMA
Controller

Audio Out
Controller

Speech ProcessingPM

DSP ARM
Core

DMA
Controller

RAM

Flash

Audio In
Controller

Figure 1. Network On a Chip

 A statistical model of NOCs can be used as the basis for
optimization of power consumption under QoS constraints.
Figure 1 shows a sample NOC. The NOC can be modeled as a
queuing network with a number of service points representing
cores. Each core can be modeled using Renewal model much like
the one presented in [17] for portable devices. Renewal theory
studies stochastic systems that have a state called renewal state,
in which the process statistically begins anew. The time between
successive visits to renewal state is called renewal time, and one
cycle from renewal state, through other states and then back is
called a renewal. In policy optimization for dynamic power
management, the complete cycle of transition from the idle state,
through the other power states and then back into the idle state
can be viewed as one renewal of the system. The main advantage
of Renewal model is that it guarantees globally optimal results
with very fast optimization time.

 The Renewal model for each core is shown in Figure 2. Incoming
workload is represented with arrival arcs, while core’s service is
represented with departure arcs. Each node shows the core’s
queue (local buffer) and power states. Table 1 lists the
distributions that model the transitions between the states shown
in Figure 2. Detailed measurement results supporting the model
have been presented in [17]. In the idle state, when the queue is
empty, Pareto distribution (see Equation 3) describes the expected
length of the idle time. As soon as a workload request arrives, the
core enters active state and the remaining arrival and service times
are then governed by the exponential distribution. The transition
times between core’s active, idle and sleep states are governed
with the uniform distribution that does not change at run time, as
it is predetermined by the core’s design characteristics

Table 1. System Model

Component State Distribution

Workload Queue > 0 Exponential

 Queue = 0 Pareto

Core Active Exponential

 Transition Uniform

The model described so far does not express how to manage
energy and QoS. Management of energy consumption under QoS
constraints can be formulated as a closed-loop stochastic control
problem. This is in contrast to previous work [14,16,17] where
power management policies are obtained by solving an open-loop
control problem. Control theory defines three different entities in
a closed-loop control system: a system under control, an estimator
and a controller. Power manager, as shown in Figure 3, contains
the controller, and the estimator. The power manager’s controller
gives commands to the core that determine its performance and
energy characteristics (frequency and voltage) in the active state,
and chooses when to transition the core into one of the available
low-power states when the core is idle. The estimator observes
the requests coming into the core’s queue (Core Traffic in Figure
3), the state of the core and the incoming power management
requests from the network (Network PM Request in Figure 3).
Based on the observations, it estimates the parameters needed to
recalculate the power management policy and thus closes the
control loop. The next sections discuss how estimation and
control are formulated for both node and network centric portions
of NOC power management.

Core

Core
Function

Power Manager

Control
Policy

EstimatorNetwork PM
Request

Core
Traffic

Core

Router

Figure 3. Local Power Manager

3.1 Node-centric power management
This section presents first the estimator and then the controller
implementations for node-centric power management. Good
estimation is most critical for modeling the workload and service
behavior in the active and the idle states since their distribution’s
characteristics can change at run time.
In the active state, the workload is modeled using exponential
distribution. Both interarrival (λworkload) and servicing (λcore) rate
changes can be tracked using the log of maximum likelihood
estimator shown in Equation 1. This estimator guarantees optimal
results with parameters defined as follows: w is the size of the
window that holds the last set of interarrival times ∆t, c is the
point in the past when the change in rate occurred, λn is the new
rate, and λo is the old rate.

The new estimated rate is used to set the voltage and frequency of
the processor so that the processing delay shown in Equation 2,
and thus the number of tasks to be processed in the buffer, are
kept constant. Typically the workload servicing rate’s (λcore)
relationship to processor frequency is fixed for a given
application, and thus needs to be estimated only once per each
new application. Run-time estimation is primarily done for the
core’s workload incoming rate (λworkload).

)(coreworkloadworkload

coreDelay
λ−λλ

λ
=

(2)

The distribution of workload idle times has to be modeled with
the heavy-tailed distribution, such as the Pareto distribution.
Figure 4 shows the log-log plot of the tail of two experimental
distributions collected by observing idle times in the
communication packet arrivals over a period of two hours and the
Pareto fits to each set of data. The top two lines represent the first
set of experimental results and the corresponding Pareto fit, while
the bottom two are the second set. Clearly, the characteristics of
the two distributions are quite different since the usage patterns
changed during the collection period. Previous work [17]
assumed that the workload is stationary and then based on a priori
analysis developed the optimal policy. When the workload is not
stationary, as shown by this example, the policy developed in such
a way will not be optimal. Thus it is important to be able to
estimate Pareto parameters at run time, and then to recompute the
optimal policy.

Arrival

Departure

Arrival

No Arrival

Arrival

Idle State

queue = 0

Sleep State

Transition to
Active State
queue > 0

Transition to
Sleep State

Active State
foVo

queue > 0

Figure 2. Renewal Model

∑
=

∆−−+−= λλλ
λ m

kj
jon

o

tcwP n)(ln)1()ln(max

(1)

0.001

0.01

0.1

1

0.01 0.1 1 10
Idle time (t) in sec.

Pr
ob

(T
>t

)

Experimental 1

Pareto 1

Experimental 2

Pareto 2

Figure 4. Experimental and Pareto Distributions

The tail of the Pareto distribution with characteristic index a and
normalizing constant b is shown in Equation 3. The tail of a
distribution gives the probability that the idle time will be as long
or longer the a given time.

atbttP iii
−∆=∆>∆)(

(3)

The parameters of Pareto distribution can be estimated using
least-squares method on N samples of idle times ∆t as shown in
Equation 4. Note that on the log plot (see Figure 4) Pareto
distribution is a straight line with slope a and intercept b. On
every new idle time sample, only the related probability value, P,
needs to be updated before recalculating parameters a and b.

∑
=

∆+∑
=

∑
=

∑
=

∆−∆∆

∑
=

∑
=

−∆

=

−=

N

j
)jta

N

j jP(
N

N

i
)

N

j jtit(Nit

N

i
)

N

j jPiP(Nit

eb

a

1
ln

1
ln1

1 1
lnlnln

1 1
lnlnln

(4)

The estimators presented track system changes. When a change is
detected, the power management control has to be recalculated.
The formulation of policy optimization for Renewal model is
shown in Equation 5, where p(j) is the probability of transitioning
into low-power state after the system has been idle for time j∆t,
d(j) is the expected performance penalty, t(j) is the expected time
until renewal, e(j) is the expected energy consumed, and Pconstr is
the power constraint. An open-loop policy optimization problem
similar to this one has already been solved for portable systems in
[17] by using a linear program solver. The optimal policy is
obtained in tens of seconds, which is much too long for
implementation of the closed-loop power management control
presented in this work.

A much faster way to solve the original optimization problem is to
formulate the dual of its Lagrangian as shown in Equation 6 [27].
Variables v, u and λ are the Lagrangian multipliers. A minimum
crossing point of a set of lines specified by Equation 7 is the
solution to the dual. The indexes of Lagrangian multipliers which
form the solution are used back in the original constraints shown
in Equation 5 to obtain values of probabilities of transitioning into
low-power state, p(j). Using this method the optimal solution can
be calculated in a matter of milliseconds, in contrast to linear
program solvers that takes tens of seconds. In this way closed-
loop control can be implemented in real-time.

The final output of optimization is a table that specifies
probabilities of transitioning a core into low-power states, to be
used in addition to a table that gives frequency and voltage
settings as a function of arrival and service rates. Both tables can
be accessed from either software or hardware, depending on how
the local power management controller is realized. An example of
optimal control for transition to low-power state is shown in Table
2 (lightly shaded region is for node-centric power management
only). Software implementation of the controller can be described
as follows. The controller generates a pseudo-random number
when the core becomes idle. The core remains idle until either the
probability of transition to the low-power state is greater than the
random number generated, or until workload arrival forces the
core’s transition into the active state. When the core is in the low-
power state, it stays there until the first arrival, at which point it
transitions back into the active state. The same functionality can
also be implemented in hardware, as is presented in Section 4.2.

3.2 Network-centric power management
The main advantage of implementing network-centric power
management is the ability to make better predictions about the
future workload. Node-centric power manager does not have any
information about the future service requests from the other cores.
In contrast, with network-centric approach each local estimator
receives other core’s service requests in advance and is given a
signal when the service is no longer needed.
The network-enhanced estimator, shown in Figure 3, has two
ports – the current core workload input (Core Traffic), and the
network power management request port (Network PM Request)
that is both an input and an output. The networking interface has
to be defined in such a way that protocols support passing power

∑

∑
∑

∑

∀≥=

=−

j

j
constr

j

j

jjpp(j)

0]t(j)Pp(j)[e(j)s.t.

p(j)t(j)

p(j)d(j)
min

0)(;1

(5)

jjt(j)Pjejujtjvjdts
v

constr ∀=λ−−++ 0)(])()[()()()(..
min

(6)

)(
])([)(

)(
)()(

jt
t(j)Pjeju

jt
jdjv constr−

+≤
(7)

Table 2. Sample controller

Source Idle Time (ms) Transition Probability

Node 0 0.0

 70 0.3

 120 1.0

Network Any time 1.0

management messages between the cores. The design of
networking protocol for NOCs is beyond the scope of this paper,
but has been addressed in [2,3]. Network power management adds
very few overhead packets to the overall communication stream
between cores.
A network message in effect forces the local PM to make a
deterministic decision instead of randomized decision made when
only node-centric power management is used. Table 2 gives an
example of controller implementation for decision on when to
transition into low-power state when both node and network
centric power management approaches are implemented (darkly
shaded row). When local power manager receives a request for
service by another core, it starts waking up the core if it was in a
low-power state (with probability 1.0 as shown in Table 2).
Otherwise the core verifies that it is ready to receive requests.
The cost of waking up the core can be masked, as the other
network elements may be able to notify the local core ahead of
time when it’s services are needed. Once the core’s services are
not required anymore, the local PM can be notified via a network
message. At that point, if no other requests are pending, the core
can enter a low-power state without any additional idle time. As a
result, the amount of energy wasted while the core is idle is
reduced, as the local PM knows ahead of time that no requests are
arriving in near future.
Clearly, the best results are obtained when all cores can
communicate ahead of time their needs to each other.
Unfortunately, that is not always possible, since ultimately the
final decisions on what the system will be doing next are made by
the users of the system who are inherently non-deterministic.
Thus the best approach for managing power consumption in
NOCs is a combination of node and network centric techniques,
such as the one presented in this work. The results discussed in
the next section highlight this conclusion.

4. RESULTS
The power management methodology presented in this work is
implemented for the sample NOC system shown in Figure 1. The
system consists of four large cores: communication, speech
processing, MPEG audio and video core. Power and performance
characteristics of each core are shown in Table 3. Three power
states supported by each core: active, idle, and sleep. The
transition time from active to sleep and back to active state
(shown in Table 3 as A-S-A time) is on the order of tens of
milliseconds, which is slow enough to allow for dynamic
parameter estimation and periodic policy recomputation. Number
of DVS settings reflects the discrete frequency and voltage points
each cores processing unit can be set to. The transition time
needed to change from one to other frequency point is on the
order of hundreds of microseconds (labeled as DVS switch time).

Each core in NOC has a local power manager, that in turn consists
of an estimator and a controller. The primary estimators job is to
estimate the parameters needed to recalculate optimal control
depending on the changes in the core’s environment. The
environment includes incoming traffic from the chip network, and
special power management requests from other cores. The
controller implements the optimal system control. The results
first discuss the quality of the estimators, followed by the
controller implementation. Finally, energy savings are contrasted
when using only the node-centric approach with the combined
node and network-centric power management.

Table 3. NOC Specifications

Specification Audio Video Comm. Speech Total

Active P(mW) 700 1885 1500 1055 5140

Idle P(mW) 216 235 1000 208 1659

Sleep P(mW) 0.3 1.4 100 0.6 102.2

A-S-A time(ms) 45.6 54.6 40 54.6 54.6

DVS Settings 11 11 3 11 11

DVS switch (us) 150 150 100 150 150

4.1 Estimator
There are two core states in which power management decisions
are made: appropriate service level is determined in the active
state, while the decision on when to transition into the sleep state
occurs in the idle state. The quality of both decisions depends on
the estimation accuracy and speed. We first evaluate the
estimation of the arrival rate, followed by the estimation of the
parameters needed to model the distribution of idle times.

The estimator uses maximum likelihood ratio shown in Equation
1 to detect a change in incoming arrival frame rate of the MPEG
video core from 12 frames/sec to 28 frames/sec. Window size (w
in Equation 1) varies from 10 to 20 frame arrival times. When the
ratio is evaluated on every frame arrival, the detection is delayed
by only one frame, while when it is evaluated every five or more
frames, it has maximum five frame delay. The rate detected is
exact when the window size is between 10 and 20 frames. The
computation overhead of detection is small as compared to the
frame decoding time.

0.01

0.1

1

0 20 40 60 80 100
Sample Number

Es
tim

at
e

V
al

ue

Estimate (a)
Estimate(b)

Figure 5. Dynamic Pareto Parameter Estimates

Distribution of length of time spent in the idle state is also
estimated at run time. This distribution has heavy-tailed behavior,
so Pareto distribution with its two parameters is used in
estimation. Figure 5 shows how the estimator detects a change in
the idle time distribution on communications core when the traffic
pattern changes between two examples shown in Figure 4. The
change is most clearly observed in the intercept value, as the
characteristic slope stays nearly constant. Figure 6 shows the
accuracy of Pareto parameter estimates over a large number of
samples. The error is defined as the difference between a Pareto
fit done using off-line versus run-time analysis. Average error is
about 2%. Since characteristic slope varies less, the estimate of it
is also more accurate than the estimate of intercept.

0.1%

1.0%

10.0%

100.0%
1 1001 2001 3001 4001

Sample No
%

 E
rr

or

% Err (a)
% Err (b)

Figure 6. Errors in Pareto Parameter Estimates

4.2 Controller
The local power manager’s controller can be realized in software,
hardware or a combination of the two. For policies where critical
parameters change very often, the control and the estimator should
be realized in software. Realizing a part of, or the whole
controller in hardware lowers the control overhead, with very
minor additions to an already existing hardware power manager
(e.g. ARM cores) or an on-chip FPGA. This approach is very
attractive especially for cores where the policy does not change
much at run time, and thus does not need to be recomputed very
often. Since the software implementation has already been
discussed in Section 3.1, we focus on the hardware
implementation next.
There are three different components to the optimal controller: the
random number generator, the policy and the timer. The timer is
used to measure the length of idle period before the policy is
evaluated. Typically core’s processors already have
programmable timers aboard that can be used by the hardware
controller. Thus only the policy and the random number
generator need to be implemented in hardware. The simplest
hardware implementation for random number generator is to use
Linear Feedback Shift Register (LFSR). Figure 7 shows the
tradeoff between the number of bits in LFSR (and thus larger
area) and cost in terms of power and performance penalty. The
cost is calculated as the percent deviation from the optimal values.
Even with as little as 8 bits, the hardware LFSR gives results
within 5% of optimal.

0%

10%

20%

30%

40%

50%

60%

3 5 7 9 11 13 15

LFSR Bits

E
rr

or
 (%

)

Power Err

Penalty Err

Figure 7. Probability Resolution Error

Table 4. Local PM Policy FPGA Synthesis Results

LFSR LFSRRegs Policy

Bits # LABs Max ns # LABs Max ns

5-15 1 4 2 35

Results of controller synthesis into Altera’s EPM7032 FPGA are
shown in Table 4. Policy and LFSRs take up only 3 Logic Array
Blocks (LABs) for LFSR sizes ranging from 5 to 15 bits. In
addition, the time it takes to arrive at the decision is in the range
of nanoseconds, while the minimum idle times the power manager
would respond to are on the order of milliseconds. The same
policy evaluates even faster when synthesized into gates using
Synopsis tools as shown in Table 5. In this case, the LFSR area is
consistently about 12-14% of the total power management area.
The policy includes the finite state machine needed to make the
decisions and the comparator. Even the largest design takes only
15 registers and 855 gates.

4.3 Network-centric Power Management
Table 6 shows energy savings obtained for the NOC shown in
Figure 1, with specifications listed in Table 3. The results were
obtained by simulating the power states of the NOC system as a
whole, with real workload traces collected from each respective
core as input to the simulator. The results report a factor of
savings in energy with reference to not using any power
management. The lightly shaded portion of the table reports
results when using only node-centric approach, while the darker
shaded row reports results for a combined node and network-
centric approaches.

Table 6. Energy Savings for PM in NOCs

PM PM Type MP3 MPEG2 Comm. Speech Total

None None 1.0 1.0 1.0 1.0 1.0

Node DVS only 1.4 2.0 1.0 3.9 1.2

Centric DPM only 2.0 1.5 3.0 2.0 2.4

 DVS&DPM 3.4 3.5 4.0 5.9 3.6

Network DVS&DPM 3.7 3.6 4.2 6.4 4.1

In node-centric PM, controlling only processing frequency and
voltage at run time (DVS results) gives between a factor of 1.4 to
a factor of almost 4 in savings. Note that communications core
does not allow voltage and frequency scaling. When only control
of transition into the sleep state is implemented (DPM only
results), savings range from a factor of 1.5 to a factor of 3. The
smallest savings are in video core, as it tends to have very few idle
times. Combining the DVS and DPM gives overall savings of a
factor of 3.6.

Table 5. Local PM Policy Synopsis Synthesis Results

LFSR Regs Policy

#FFs % area #gates % area

5 14% 193 86%

9 14% 417 86%

15 12% 855 87%

When network power management is included with the node-
centric approach (the last row in Table), the savings in energy
grow to a factor of 4.1 with performance penalty reduced by
minimum 15%. The performance penalty of a core is the time the
rest of the system has to wait in order for the core to become
available after either changing processing frequency or waking up
from the sleep state.

5. CONCLUSIONS
This work presented a new methodology for managing power
consumption in NOCs. The power management optimization is
formulated using closed loop control concepts, with blended node
and network centric approaches. The new methodology is tested
on a design of a NOC system consisting of four satellite units,
each with the local power manager consisting of the estimator and
the controller. The estimator implementation has been shown to
have average error of 2% when estimating Pareto parameters, and
is right on target when estimating exponential frame arrival rate
changes. Optimal control is formulated using a Renewal model
that can be recalculated in a matter of milliseconds when
distribution parameters change. An efficient hardware
implementation of the local PM controller is presented that has
negligible delay in control implementation with a very small
increase in hardware area. The final implementation of node and
network centric power management approaches shows savings of
a factor of four at system level while improving performance.

6. ACKNOWLEDGMENTS
Many thanks to my HP Labs colleagues, Mat Hans, Brian
Delaney, and Andrea Acquaviva, for their help with this work.

7. REFERENCES
[1] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A.

Sangiovanni-Vincentelli, ``Addressing the System-on-a-Chip
Interconnect Woes through Communication-Based Design,'' Design
Automation Conference, pp. 667-672, 2001.

[2] W. Dally, B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” Design Automation Conference, pp. 684-
689, 2001.

[3] P. Guerrier, A. Greiner, “A Generic Architecture for On-Chip Packet-
Switched Interconnections,” Design, Automation and Test in Europe,
pp. 250-256, 2000.

[4] L. Benini, G. De Micheli, “Powering Networks on Chips,”
International Symposium on System Synthesis, To appear as an Invited
talk, 2002.

[5] D. Wingrad, “MicroNetwork-Based Integration for SOCs,” Design
Automation Conference, pp. 673-678, 2001.

[6] “Virtual Component Interface Standard Version 2 On-Chip Bus
DWG,” VSI, April 2001.

[7] J-Y. Brunel, W. Kruijtzer, H. Kenter, F. Petrot, L. pasquier, E. de Kock,
W. Smits, “COSY Communication IP’s,” Design Automation
Conference, pp. 406-409, 2000.

[8] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V. Prabhu, J.
Rabaey, “Design Methodology of a Low-Energy Reconfigurable
Single-Chip DPS System,” Journal of VLSI Signal Processing, 2000.

[9] “SA-1110 Microprocessor Technical Reference Manual,” Intel, 2000.

[10] “AMBA Specification,” ARM Inc, May 1999.

[11] “The CoreConnect Bus Architecture,” IBM, 1999.

[12] M. Srivastava, A. Chandrakasan. R. Brodersen, ``Predictive system
shutdown and other architectural techniques for energy efficient
programmable computation,'' IEEE Transactions on VLSI Systems,
vol.4, no.1, pp.42-55, March 1996.

[13] C.-H. Hwang and A. Wu, ``A Predictive System Shutdown Method for
Energy Saving of Event-Driven Computation'', International
Conference on Computer Aided Design, pp. 28-32, 1997.

[14] L. Benini, G. Paleologo, A. Bogliolo and G. De Micheli, ``Policy
Optimization for Dynamic Power Management'', IEEE Transactions on
Computer-Aided Design, vol. 18, no. 6, pp. 813-833, June 1999.

[15] E. Chung, L. Benini and G. De Micheli, ``Dynamic Power
Management for non-stationary service requests'', Design, Automation
and Test in Europe, pp. 77-81, 1999.

[16] Q. Qiu, Q. Wu, M. Pedram, “Dynamic Power Management in a Mobile
Multimedia System with Guaranteed Quality-of-Service,” Design
Automation Conference, pp. 701-707, 2001.

[17] T. Simunic, L. Benini, P. Glynn, G. De Micheli, “Event-driven Power
Management,” IEEE Transactions on CAD, pp.840-857, July 2001.

[18] M. Weiser, B. Welch, A. Demers, S. Shenker, ``Scheduling for reduced
CPU energy,'' Symposium on Operating Systems Design and
Implementation pp.13-23, Nov. 1994.

[19] K. Govil, E. Chan, H. Wasserman, ``Comparing algorithms for
Dynamic speed-setting of a low-power CPU,'' International
Conference on Mobile Computing and Networking, Nov. 1995.

[20] F. Yao, A. Demers, S. Shenker, ``A scheduling model for reduced CPU
energy,'' IEEE Foundations of computer science, pp.374-382, 1995.

[21] I. Hong, M. Potkonjak, M. Srivastava, ``On-line Scheduling of Hard
Real-time Tasks on Variable Voltage Processor,'' International
Conference on Computer-Aided Design, Nov. 1998.

[22] T. Ishihara, H. Yasuura, ``Voltage Scheduling Problem for dynamically
variable voltage processors,'' IEEE International Symposium on Low
Power Electronics and Design, pp.197-202, 1998.

[23] Y. Shin, K. Choi, ``Power conscious fixed priority scheduling for hard
real-time systems,'' Design Automation Conference, pp.134-139, 1999.

[24] S. Lee, T. Sakurai, ``Run-time voltage hopping for low-power real-time
systems,'' IEEE International Symposium on Low Power Electronics
and Design, pp.806-809, 2000.

[25] T. Pering, T. Burd, R. Brodersen, ``Voltage scheduling in the IpARM
microprocessor system',' IEEE International Symposium on Low Power
Electronics and Design, pp.96-101, 2000.

[26] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, G. De Micheli:
“Dynamic Voltage Scaling for Portable Systems” , Design Automation
Conference, pp.524-529, 2001.

[27] S. Boyd, L. Vandenberghe, Convex Optimization, Lecture Notes,
Stanford University, Winter 2001.

	INTRODUCTION
	RELATED WORK
	POWER MANAGEMENT IN NOCs
	Node-centric power management
	Network-centric power management

	RESULTS
	Estimator
	Controller
	Network-centric Power Management

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

