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ABSTRACT

This paper explores the question: How should we modify and extend existing UM

Languages and representations to address specific ubiquitous computing issues? The

answer we propose builds upon previous work on single user model server and exploits

the user model representation to enable users to permit parts of the environment to access

selective personas, which allow the user to provide one persona to one application and a

different persona to another. We discuss the way that sensors can contribute to the user

model in an ubiquitous computing environment. We also describe the ways that we

address the issues of reusability and group models in ubiquitous computing.
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1. Introduction

User modelling has an important role in ubiqui-

tous computing. It is essential for the personalisa-

tion of user environments and it will be the repos-

itory of information that might be collected about

a user from ubiquitous sensors. As ubiquitous

computing is quickly becoming increasingly

important, it is timely to explore the nature of user

model representations for ubiquitous personalisa-

tion.

First, however, it is useful to map out the

state of the art in user model representations. An

excellent overview of user modelling shells

(Kobsa, 2001) indicates the breadth of representa-

tions they use. He identified a trend towards

lighter weight, simpler representations. Early

systems tended to come from a work in artificial

intelligence and natural language understanding

and these valued generality, expressiveness and

powerful inferences in representations. For exam-

ple, UMT (Brajnik and Tasso, 1994) had a

database of all the user models held by the sys-

tem, a knowledge base of stereotypes (Rich,

1989) in a multiple inheritance hierarchy, the

database of possible user models for the current

user, a rule-base of constraints on values of

attributes in the user model and inference rules for

generating new user modelling information as

well as a consistency manager based on an

ATMS-like approach (Doyle, 1979) and associ-

ated mechanisms. Similarly, BGP-MS (Kobsa

and Pohl, 1995) represented concepts in the user

model as an inheritance hierarchy. Each concept

was described by a four-tuple: a role predicate for

each relation this concept participates in; value

restrictions on the arguments of each relation; a

number of restrictions indicating how many of the

attributes were required for an instance of this

concept; a modality to indicate whether an

attribute was necessary or not. Such concepts

were kept in partitions which themselves could be

organised into inheritance hierarchies. These pro-

vided a representation for alternate views of

knowledge, such as SB, the system’s beliefs,

SB(UB), the system’s beliefs about the user’s

beliefs, SB(UB(SB)), the system’s beliefs about

the user’s beliefs about the system’s beliefs.

One of the important representational
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elements in user modelling is the stereotype, a

term coined by Rich (Rich, 1989) to mean ‘a col-

lection of attributes that often co-occur in people.

... they enable the system to make a large number

of plausible inferences on the basis of a substan-

tially smaller number of observations. These

inferences must, however, be treated as defaults,

which can be overridden by specifi c observa-

tions.’ (Rich, 1989:35). They hav e been explic-

itly incorporated into the representations of UMT

and BGP-MS as well as several other systems

which explored general representations for user

modelling, for example: Generalised User Mod-

elling System, GUMS (Kass, 1991); TAGUS

(Paiva and Self, 1995) which also supports infer-

ences about the user’s reasoning about knowl-

edge; The Student Modelling Maintenance Sys-

tem, SMMS, (Huang, McCalla, Greer, and

Neufeld, 1991) where the latter two had support

for truth maintenance.

These early systems dealt with the chal-

lenges of dealing with uncertainty and inconsis-

tency with TMS-based approach (Doyle, 1979).

These are rather heavy-weight for an ubiquitous

environment. THEMIS (Kono, Ikeda, and

Mizoguchi, 1994) explored the role of inconsis-

tency and when it needs to be resolved by the sys-

tem. Notably, it highlighted the possibility that

people may have inconsistent beliefs: a system

which tries to construct a consistent model of

them imposes constraints that are inappropriate.

In the case of ubiquitous computing, a very

important source of inconsistency in the user

model will be due to the unreliability of informa-

tion from sensors. More importantly, many

aspects of the user, including their location, will

change frequently. A representation for ubiqui-

tous computing will need to deal with this effi -

ciently.

An important form of stereotype is the

double stereotype (Chin, 1989) which enables

reasoning in two directions. For example, infor-

mation about the user could be used in stereotypic

inference about their predicted behaviour; in the

other direction, limited sensor observations of

their behaviour can be used to infer other

attributes about them. Taking a concrete example,

suppose that an active-badge based tracking sys-

tem observes a user in the executive coffee suite

on a few occasions. This could be used to infer

that this person is an executive. Another person

who has just joined the organisation as an execu-

tive could be predicted to visit the executive cof-

fee suite.

More recent work has been characterised

by simpler representations, matching the needs of

emerging personalised applications such as rec-

ommenders and personalised web sites. As

Kobsa observes, the demands of personalised

applications will determine the characteristics

which should be provided by a user model repre-

sentation.

In this paper, we focus on our own explo-

ration of a user model representation which sup-

ports one of the important requirements of ubiqui-

tous computing, that of ensuring user control over

the model. People have grave concerns about pri-

vacy of personal information and clearly want to

have control of the way that the information is to

be used (Kobsa, 2002, Miller, 2000). This is

reflected in ongoing refi nements to a range of

national and international privacy legisla-

tion (Kobsa, 2001). For example, the European

Community Directive on Data Protection (Union,

1995) mandates ‘right of access to and the right

to rectify the data’ and, a particular demand for

scrutability in the requirement for ‘an intelligible

form of the data undergoing processing and of

any available information as to their source’.

In Section 2, we give an overview of a user

model representation what we have dev eloped for

use in a range of applications. In Section 3, we

describe an architecture for personalisation in

ubiquitous applications and then, in Section 4, we

describe how our representation supports the

needs of that architecture. Section 5 discusses the

reuse of user models and the role of group mod-

els, followed by the fi nal discussion and conclu-

sions.

2. Overview of the accretion representation

The accretion representation and architecture

(Kay, 1995, 2000, Kay, Kummerfeld, and Lauder,

2002) is an extremely simple but flexible

approach to modelling users. It consists of com-

ponents each of which models an arbitrary aspect

of the user. It distinguishes knowledge, beliefs,

preferences and other attributes of the user,

including their personal attributes like names,

height, date of birth and other arbitrary aspects

like their location. Each of these has a type, such

as boolean, string, number. The representation

makes no built-in assumptions for any of these

types.

We illustrate an example in Figure 1,

which depicts flow of information about a compo-

nent which models the user’s location. There are

2 Managing private user models and shared personas

krueger




three sensors contributing information about this

component. The fi rst column is a Bluetooth-based

system which sends a piece of evidence when it

detects the user in their offi ce. The second is a

similar sensor for the tearoom. Both of these sen-

sors send positive evidence in each time period

that they detect the user. Sensor 3 sends a piece

of evidence about the user in each time period, a +
when there is activity at the user’s offi ce computer

and a − otherwise.

Time Sensor 1 Sensor 2 Sensor 3

Offi ce Tearoom Computer

1 + −
2 + −
3 + +
4 + +  −
5 + −
6 + −
7 + +
8 + −
9 + +  −
10 + −

Figure 1. Example of evidence lists in time series for a com-

ponent modelling user location. Sensors 1 and 2 are Blue-

tooth-based sensors. Sensor 3 tracks activity on the user’s

offi ce computer.

The name of the representation follows

from its model for managing incoming informa-

tion about the user. Essentially, each piece of evi-

dence about a component is simply added to a

list. So, over time, it accretes. As in Figure 1, as

various sensors detect the user, each can volunteer

evidence. The core of the accretion representa-

tion is this simple process of collecting this grow-

ing list of information.

The sensor information may appear incon-

sistent, as in time periods 4 and 9 where both the

tearoom and offi ce sensors’ evidence reports the

user’s location in these rooms. This is likely to

happen when the user is between the two sensors

and is detected by both, as they move between

them. Another example of possible inconsistency

is in time period 7 where one sensor reports activ-

ity at the user’s offi ce computer while the other

two sensors appear to indicate the user is in the

tearoom.

Sources are only permitted to contribute to

the model if they are authorised to do so. In an

ubiquitous computing context, a user might allow

sensors in their offi ce to contribute to their loca-

tion model but the user might not allow sensors in

their home to do so. Another user might want dif-

ferent restrictions on the sensors allowed to con-

tribute to their model.

When the value of a component is needed,

a resolver is invoked. The representation makes

no restrictions on the nature of the resolver: it

could be a very simple interpreter of the evidence

list for a component or it could be any arbitrarily

complex process that makes use of the evidence

for several components. In practice, it is likely

that simple resolvers will be adequate. In our pre-

vious research systems, we had extremely simple

resolvers for reasoning about user’s knowledge.

Typically, resolvers take account of the reliability

of each evidence source and the timestamp on the

evidence. In practical applications, it is often

quite effective to determine the value of a compo-

nent from the most recent evidence that is of suffi-

cient reliability.

Following this approach, at time period 7

of Figure 1, we have noted that the evidence +
from the tearoom sensor contradicts that from the

offi ce computer evidence source. One suggests

the user in the tearoom while the other suggest

that the user is active at their terminal in their

offi ce. There are many possible explanations for

this conflict, such as: someone else might be

using the computer and Sensor 3 may simply be

detecting another person’s activity at the user’s

machine; Sensor 3 may be in error for some other

reason like a book falling on the keyboard and

keeping a key depressed; the user may have lent

their mobile phone to someone else and that per-

son may be in the tearoom being detected; Sensor

2 may be oversensitive and often detects the user

when they are actually in their offi ce. This sort of

situation will be typical of those faced in the rea-

soning about users in a ubiquitous computing

environment.

A simple resolver might always treat Sen-

sor 2 as more reliable than Sensor 3. In that case,

the resolver would conclude the user was in the

tearoom at time period 7. Note that this simple

approach has considerable merit when it comes to

explaining the system reasoning to the user. The

explanation would simply be of the following

form:

At time period 7, you were detected by the tea-

room sensor and the office-computer sensor -

since you cannot be in both your office and the

tearoom at once, and since the tearoom sensor is

generally considered more reliable, the system

concluded that you were in the tearoom.
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The user could easily be offered the ability to

request that the system use a different resolver,

for example one that regards Sensor 3 as more

reliable. For the case of a user who often lends

their Bluetooth phone but rarely allows others to

use their computer, the right resolver will be dif-

ferent from a user who tends to do the opposite.

Note that this provides an extremely sim-

ple way to deal with some of the inconsistency

issues which have had quite complex solutions

such as truth maintenance. The whole point of

modelling some components is to track changes.

For example, the user’s location should change as

they move around their environment. If, as is

likely in ubiquitous computing contexts, most of

the time, no application needs to know the user’s

location. At those times, we simply allow evi-

dence to flow into the model without interpreting

it. When an application needs to know the user’s

location, it can request the current value of that

component. If it is authorised to have that infor-

mation, then at that point, the resolver it has nom-

inated is used to determine the value of the com-

ponent. In the case of the user’s location, the val-

ues returned by this request would be either an

indication that the system really does not know, or

the value of the modelled location, possibly with

a certainty value.

We hav e three main implementations of

the accretion representation. First, it was built as

the um toolkit (Kay, 1995) where it was used to

model users of a text editor. In that work, there

were three classes of evidence sources. The main

source derived from logs generated by instrumen-

tation of the editor (Cook, Kay, Ryan, and

Thomas, 1995). We nev er put this directly into

the user model. Instead we built a collection of

analysis tools which used that data to infer what

the user appeared to know or not know. Some of

these were very simple: the fact that a user typed

a complex regular expression command that pro-

duced no errors or warnings was interpreted as

direct evidence that the user knew that command.

Some were more complex. In particular, the

mouse commands could easily be selected acci-

dentally so they were only interpreted as correctly

used when there were several aspects of the con-

text which were consistent with their correct use.

For example, one command creates multiple win-

dows on a single fi le: the analyser only gav e a

piece of evidence indicating correct use if the fi le

was large enough to need two windows to display

different parts, if there was additional activity

afterwards and if the user was already past the

novice stage. Each different analysis tool was

treated as a separate evidence source. The second

form of evidence came from the automated tutor

which added evidence to the model when it sent

advice to the student. The third form of evidence

came from the user’s interaction with the user

model viewer tools: these enabled the user to state

whether they knew aspects or not and any such

information generated evidence which was added

to the model. We built several resolvers, all sim-

ple. Notably, the one used by the automated tutor

treated evidence derived from the logs as more

reliable than that from the user.

The second main implementation of the

accretion representation is in the Personis (Kay,

Kummerfeld, and Lauder, 2002) user model

server. Where um toolkit provided a collection of

C library functions, Personis has a small set of

primitives for the programmer to tell evidence to

Personis and to ask for the value of parts of the

model. It also generalises the user model struc-

turing. In um, components of the model were

structured into a hard coded directed acyclic

graph of contexts. In Personis, the context serves

to defi ne a namespace for user model compo-

nents. In addition, it supports a view facility that

allows the defi nition of an arbitrary collection of

components of the model, from any contexts.

The third implementation is Personis-lite,

a sev erely cut-down version of the Personis

implementation, available as a library for use

within an application. It has all the elements we

have described above for Personis but none of the

aspects that are critical for a server: security, pro-

tocols for distributed access, access authorisation

mechanisms, effi cient implementation for very

large and complex models.

The example in Figure 1 highlights the

serious effi ciency burden of this approach as

described to this point. This is clearly a serious

problem if we want the user to be able to scruti-

nise their user model. Clearly, we could not allow

the evidence lists in the model to continue to grow

without restriction. We need some destruction

operations. These are explicit processes which

operate on parts of the model. In particular, we

have a use-by date on evidence. So, for example,

evidence from a location sensor may have a short

use-by date so that it is destroyed after a short

time. On the other hand, it might be allowed a

longer use-by date so that patterns in the user’s

behaviour can be identifi ed over time, such as was

done in Doppelganger (Orwant, 1995) with a

somewhat similar representation to accretion.
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A primary motivation for the design of the

accretion was to provide a scrutable representa-

tion, where the user could examine the user

model, the value of its components and the pro-

cesses that defi ne that value. Those processes can

be explained in terms of the list of evidence and

the resolver process used to interpret it. We see

scrutability as a foundation for user control over

personalisation.

3. Architecture of distributed, ubiquitous user

models

We now describe how we envisage the accretion

representation operating in an ubiquitous comput-

ing environment. Figure 2 outlines an architec-

ture of the personalisation in a such an environ-

ment. This builds on our previous architec-

ture (Kay and Kummerfeld, 1994).

U

u

s

s s

s

u

u

u

I I

I
I I

A

A

A

A

I

Figure 2. Architecture for distributed personalisation. U is the

single user model for a person. Each application, A, has its

own partial user model u. The central model and partial mod-

els may have local inference sources, I. Each s represents sen-

sor data coming to the user model.

There is one, defi nitive user model, U, for

an individual, shown at the centre top. It could be

implemented using the Personis server (Kay,

Kummerfeld, and Lauder, 2002) with strong secu-

rity and authentication mechanisms. It is held at a

physical location decided by the user and would

be controlled by the user.

There are several partial models, or per-

sonas, shown as u. Each is intended for one

application, shown as A. The user controls which

aspects of U are available in each persona. For

example, a meeting organiser application may be

restricted to a persona with the user’s preferences

for modes of communication and their timetable,

but it would not include any other user model

information. The arcs indicate that applications

are authorised to access a part of the user model,

U, which they would hold in their local u.

We envisage that the central server, U,

would need to be supported by a system like Per-

sonis while the local partial user models may

either be full Personis servers also or just the cut-

down Personis-lite. In the context of a ubiquitous

computing environment, there may be many low

powered computational elements within the envi-

ronment. These may be able to exploit light and

small personas for users in that environment.

These elements would be able to incorporate the

Personis-lite support for accretion-based reason-

ing at modest cost in memory and speed.

The inferences sources, I, are the internal

reasoning mechanisms and each of these is a

potential supplier of evidence. These operate by

using resolvers to access the values of compo-

nents in the user model and from this information,

they make inferences about the user and these are

stored as evidence in the user model. The infer-

ence mechanisms need only be invoked as

needed. For example, they may be triggered at a

set time each day or by an event. This form of

evidence also accretes in the model. A deletion

operation on this evidence has a quite different

effect from a deletion of evidence from external

evidence sources such as sensors. The critical

difference is that, as long as all external evidence

is kept, the inference sources can be run so as to

simulate the way that they would have operated at

any arbitrary time in the past.

One important form of inference is the

stereotype. Another is based on knowledge of the

domain. As shown in the fi gure, inference

sources may reside at the user model U or with

personas. Users control which inference sources

may be used for the user model and the personas.

For example, a user may allow just one applica-

tion to use the set of inferences associated with

the new employee stereotype.

The fi gure also shows sensors, s, which

can also contribute user modelling information to

the user model. We do not show these in associa-

tion with applications since they, like sensors, can

contribute evidence to the user model. Although

we do not show it in this fi gure, it may be that

these sensors might be able to improve their
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performance if they held a small amount of user

model information. Our comments on the use of

the Personis-lite implementation for the user

model personas u apply in this case.

The content of each persona is controlled

by the user. There are several levels of such

access control in the accretion representation:

• evidence sources - so that the user can

allow an application access to values based

on just the evidence sources allowed to that

application’s persona. For example, in Fig-

ure 1, one persona may have access only to

the value of the component, based upon

evidence from Sensor 1. Any application

using this persona would be blind to all

other evidence in the user model.

• component - it is possible to control access

to each individual component, allowing it to

be included in a persona, or not;

• view - the main mechanism for defi ning the

collection of components in a persona;

• context - our structuring mechanisms for a

collection of user model components and

associated structures, such as a movie con-

text holding components about the user’s

movie preferences. The context defi nes a

namespace and it holds defi nitions of com-

ponents, default access modes across the

context and it also holds the view defi ni-

tions.

For the purpose of managing personas, the main

mechanism is the view.

4. Scrutability

Users need to be able to scrutinise and control

their user models. This has been foremost in the

design of Personis, from its very beginnings (Kay,

1990) through to the most recent work (Kay,

Kummerfeld, and Lauder, 2002). We now discuss

this aspect of the accretion representation in the

ubiquitous computing context.

The core of the representation is the simple

model that evidence accretes over time. This is

important for scrutability on two lev els. Firstly, if

a user is to be able to scrutinise and really develop

an understanding of the way that their user model

operates, we need to strive for simplicity. Some

complexity is unavoidable because of the nature

of the user modelling enterprise: we have to

accept the complexity due to the number and

range of sources of user model evidence and the

varied ways that the model might be employed in

an ubiquitous computing environment. However,

the representation should manage these as simply

as possible with a collection of simple mecha-

nisms.

The second critical aspect of pure accre-

tion is that it ensures that the systems has all the

evidence that may have affected any personalised

action. The user can scrutinise the full list of evi-

dence about each component of the model.

Moreover, that evidence is in a form suited

to scrutability. Each piece of evidence is kept

with details about the evidence source. Each evi-

dence source that is authorised to contribute to the

user model has descriptions for the way that the

evidence source operates so that a user scrutinis-

ing the model can access these. The other parts of

the evidence, its type, time-stamp and the value it

supports, can be also be explained to the user.

The user model allows an evidence source to con-

tribute only to the parts of the model where they

are authorised to do so. This means that the user

can control which sources may contribute to

which parts of their model. This means, for

example, that the user can authorise evidence

from a presence-sensor in their offi ce but not the

one in the tearoom.

Where the systems mentioned earlier had

quite sophisticated mechanisms for dealing with

uncertainty and inconsistency, the accretion repre-

sentation takes a very simple but quite flexible

approach. Firstly, the accretion of evidence is

independent of its interpretation. This means that

if conflicting evidence comes into the model over

a period of time, there is no attempt to reconcile

this until it is actually needed. At that point, the

application which needs the values of parts of the

user model accesses these via resolvers. The goal

of simplicity associated with scrutability means

that these should be as simple as possible. In pre-

vious work, modelling student knowledge and

movie preferences, very simple resolvers gav e

good results, which could be explained quite sim-

ply. It is desirable to strive for similar resolvers in

ubiquitous computing tasks.

The deletion of evidence has important

implications for scrutability. On the one hand, it

will be harder for users to scrutinise and under-

stand their user model if it is allowed to grow

with large amounts of evidence that is too old or

insignifi cant to affect the value of the components

of the model. On the other hand, keeping com-

plete sets of the evidence from external sensors

means that the user can scrutinise past behaviour

of a personalised system.
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To this point, we have listed many the

aspects which can be controlled by the user: the

authorisation of processes to create new parts of

the model, authorisation of evidence sources and

inference mechanisms to reason about the user,

authorisation of resolvers for use by applications;

authorisation of applications to access the evi-

dence produced by each evidence source; authori-

sation of parts of the model to be available to

applications. In spite of the simplicity of each

part of the accretion architecture and representa-

tion, this still makes for considerable complexity

for the user to cope with. Enabling this poses a

signifi cant user interface challenge. People may

just opt out, unless the user interface is adequate.

The notion of scrutability might appear to

be at odds with the core goals of invisibility

(Weiser, 1994) in ubiquitous computing research.

IEEE Pervasive Computing holds up the goal of

building ubiquitous systems that are ‘gracefully

integrated with human users’.† Our approach

presumes that most users will want invisible per-

sonalisation most of the time. However, when the

user wants to know why systems are performing

as they are or what the user model believes about

them, they should be able to scrutinise the model

and the associated personalisation processes. For

example, most mobile phone users do not want to

have to know the details of the current cell sup-

porting the phone. However, phones can provide

this information readily and users can and do

choose to check it.

In general, an established system should

operate without bothering the user. Howev er,

suppose that the user happens to receive a mes-

sage via a phone which rings for them as they

walk into their colleague’s offi ce. If the user

wants to know why this happened, they should be

able to access the parts of the model responsible

for tracking their location and delve into the

details to see which evidence source provided the

relevant information at that time. At this point,

the user may wish to alter any access modes

which effected personalisation actions that the

user did not want. It may be possible to defi ne

quite simple control mechanisms for ubiquitous

applications: a simple user action for disabling an

application from within the ubiquitous computing

environment may be suffi cient, with good support

for the user to later use conventional systems to

refi ne the details of their personas.

This view of scrutability of personalisation

in ubiquitous computing is similar to the notion

† http://www.computer.org/pervasive/faq.html

described as seamfulness (MacColl, Chalmers,

Rogers, and Smith, 2002) which argues for ‘overt,

robust, flexible, simple and manipulable’ systems.

Our representation approach is in the spirit of

recombinant computing (Newman et al, 2002)

and the persona which can be viewed and scruti-

nised by the user is a similar notion to the calen-

dar mirror. The need for user control of personal

information has been widely acknowledged, for

example (Boyd, Jensen, Lederer, and Nguyen,

2002) and (Abowd and Mynatt, 2000) who

observe that ‘One fear of users is the lack of

knowledge of what some computing system is

doing, or that something is being done ‘‘behind

their backs’’ ’ (p51) and that ‘The next step is to

allow those being sensed to have control to either

stop this activity or at least control the distribution

and use of the information.’ (p52)

5. Reusability and Group models

To this point, we have focussed on the representa-

tion of individual user models. We hav e seen that

there is an important role for reuse of parts of the

model across different applications. Where these

are disparate, as in the case of recommenders,

teaching systems, personalised media delivery

systems and the like, this essentially means that

the user does not need to train each. Instead, once

a relevant collection of components has been

defi ned and values for them established, the user

can make them available to new applications.

This reduces the startup problem for personalisa-

tion, where the application needs to build up a

user model before it can perform useful customi-

sation.

In ubiquitous computing, it will be critical

to reuse user models at a different level. If we can

build a statistically valid group or stereotypic

model (Rich, 1989), a user who provides minimal

information about themself can be provided with

an initial user model which is based on data from

a group of similar people. Just this approach

applies in the most common recommender sys-

tems such as several at Amazon.com. In these, as

in the case of ubiquitous computing, we may have

a single point of information about the user, per-

haps a request for information about a single book

in the case of Amazon, perhaps a small trace of

user behaviour in the ubiquitous computing case.

One of the earliest exploration of user

modelling for ubiquitous computing was Doppel-

ganger (Orwant, 1995) which used active badges

and smart chairs to track user activity within a
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building and on computer systems and phones. It

had a very interesting, elegant and simple group

notion, the community. It differs from stereotypes

in that a male always contributes data to the group

model for males. However, predictions about the

user are based on a weighted average of informa-

tion from the combination of communities that

they best match. The simplicity of this notion

should be very appealing for ubiquitous comput-

ing. It has not been explored since Doppelganger.

One of the challenges of building group

models is that we need quality data about people.

So, for example, if we would like to model the

common patterns of people’s movement around a

building, we need data about that. Why should a

user contribute their personal data? One reason

would be that there is personal benefi t. For exam-

ple, if a user were allowed access to data about

the location of other people, only if they were

willing to allow the system access to their own

data, this appears to be fair and may enable data

to be aggregated. A similar approach has been

applied in the Educo system (Kurhila, Miettinen,

Nokelainen, and Tirri, 2002) where people read-

ing documents from an online selection were

allowed to see who else was reading each docu-

ment. This could serve as a basis for establishing

ad-hoc online discussions about a document.

Users were only allowed to see information about

others location in the virtual document space if

they allowed themselves to be visible.

6. Discussion and Conclusions

We hav e described aspects of the accretion repre-

sentation for scrutable management of user mod-

els. It has not been deployed in an ubiquitous

computing context: its main use was in the mod-

elling of knowledge of a text editor where the

bulk of the user model information came from a

collection of evidence sources, each based on

analysis of logs from monitoring users of the text

editor. This monitoring ran for 10 years and user

models were built from data collected over two

years. In that context, it was evaluated in terms of

its capacity to support tutoring. Its scrutability

was also evaluated both in a small qualitative

experiment and in a large fi eld study (Kay, 1995).

The latter indicated that some users did scrutinise

their model extensively over the 8 weeks of the

study.

Ubiquitous computing will offer quite dif-

ferent challenges and the architecture we have

described envisages a broader ranging user model.

It is yet to be determined whether the simple

accretion, resolution and, where necessary, dele-

tion of evidence can support the reasoning needs

of ubiquitous systems. For example, if we want

to model users location transitions, a natural rep-

resentation would be a Markov Model. Whilst

accretion maintains evidence in a form suitable

for learning such a model for the user, this would

need to be managed by one of the inference

sources shown in our architecture. When we need

a prediction for the user’s future location, that

Markovian inference source could be triggered to

supply evidence with a prediction of the location

in the future; a suitable resolver would be able to

use that to drive the system. This approach has

yet to be explored.

The various forms of user control facilitate

the creation of personas, each intended for use by

particular applications. We suppose that a new

application’s persona would be created by a pro-

cess where the application proposed the compo-

nents and evidence sources to be included in the

model. The user would examine these, selecting

those components and evidence sources they were

happy to allow into that persona, and restricting

others. Good interfaces for this task are an impor-

tant area for future work. One promising

approach for some classes of user model is a visu-

alisation of aspects of the information to be

allowed into the persona, as in (Uther, 2001,

Apted, Kay, and Lum, 2003) and a very similar

approach to multiple personae (Boyd, 2002) but

called facets of identity.

One might argue that one of the goals of

ubiquitous computing is that the user should not

need to be aware of all the computation embedded

in the environment. The computational elements

should disappear. Indeed, we agree that most of

the time, the user should not need to be aware of

the details of their user model and the way that

the personalisation operates. However, the user

model is essentially personal information. This

means that users have a right to have access to it.

Users also have the right to control the personali-

sation that machines effect on their behalf. There

will be times that the user will become aware of

the personalisation: in particular, if something

unexpected happens or the system gets things

wrong, the user will become aware. The user

may even become aware because the system does

something that they like very much. Or they just

might become curious about how the personalisa-

tion work because they happen to be curious peo-

ple. At that point, we need to be able to support
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the user in tracking down just what is happening

and why. The ability to scrutinise the user model

and its interpretation of the evidence available to

it will be critical at that point.

The stereotypes which can be used for

default reasoning about users also have some

promise in this area. It may be possible to build

several stereotypic sets of personas that people

might use as a starting point for their own per-

sona. This could be supported by a visualisation

such as (Uther, 2001). There may also be possi-

bilities to stereotype some of the classes of per-

sonae: for example, the user may create a

restricted advertiser persona and this would be

the default for a range of advertiser applications.

So, for example, in the future ubiquitous comput-

ing environment, the user who walks into the

supermarket might be presented with personalised

advertising, based on the persona they hav e made

available for such applications. This might

include information that might be quite general

or, alternatively, it might have the detailed set of

their current shopping needs, something they

might regard as soon-to-be-available to the envi-

ronment (after they had passed the checkouts).

We hav e given an overview for a represen-

tation and architecture for user modelling in ubiq-

uitous computing. Much of the detail of both

have been omitted. There are also many problems

that we have not mentioned. One important class

of these relate to the way that the user model

interacts with the rest of the environment. In par-

ticular, there are many issues to address in the

way that sensor data makes its way to the user

model. There are open questions about the own-

ership of the sensor data: does this belong to the

user or the object that triggers the sensor event?

Our current work has been in the areas of

both context-aware systems and user modelling

systems. We are developing an architecture for a

general, large scale context management system

that uses a distributed repository for context data.

We hav e built an early prototype of this architec-

ture with Bluetooth access points to provide loca-

tion information and simple applications to track

people with Bluetooth phones. Our Personis user

model server is being used in several other appli-

cations and we plan to integrate it with the con-

text repository to provide personalisation services

to context aware systems.
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ABSTRACT 

This paper describes our exploration into some of the inherent uncertainty issues that arise when 

designing for proactive and ‘intelligent’ behaviour within ubiquitous computing environments. We 

describe both previous and current work that has motivated our current examination of uncertainty 

issues and also discuss some possible implications for user interaction that arise when providing 

proactive behaviour based on rules induced from (potentially uncertain) context history.  

1. Introduction 

Over the past decade, one of the predominant trends in computing has been “ubiquitous computing”, a 

term that was first proposed by Weiser in the early 1990s. His vision was of increasing the productivity or 

welfare of a user situated in a computer-everywhere environment by supporting human assistance in an 

intimate way [17]. One research domain that requires the computer-everywhere model of ubiquitous 

computing is that of the “intelligent environment” [6]. In this domain, a wide range of physical devices 

(e.g., lights, audio/video equipment, heaters, air conditioning equipment, windows, curtains, etc.) can be 

controlled automatically based on the context of a house/office and the preferences of inhabitants (e.g., 

preferred temperature, preferred light level, energy consumption policies, etc.). One promising technique 

for achieving such intelligent environments is “context-aware computing”. The term ‘context-aware’ has 

been defined as “systems [that] adapt according to the location of user, the collection of nearby people, 

hosts, and accessible devices, as well as to changes to such things over time” [7].  

In our previous works [2] and [3], we have suggested that the history of contexts could be extremely 

valuable in enabling the current levels of context interpretation (context aggregation [7], context synthesis 

[15], and context fusion [4]) to be enhanced. In more detail, by noticing patterns from the user’s context 

history (including the user’s behaviour) a properly designed system may start to exhibit appropriate 

“intelligent” or more specifically “proactive” behaviour. For example, by identifying recurring patterns in 

a user’s context history (based on contexts such as user location, calendar information etc.) it may be 

possible to utilise machine learning techniques in order to determine that a certain user has a regular 

meeting schedule. An intelligent reminder system could then take the proactive step of reminding the user 

of her meeting.   

The traditional method for providing proactive behaviour is to use predefined rules [3]. One limitation 

of predefined rule-based adaptation is that the user must reconfigure the system in order to reflect changes 

to her routine. Performing such reconfigurations could be a frustrating or annoying task for the user. 

Therefore, we advocate “modelling-based proactive adaptation. In more detail, by observing the routine 

of the user in an intelligent environment there is the potential to infer appropriate rules from accumulated 

context history in order to learn rules and subsequently provide dynamic adaptations.  

Uncertainty is an important consideration when supporting either type of proactive adaptation,. In 

more detail, various sources of uncertainty play a part in this approach, namely: uncertainty from sensing 

context (e.g. margins of error in a given sensor), uncertainty that arises through interpreting contexts (e.g. 

deriving higher level contexts from a group of lower-level or raw contexts). When supporting but it is 

proactive modelling-based adaptation uncertainty also arises when inferring rules from context history 

(fully described in section 3). 

One potential problem that may occur with intelligent proactive systems is that the system may 

behave in ways that do not fit well with the user’s mental model of the system. Although we cannot avoid 

the potential situation of the system acting in an unexpected way, our proposed solution is to provide 

users with explicit and meaningful explanations when such unexpected behaviour occurs [1]. Providing 

such an explanation to the user may in turn enable the user to provide some feedback to the system in 

order to enable the system to refine the rules which it had inferred from the context history. Figure 1 



illustrates the way in which our approach involves the user in accepting proactive behaviours and 

potentially causing the modification of the system’s adaptation rules. Crucially we believe that keeping 

the user involved in the loop may also involve informing the user of possible implications of inferences 

based on context history that may contain uncertainties. 

 

 

 

 

Figure 1. The relations between a user, the user’s behaviour, and contexts. 

The structure of the remainder of this paper is as follows. In section 2, we describe some of our 

previous work that has played a key role in motivating our exploration of the uncertainty issue. In section 

3, we investigate some of the potential sources of uncertainty and consider some possible 

countermeasures. Interaction issues between a proactive system and a user are discussed in section 4. 

Finally, a summary of our investigation on the issue of uncertainty is presented in section 5.  

2. Previous Work  

2.1 PDS scenarios 

An early motivating scenario for our research into proactive context-aware behaviour was the 

Personal Digital Secretary (PDS) [2]. This application idea emerged from considering how the classical 

remembrance agents, for example, Forget-me-not [12] and CyberMinder [8], might be extended using the 

techniques of user modelling and machine learning in order to support a user’s daily activities in an 

everyday computing setting [1]. The PDS was designed based on the assumption that it would support a 

user’s daily activities beyond the role of a remembrance agent or reminder. For the conceptual structure 

of our PDS and detailed explanations, please refer to [2]. 

The PDS scenario proved extremely useful for helping us to explore how the paradigm of context-

aware computing could be usefully augmented by the utilisation of user modelling and machine learning 

techniques. Some examples of typical scenarios that reveal proactive usages of the PDS are described 

below. 

 Scenario A: When a user passes by a theatre, the PDS can notify the user that the theatre is playing 

one of the user’s favourite movies. This type of functionality could be realised by a context-aware 

system (such as GUIDE [5]) by utilising both the location context and information about the user’s 

preferences (such preferences could have been learnt, pre-defined or a combination of both). 

 Scenario B: If a user is in an intelligent environment and the user commands some action, for 

example, ‘close curtains in the living room’, the PDS could modify its user model and, over time, 

learn that an appropriate context-aware behaviour is to close the curtains when it gets dark outside.  

 Scenario C: If a user participates in a meeting at 10 am every forth Monday, the PDS might learn 

the pattern of this regular meeting and remind the user to prepare for the meeting at an appropriate 

time. However, a more sophisticated level of learning would be desirable in order to enable the 

system to realise when such a notification is inappropriate, for example, when the user is on 

holiday. 

 Scenario D: if a user makes a rule to hold the room key when leaving his/her office after 6pm, this 

can be captured in a user model. Consequently, when the user is about to leave his/her office 

without the room key after 6pm, the PDS could warn the user before he/she gets locked out of the 

office! 

2.2 Calculating the Level of Security Risk in a User’s Office 

We first examined the potential of context-history together with user modelling and machine learning 

techniques) by considering a specific scenario for calculating the level of security risk in a user’s office 

[3].  In this work, we explored a number of different approaches including the use of a Naïve Bayes 

Classifier, which was used to calculate the conditional probability of the user being in her office. In more 

detail, a set of rules were predefined for deciding the level of security risk in a user’s office and a simple 

context history was artificially built in order to detect exceptional cases against the predefined rules: the 

first rule: a high security arises if the door is open when the user has left the office during her office hours, 

and the second rule: a low security risk arises if the door is closed (but not locked) when the user has left 

the office during her office hours.  

User’s Behaviour 

Sensed ContextsAdaptation rules 



The aim of the work was to examine two questions: (1) could patterns of the user’s behaviours be 

properly extracted from the context history? (for example, the user’s likely returning to her office given 

that a cup in the office contains hot coffee) and (2) could the extracted patterns be used for appropriate 

decision making? In this theoretical test case, we found that context history did have a strong potential for 

supporting dynamic adaptations in a ubiquitous computing environment even though there were a number 

of issues to be challenged [3]. The next step of our research (and the experiment described in this paper) 

was to build a prototype system that could support proactive modelling-based adaptations in a user’s 

office. 

2.3 Context-Based Intelligent Environment Control 

 In order to ascertain the feasibility of supporting proactive modelling-based adaptations in a user’s 

office our current work has involved the design and implementation of a system to:  

i). Utilise context history in order to learn the patterns of the user’s behaviour in a physical 

office environment; and  

ii). Support proactive modelling-based adaptations (opening/closing the window, turning 

on/off the fan), based on both the patterns learned (represented as a generalised set of 

rules) and the state of the physical office environment (realised through a set of sensors).  

Contexts considered in the experiment are temperature, humidity, noise level, light level, the user’s 

task (keyboard typing or not), the status of window, the status of fan and the status of blind.  Actuators are 

needed to open/close the window, turn on/off the fan, and open/draw the blind in the user’s office. Our 

system collects and accumulates the contexts as a context history. Next, it induces a set of rules from the 

context history. Currently, the rules represent the user’s preferences to the status of window (i.e. this is 

currently the only target function considered) Based on these rules, our system can provide a suggestion 

to the user when the physical environment in the office changes, e.g. if the temperature rises above a 

given threshold value. It is important to note that whenever the system suggests an adaptation, e.g. “shall I 

open the window?” the user can dismiss the suggestion. 

Our system comprises two databases (one for storing context history, the other to store the user 

model) and three main modules (a context manager, an inference engine, and an adaptation manager) as 

illustrated in figure 2. The context manager collects context from sensors in a clock-based fashion and 

encodes numeric context values into symbolic representations. If there is at least one change in a 

symbolic context value (e.g., if the temperature changes from “20°C ≤ mild ≤ 24°C” to “hot > 24°C”, or 

if the user records an appropriate action, such as opening the window), then the context manager 

generates a context-changed event and stores the context in the context history. The adaptation manager 

listens for the context-changed events being raised by the context manager. Next, the adaptation manager 

decides which adaptation must be made based on both the current situation (e.g. current temperature) and 

the user model (which contains a set of learnt or predefined rules that represent the user’s preferences). 

Learnt rules are placed in the user model by the inference engine which is responsible for extracting rules 

based on the context history. These rules can be learned through either on-line or off-line processing. At 

this stage of our research, an off-line learning method is adopted. 

 

 

 

 

 

 

 

Figure 2. The design for providing dynamic adaptations. 

As an initial result of our experiment, we found that there was a phase of transition for the initiation of 

adaptations. In more detail, during the first day of our experiment (t0 in figure 3) our system could not 

learn any rules because there was no context history. At this stage, a set of predefined rules was used for 

providing adaptations, for example, if the temperature is higher than 24°C then open the window. From 

the next day, our system started to learn the user’s preferences from context history. However, it took 

about two weeks (from t0 to t1 in figure 3) to accumulate an appropriate size of context history for 

properly learning the user’s preferences. Our system gradually learned the user’s preferences and 

provided more refined suggestions as time went by.   
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Figure 3. The phase of transition for the initiative of adaptations. 

Figure 4 illustrates that the learnt rule set from the context history (about 10 rows) at noon on 25th 

June is very simple, whereas the learnt rule set from the context history (about 30 rows) in the evening on 

the same day is more complicated.  The number of rows in the context history is dependent on the 

weather condition of the day, season, and the location of office, because these factors can largely 

influence on the frequency of context changes (especially, for the temperature). Therefore, the time took 

for proper learning would be different according to the time and place for this kind of experiment.  

 

 

 

 

 

Figure 4. Learnt rule sets from different size of context history 

3. The Sources of Uncertainty and Countermeasures 

By analysing our approach towards proactive adaptation we can identify four different sources of 

uncertainty. These different sources of uncertainty and possible countermeasures are discussed in the 

following sub-sections. 

3.1 Sensors 

Context is sensed under uncertainty because physical sensors can produce erroneous or at least 

inaccurate data. In our experiment, we use a DrDAQ data logger from Pico Technology (figure 5) in order 

to obtain the state of the user’s office environmental. The DrDAQ data logger has built in sensors for 

detecting various environmental contexts (e.g. light level, sound level and temperature) and optional 

external sensors. The accuracy of temperature sensed by the DrDAQ is 2°C at around 25°C (the error 

margin is different depending on the temperature). If the threshold between “hot” and “mild” is 25°C then 

this 2°C error margin could clearly be very significant (i.e., under the same (real) temperature, it could be 

sensed either “hot” or “mild”).  

   

 

 

 

 

Figure 5. A DrDAQ data logger. 

If a context must be obtained concretely in a certain environment, more reliable value of context can 

be obtained by obtaining context concurrently from more than one sensor. For example, if the temperature 

in an emergency room of a hospital must be concretely captured, we can use several sensors, for example, 

one on the ceiling, one on the wall, and one on the bed. Then, using a simple majority voting algorithm 

we can obtain the temperature of the emergency room with reasonable reliably. 

3.2 Discretisation of continuous-valued attributes 

Our current approach is to use a decision tree algorithm for inducing rules from context history that 

can be used to provide the user with an explicit and intelligible explanation for the system’s proactive 

behaviour. A learning algorithm based on, for example, neural networks would have been much less 

suitable because the weights produced by this approach are difficult to interpret by human users [14].  

In general, decision tree algorithms use nominal values of context, however the DrDAQ data logger 

provides continuous values. Therefore, it was necessary to explicitly convert numeric context values (e.g., 

26°C) to symbolic ones (e.g., hot). In this way, continuous-valued contexts are discretised by partitioning 

the range of context values into sub-ranges (e.g., ‘hot’, ‘mild’ and ‘cold’ for temperature; ‘low’, ‘normal’ 

and ‘high’ for humidity; and ‘dim’, ‘normal’ and ‘bright’ for light level). One implication of discretisation 

of continuous context values is that the value of a context can vibrate around a threshold. For example, 

Predefined rules                 

Learnt rules  

timet0 t1 



when the temperature is fluctuating around the threshold (24°C) between ‘hot’ (e.g., 24.1°C) and ‘mild,’ 

(e.g., 23.9°C) proactive adaptations can occur frequently, which can be very frustrating to the user.  

A possible way to overcome these potential problems is to adopt a fuzzy representation of context [13] 

and utilise fuzzy decision trees [10] [11] [16] [18]. For example, given that the thresholds for partitioning 

the range of temperature into sub-ranges are: cold < 20°C, 20°C ≤ mild ≤ 25°C”, and hot > 25°C, then 

figure 6 illustrates the temperature ranges using the conventional representation ([a] in figure 6) and the 

fuzzy representation ([b] in figure 6). The horizontal axis represents the temperature values and the 

vertical indicates membership values of fuzzy sets. Membership value indicates the degree (from 0 to 1) 

to which a given input belongs to a fuzzy set. For example, the temperature 18°C is converted into ‘cold’ 

with membership value 1 (or 100%), ‘mild’ with 0%, and ‘hot’ with 0% but the temperature 20°C is 

converted into ‘cold’ with membership value 0.5 (or 50%) and ‘mild’ with 50%, and ‘hot’ with 0% 

according to the fuzzy representations in figure 6.  

 

 

 

 

 

 

Figure 6. Conventional and fuzzy representation of temperature and noise ranges. 

Next, these membership values as well as information gains are considered in order to build a fuzzy 

decision tree. Let’s assume that a decision tree is constructed as depicted in figure 7, the temperature 

sensed is 25°C and the noise level is 70dB. In the conventional decision tree, this situation is just 

classified as the class ‘Close’ from the root (Temperature) and the suggestion “shall I close the window?” 

will be made. In the fuzzy decision tree, the left node (‘hot’) of Temperature has membership value of 

0.75 and right node (‘mild’) has value of 0.25 according to the fuzzy representation in figure 6. Next, the 

left node (‘loud’) of Noise has 1.0 and the right node (‘normal’) has 0.0.  

 

 

 

 

 

 

 

 

 

Figure 7. [a] a conventional decision tree and [b] a fuzzy decision tree  

- given Temperature of 25 degrees and a Noise level of 70 decibels 

Finally, we can calculate the value of each class (Open, Close) in each leaf node (Leaf A, Leaf B, and 

Leaf C) as follows:  

- Leaf A: the membership value of “open” = 0.0(node) * 1.0(noise) * 0.75(temperature) = 0.0 

- Leaf A: the membership value of “close” = 1.0(node) * 1.0(noise) * 0.75(temperature) = 0.75  

- Leaf B: the membership value of “open” = 1.0(node) * 0.0(noise) * 0.75(temperature) = 0.0 

- Leaf B: the membership value of “close” = 0.0(node) * 0.0(noise) * 0.75(temperature) = 0.0 

- Leaf C: the membership value of “open” = 0.3(node) * 0.25(temperature) = 0.075 

- Leaf C: the membership value of “close” = 0.7(node) * 0.25(temperature) = 0.175 

 The total membership value of “open” = 0.0(leaf A) + 0.0(leaf B) + 0.075(leaf C) = 0.075 

 The total membership value of “close” = 0.75(leaf A) + 0.0(leaf B) + 0.175(leaf C) = 0.925 
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Note that each leaf node (the nominal value of the target function: ‘Open’ or ‘Close’) has a 

membership value that stems from the membership values of context history data. In order to choose the 

value of the target function, the membership values of leaf nodes and the membership values of current 

contexts are multiplied and added for the same target values. Hence, the target value that has the largest 

one is selected as a suggestion. It is also important to note that because the result from the calculation is 

also a membership value of the target value (in the above case, 0.925 for ‘close’) this value indicates the 

level of certainty of the suggestion.  

Staying with this scenario, if the temperature in the office was sensed at 24 degrees, the membership 

value of ‘hot’ would change to 0.5 and that of ‘mild’ would change to 0.5. Therefore the certainty level of 

‘close’ would be 0.85 based on the above calculation procedure. Again if the temperature in the office 

was sensed at 23 degrees, the membership value of ‘hot’ would change to 0.25 and that of ‘mild’ would 

change to 0.75. Therefore, the certainty level of ‘close’ would be (leaf A) 0.25 + (leaf C) 0.525 = 0.775. 

The membership value of leaf C is greater than that of leaf A. This means that mild temperature is the 

main reason for closing window rather than the noise level. For more detailed information on the fuzzy 

decision tree used in this section, please refer to [18]. 

To sum up, firstly, fuzzy representation of context can help reduce the problem of fluctuation (e.g., the 

temperature’s fluctuating around the threshold (25°C) between ‘hot’ (24.1°C) and ‘mild,’ (23.9°C)). In 

the traditional discretisation, the two temperatures (24.1 °C and 23.9°C) are converted into totally 

different nominal values (‘hot’ and ‘mild’) even though the differences are just 0.2°C. However, in the 

fuzzy handling, every nominal value of an attribute has its membership value, for example, the 

temperature 24.1 °C is converted into ‘hot’ with 52.5%, ‘mild’ with 47.5%, and cold with 0% (not just 

one nominal value). The temperature change from 24.1 °C to 23.9°C or vice versa would change the 

membership value of the target value as illustrated in the above paragraph. Therefore, frequent 

adaptations caused by the fluctuation around a specific context value can be avoided; instead the degree 

of certainty would be changed. Setting the certainty threshold to an appropriate value can also be used to 

reduce the extent to which fluctuations around a specific context value are likely to occur. For illustration 

purposes, consider the following (based on the fuzzy representation shown in figure 6 [b]).  

1) When Temperature is 25°C and Noise is 30dB: Open: 0.825,  Close: 0.175 

2) When Temperature is 24°C and Noise is 30dB: Open: 0.65,  Close: 0.35 

3) When Temperature is 23°C and Noise is 30dB: Open: 0.475,  Close: 0.525 

4) When Temperature is 22°C and Noise is 30dB: Open: 0.3,  Close: 0.7 

In the table1, with the threshold 0.5, the suggestion changes from ‘Open’ to ‘Close’ when the 

temperature changes from 24°C to 23°C (just 1°C difference), whereas with the threshold 0.7, the 

suggestion changes when the temperature changes from 25°C to 22°C (3°C difference). Therefore, higher 

value of threshold can avoid inappropriate frequent suggestions. 

Table 1. The differences in suggestion timing between two thresholds. 

Time T1 T2 T3 T4 

Temperature 25°C 

(Hot: 0.75 

Mild: 0.25) 

24°C 

(Hot: 0.5 

Mild: 0.5) 

23°C 

(Hot: 0.25 

Mild: 0.75) 

22°C 

(Hot: 0.0 

Mild: 1.0) 

Noise Level 30dB  

(Normal: 1.0) 

30dB  

(Normal: 1.0) 

30dB 

(Normal: 1.0) 

30dB  

(Normal 1.0) 

Suggestion when 

window state is open 

No 

Suggestion 

No 

Suggestion 

Close Close Threshold 

0.5 

Suggestion when 

window state is closed 

Open Open No 

Suggestion 

No 

Suggestion 

Suggestion when 

window state is open 

No 

Suggestion 

No 

Suggestion 

No 

Suggestion 

Close Threshold 

0.7 

Suggestion when 

window state is closed 

Open No 

Suggestion 

No 

Suggestion 

No 

Suggestion 



However, one implication of increasing the threshold is that it can effectively cause an extended delay 

before an adaptation takes place. Table 2, (which is effectively a subset of the information contained in 

table 1) highlights how increasing the threshold from 0.5 to 0.7 causes the adaptation to be triggered at t4 

instead of t3. 

Table 2. Example implication for delayed adaptation when increasing thresholds. 

3.3 Rule extraction from context history 

The rules extracted from context history also hold uncertainty, because context history may be 

incomplete as a training data set and the learning method adopted may not be a perfect one. During our 

experimentation, we empirically learned that the size of training data can affect the accuracy or reliability 

of learning. For example, at the initial stage of learning in our experiment (from t0 to t1 in figure 3) the 

context history was not large enough for extracting appropriate rules. Our system could provide more 

refined suggestions as time went by (from t1 in figure 3). Therefore, we can say that more training data 

the better the resilience to incomplete data. However, large size of context history will increase the cost 

for processing learning algorithms and for maintaining storages. This trade-off relation between small 

size and large size of context history is outlined in figure 8. In addition, learning from a part of context 

history that is related to an unusual situation (e.g., the case of high noise level) may generate a decision 

tree that can effectively consider the specific situation. As a result, more certain proactive adaptations for 

the unusual case can be provided. 

 

 

 

 

Figure 8. The characteristics of learning system based on the size of context history. 

4. Interaction Issues 

In addition to the uncertainty issues discussed in the previous section, there are interaction issues to be 

considered as follows:  

 How can the user give a feedback to the system and how can the feedback be effectively 

considered within the process of decision making? 

 How can the user effectively amend her user models (i.e., the extracted rules)? 

 How can the level of uncertainty of proactive adaptations be represented to the user? 

In our experiment, we let the user override a proactive suggestion by just clicking “No” button on the 

user interface (figure 9a) and provide an explicit explanation for the suggestion if the user clicks “Why” 

button (figure 9b). Given that the user clicks “No” button against the suggestion of “shall I open the 

window for you?” this means either the user does not accept the suggestion only in a specific time or the 

user want to override the rule itself that generates the suggestion. In this case, we removed the rule from 

the set of rules during the day but it could be generated again in the next learning stage of our experiment. 

Therefore, it may be more suitable to make two groups of rules: one is ready to be applied and the other is 

overridden by the user, and the system can check the rule is in the first group or second group before 

giving a suggestion. As another possible solution, by enabling the user to inspect the context history and 
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the uncertainties involved the user can manually remove the context with high uncertainty or which 

clearly represents an exceptional case. 

 

 

 

Figure 9a. A suggestion window.           Figure 9b. An explanation window. 

There is a growing concern for representing uncertainty to users. Membership values of the final 

classification using a fuzzy decision tree may be used as a way for representing uncertainty of suggestions 

to the user as described in section 3.3. In order to let the user override certain rules being created by the 

decision tree, the system must allow the user to observe which rules have the most or least corroborating 

evidence, i.e. from the context history. Because some rules will have more or less certainty than others it 

makes sense to make this transparent to the user in some way in order to enable the user to override 

uncertain rules. 

5. Summary 

This paper has described our exploration into the issues of uncertainty inherent in proactive and 

tailored behaviours under ubiquitous computing environments. Through our previous works that lead to 

this investigation, we found a number of sources of uncertainty and investigated countermeasures that can 

mitigate the level of uncertainties. In addition, we have discussed interaction issues between the system 

and users under uncertainty. In addition, we need a way of representing uncertainty to a user so that the 

user can observe which rules have the most or less certainty than others.  

To summarise, through our investigation, the following key issues arise: 

 Through initial analysis, it appears that applying fuzzy representation of context and fuzzy decision 

trees is one possible solution for overcoming the limitations of discretisation of continuous-valued 

contexts.  

 The membership value resulted from the classification using a fuzzy decision tree can be used as a 

way for representing uncertainty of suggestions to the user. 

 We have also determined that utilising appropriately large size of context history can provide more 

certain rules, more coverage of rules, and more resilience to incomplete data. 

 By providing explicit explanations regarding the level of uncertainty for proactive adaptations, the 

user can override the adaptation and even amend the rules and/or context history. 
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Abstract

Ubiquitous computing offers new chances
and challenges to the field of user modeling.
With the markup languages UserML and its
corresponding ontology UserOL we try to
contribute a platform for the communication
about partial user models in a ubiquitous
computing environment, where all different
kinds of systems work together to satisfy the
user’s needs. The expected result is that
“permanent evaluation of user behaviour
with different systems and devices will lead
to better user models and thus allow better
functions of adaptation like adaptive web-
sites, recommended products, adaptive route
planning or better speech interaction. We
also present an implementation of a general
user model browser and editor which is
based on UserML and which is embedded
in an ubiquitous computing simulation envi-
ronment with the name UBI’s WORLD, see [6].

The keywords are ubiquitous computing,
distributed user modeling and markup lan-
guages.

1 Introduction

In 1995, Jon Orwant already claimed in his
Doppelgänger [2] project: We need a protocol

for encoding information about users, any given

user modeling system should be able to benefit

from others and that user models should follow

you around. If we look at ubiquitous comput-
ing through the eyes of user modeling and de-
cide to enable the interaction to be uniformly
user-adaptive, a need for extended user model
communication becomes obvious.
This work is highly under progress and not in

any stable state yet, but two of the main re-
search questions on which we are working are
Qestion1: How can a user modeling language be

designed, in order to enable the communication

with different user modeling applications ubiq-

uitously? and Qestion2: How can the users

inspect and control their user models?

We are developing the XML-based exchange
language UserML (see e.g. [4]) which is based
on an ontology that defines the semantics of the
XML vocabulary (UserOL). This user model-
ing ontology language is based on a taxonomy
from Jameson and Kobsa ( see e.g. [3] ).
A gerenal tool is currently implemented that al-
lows the user to inspect and change his/her user
model. UserML sentences will be transformed
with XSLT into the W3C candidate recommen-
dation XForms that can be viewed on any de-
vices.
Let us assume people carry a personalized
user-modeling agent within a PDA and trans-
mit their long-term properties anonymously
to human-computer interaction systems. This
could enable user-adaption from the beginning
of using a new interaction system. After the
interaction session, the system could transmit
the partial user model of this session back
to the personal agent within the PDA and
also use the enriched data anonymously for
collaborative filtering for example.

2 The User Modeling Markup

Language UserML

Using XML as knowledge representation lan-
guage has the advantage that it can be used
directly in the Internet environment. For
UserML we have chosen to take a modular-
ized approach in which several modules will



be connected via identifiers and references to
identifiers. With this method, the tree struc-
ture of XML can be extended to represent
graph structures. The content of a UserML

document will be divided into MetaData,
UserModel, InferenceExplanations as well
as ContextModel and EnvironmentModel. The
main focus in this workshop contribution lays
on the UserModel but however, in order to ex-
plain inferred user model entries, the instru-
mented environment and the context (see i.e.
[3]) of the interaction process need to be repre-
sented or referred to as well.

2.1 Example: A User-Adaptive Air-

port Navigation System

In this subsection we present an example of a
user-adaptive airport navigation system, which
is currently under development in the integrat-
ing scenario of the German Collaborative Re-

search Center on Resource-Adaptive Cognitive

Processes, SFB378, in the projects READY

and REAL.
How can we represent for example the follow-
ing derived user property together with the de-
scription of the situation in UserML? A sys-

tem at an airport detects that a person is cur-

rently under high time pressure because she has

a flight ticket for a flight, which boarding time

will probably close in 10 minutes and the user

still has to navigate to the gate.

2.2 The UserModel Syntax

The approach that we suggest separates be-
tween two different levels. On the first level,
we offer a simple XML structure for all en-
tries of the partial user model. These UserData
elements consist of the elements: category,
range and value. On the second level, we
find the ontology that defines the categories.
The advantage of this approach is that dif-
ferent ontologies can be used with the same
UserML tools. Thus different user model-
ing applications could use the same frame-
work and keep their individual user model el-
ements. The reference to the ontology like
”http://www.u2m.org/UserOL/” can either be
placed in the meta data module, where it will
serve as a default value for all UserData entries,
or in the UserData entry itself.

Example of a partial user model which uses cat-
egories from the ontology ”UserOL”

<UserModel>

<UserData id="231">

<category>userproperty.timepressure</category>

<range>low-medium-high</range>

<value>high</value>

</UserData>

<UserData id="224">

<category>userproperty.walkingspeed</category>

<range>slow-normal-fast</range>

<value>fast</value>

</UserData>

<UserData id="122">

<category>usercontext.location</category>

<range>airport.location</range>

<value>X35Y12</value>

</UserData>

</UserModel>

The UserModel consists of an unbounded
list of UserData entries. Each one de-
fines the category, the range and the
value. The alternative approach would
have been to encode the user model-
ing knowledge into the XML elements like
<timepressure>, <psychologycal-states>,
<typing-behaviour>. Confidence values, a
notion of time and the references to the infer-
ence explanations will be added with the next
step.

A Preliminary DTD for the Element ”User-
Model”

<!ELEMENT UserModel (UserData)*>

<!ELEMENT UserData (category,

range, value, ontology?)>

<!ATTLIST UserData id ID>

<!ELEMENT category (#PCDATA)>

<!ELEMENT range (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT ontology (#PCDATA)>

Since the user model ontology and the
markup language are still under construc-
tion, their progress will be presented at the
webpage http://www.u2m.org/UserOL/ and
http://www.u2m.org/UserML/.

3 A User Model Editor

If a system collects user data, the person should
have the possibility to inspect and edit this



model in a human readable format. A pri-
vate (not necessarily mobile) device seems to
be a good choice to serve as an editing tool for
user models of different user-adaptive systems.
Especially in ubiquitous computing not every
user-adaptive system will have a user interface.
With the help of UserML the data and the user
model editor could be send to the nearest user
interface.
There are currently two implementations under
construction. One transforms UserML into the
W3C Candidate Recommendation “XForms”
(see [5]) with XSLT. XForms documents can be
interpreted by web browsers or on mobile de-
vices with a java vm. And the second one uses
a MySQL database and generates a web inter-
face, which is embedded in UBI’s WORLD, see
[6], a tool to simulate ubiquitous computing en-
vironments.

Conclusion

We think that ubiquitous computing will have a
great influence on user modeling. The develop-
ment of a markup language for user modeling
within the new paradigm of ubiquitous com-
puting is important. The main idea of UserML
is to enable communication about partial user
models via the Internet. In this paper, we put
the focus on the aspect of representing partial
user models. This work is under progress.
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Abstract

The Intelligent Environment consists of ubiquitous connectivity in sensor rich environments coupled with adaptive technologies
that allow access from multiple devices with varying capabilities. Context information is drawn from what the Intelligent
Environment can sense about its current physical and computational environments. This context information relates to aspects
of the environment which include, who is in the environment, what they are doing, what they have done, and what their
actions are. Multi-granularity context description provides a mechanism to describe, at increasingly more abstract levels, such
context information gleaned from the Intelligent Environment. The proposed architecture for the Intelligent Environment is
central to determining methods for capturing such information at the lowest level, interpreting by historical reference, and
aggregating into increasingly more abstract forms.

Key words: Context; Personalisation ; Smart-Sensors ; Personas ; Smart Environment Agents.

1 Introduction

Ubiquitous computing requires computers to have more
knowledge of the real world, the environment surround-
ing users, than computing did previously. The ubiqui-
tous computing environment therefore has to handle
large numbers of sensors, and to hide the physical sen-
sors and communications under layers of abstraction.
The sensor devices range in complexity, from devices as
simple as a binary on-off, up to sensors that can decide
“a meeting is now happening in this room”. Their com-
munications abilities range from the simple on-off binary
signal to supporting Web services.

The raw data produced by the sensors has an enormous
range of speed and volume – it may be as simple as a one
bit value on a frequency of hours or days, up to a con-
tinuous stream of video data. To enable higher-level in-
ferencing to be performed with sensor information, that

Email addresses: bob@it.usyd.edu.au (Bob
Kummerfeld), aquigley@it.usyd.edu.au (Aaron Quigley),
Chris.Johnson@cs.anu.edu.au (Chris Johnson),
rh@cit.gu.edu.au (Rene Hexel).

information must be consolidated, in many cases, and
must be distributed to the computing devices and pro-
grams that wish to deal with it.

Adaptive sensors and integrating sensors are therefore
an essential part of bridging between the raw devices and
an intelligent ubiquitous computing environment that
includes user modelling[Kautz et al., 2003].

The issues include both the representation of data
coming from raw sensors in a form suited to programs
that are capable of reasoning with it, including sensors
that have a low level of intelligence but deal directly
with other sensors’ information; and the efficiency,
security and privacy related to transmitting the infor-
mation from sensors and user models over any kind of
network[Schreck, 1997,Busboom, 2002].

The scale of the ubiquitous computing system is signif-
icant to the design of both the distribution of sensor
information and the way in which sensors and informa-
tion are represented. To cater for even one enterprise
of the scale such as a manufacturing plant, a shopping
mall, or a university, it must be scalable to the extent
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of allowing tens or hundreds of raw sensors, in hundreds
of rooms in a building, with hundreds of buildings to a
campus [Schmidt and Beigl, 1998].

1.1 Layers of context

Sensors are assumed to be connected to the net and ca-
pable of communication. The sensors that connect di-
rectly to the environment (such as movement detectors,
proximity detectors, light level meters, thermometers)
typically produce raw data, at high frequency or at irreg-
ular intervals. The data comes as primitive bit streams
or simple values. As the first stage of making sense of
this data, each sensor’s information must be capable of
being

• integrated against its own history
• adapted from one representation to another
• combined with other sensors into richer forms of sen-

sor information (where conflicts between the different
sensors can be resolved).

For example, one of the standard motivating cases is that
of detecting that a meeting is in progress in a particu-
lar room, allowing context-aware applications to mod-
ify their behavior accordingly. Such a sensor is clearly
not a simple one: we will refer to it as a smart sensor.
To approximate the human-based metrics that are used
to make a decision like this, such as “number of people
present” and “noise level”, we might consider a location-
based face-detecting and -counting sensor (a sensor that
is based on a camera, but not transmitting images onto
the network), combined with a noise-level sensor – in
the same physical vicinity. The combination of values
of these sensors coming above some preset threshold,
within certain time periods, may trigger a smart sen-
sor to indicate the information “meeting in progress”. A
computer application might use this sensor, but further
confirm this indication for its own purposes, by inference
using the daily calendar or user model of one or more
of the participants, or the room-booking system of the
owning organisation. Such a sensor might be used by the
participants’ own laptop or PDA computer applications
to modify its way of handling of incoming messages, or
by the room-booking system itself to confirm that the
booking has in fact been taken up, or to control the light-
ing and heating levels and the access to other equipment
of that room.

It is clearly a powerfully simplifying design decision to
view sensors of both simple and complex kinds in a com-
mon framework, from the point of view of the compu-
tational elements of the ubiquitous computing system.
Organising the whole system into layers of complexity is
also necessary, given the scale of the number and variety
of sensors involved.

A further requirement of a system on this scale is that the
network must be capable of efficiently distributing the

sensors’ information and user model information beyond
the immediate vicinity, but at the same time, the data
and information flowing on the communication network
must be made secure for both personal privacy and safety
reasons.

1.2 Security and privacy

Even raw sensor information must be made secure as
soon as it goes over any kind of network beyond the
very local. Where sensors are reacting to the proximity
of people and reporting their identity and their precise
location, there are issues of privacy even in the relatively
secure working campus (who needs to know that I am
consulting a medical doctor in my lunch break?) and of
personal security, where there is a possibility of stalking.
Even the very lowest layers of context handling must
provide security against inferencing that might reveal
the location of a person at risk, or violate privacy policies
by revealing the details of office workers’ movements in
fine detail within a suite of offices and its service areas.

Encryption is only part of the security solution: locations
and personal identities may need to be obfuscated by
depersonalisation and location fuzzing, incorporated at
the level of simple sensors.

Pragmatic issues of implementation therefore lead us to
have at least two layers. The complexity of handing data
from raw sensors and making simple inferences from this
data lead us to a further layering of the handling of sensor
information.

2 Background

Early works in ubiquitous computing already touched
the complexities of context gathering, processing, and
representation as well as privacy and security issues
[Weiser, 1991]. Despite this insight, most approaches
were based on case studies and projects. In light of
the complexity that arises from having multiple, dis-
tributed layers between the sensor and system levels at
the bottom and the application layer at the top, most
projects and case studies were aimed at a very narrow,
vertical path through these layers. As a consequence,
the techniques chosen in most approaches matched the
particular problem addressed by the study and not so
much the general case.

2.1 Major Case Studies and Projects

The Aware Home project [Kidd et al., 1999] is a con-
glomeration of projects aimed at building a context
aware, intelligent home. The goal of the project is to cre-
ate a home environment that is aware of its occupants’
whereabouts and activities.
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Fig. 1. Section of intelligent environment service layer description

The Massachusetts Institute of Technology houses two
different context aware computing projects. Project
Oxygen [Brown, 2001] is an attempt to interact with
computing environments on human terms. The core em-
phasis of this project is to use speech and vision for user
interaction. The Intelligent Room [Phillips, 1999] is an
AI centred multi agent approach to embed computers
into ordinary office or home environments.

Typically, these projects provide toolkits [Salber et al., 1999]
or APIs that allow some form of context information
to be utilised by applications. Other projects such as
Cooltown [Kindberg et al., 2000] attempt to implement
a loose framework that is based on the notion of a web
presence for people, places, and things. It uses the ex-
isting internet and world wide web infrastructure as a
glue for communication between these entities.

2.2 Context Infrastructures and Environments

An approach that uses an existing network infras-
tructure is the Ambient Interaction Framework
[Fitzpatrick, 1998], which uses an I/O oriented frame-
work to connect different sensors and actuators. The
framework relies on a content based message routing
system called Elvin [Fitzpatrick et al., 1999].

Based on their experience with the Aware Home project,
Abowd et al presented an architecture for context aware
applications that uses a widget abstraction model to rep-
resent sensors and actuators [Salber et al., 1999]. A sim-
ilar architecture was presented by Grimm et al that uses
a task/tuple abstraction model to handle context infor-
mation [Grimm et al., 2000].

2.3 Context Distribution and Scalability

While the architectures presented above are suited to
the well defined and constrained environments they were

designed for, they lack flexibility in open, distributed en-
vironments. A first attempt to address part of this issue
was presented by Kantor and Redmiles [Kantor, 2001].
Their approach is to introduce a group based distributed
subscription service that allows applications to locate
and subscribe to context information provided by other
applications at various abstraction levels.

Despite multiple attempts to solve parts of this problem,
at the moment, the biggest challenge remains scalabil-
ity in large scale, dynamically changing, distributed en-
vironments. The system architecture introduced in this
paper attempts to address this problem at the very foun-
dation of sensor and actuator interaction with intelli-
gent, user centred applications.

3 Merino Architecture: Layers of context

The proposed architecture for context layers for the
sensed Intelligent Environment is shown in Figure 1.
This architecture consists of five distinct elements,
sensors, smart sensors, smart environment agents, the
Intelligent Environment repository, and finally the user
model.

At the lowest layer, the sensors are mechanisms in both
hardware and software to interrogate both the physical
and computational environment. These sensors include,
hardware to measure the physical environment such
as temperature, motion, light, vibration, and pressure,
along with software sensors which detect user login,
network activity, and application activity. Sensors are
assumed to be net connected devices, where connectiv-
ity ranges from conventional fixed line to wireless sensor
networks. Existing work in ubiquitous computing has
often focussed on providing such voluminous data as
context which an application engineer must then incor-
porate and interpret in an ad-hoc application specific
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manner [Hawick and James, 2003,Salber et al., 1999].
In contrast, here the lowest layer of abstraction an
application engineer can use is the smart sensor layer.

3.1 Smart sensor layer

Smart sensors, provide the first layer of context abstrac-
tion in our intelligent environment architecture, where
the repository also acts as the secure and scalable dis-
tribution mechanism for context information. Rather
than provide the sensor data at the lowest level of de-
tail (raw data) to an application programmer, here the
smart sensor layer is provided. The smart sensor layer
includes methods for aggregating, filtering, and eliding
the raw sensor data into forms which are made available
through the repository interface. For example, a loca-
tion context agent would harvest data, possibly contra-
dictory, directly from a range of physical and software
sensors. This data is used to determine a person’s phys-
ical whereabouts, as being present in a identified loca-
tion. This “location” information is then deposited into
the IE repository by the context agent.

3.2 Smart environment agents

Smart environment agents provide the second layer of
context abstraction. These agents form into two classes,
rich-context providers and performance enhancers.

Rich-context providers, access a range of information
from the IE repository to form higher level context infor-
mation or “rich-context”. For example, a meeting smart
environment agent may access location context informa-
tion, calendar context information, and noise context in-
formation to form a high level piece of rich-context infor-
mation, that a meeting is taking place. In general such
agents build such high level abstraction by the use of first
level smart sensor information, user model information,
and historical smart sensor and user model information.

Performance enhancers, are the second class of smart en-
vironment agents which act with environmental knowl-
edge over the smart sensor layer improving their indi-
vidual and collective performance. Such agents interact
with both the smart sensor layer and the computing en-
vironment to determine methods of improving the per-
formance of the global smart sensor layer. One approach
is for these agents to include learning and reasoning al-
gorithms to discover patterns which enable the agents to
improve the performance (eg. maximize battery life) and
scalability (eg. minimize communications) of the under-
lying smart sensor layer.

3.3 Rich Context

“Rich Context” information is provided on varying lev-
els of granularity. At the highest level an application

may want to only listen for “meeting” events but once
this event is raised it needs to know the components of
the information used to form this decision, and so on.
In this way, the Intelligent Environment allows applica-
tion designers to build risk-adverse context aware appli-
cations depending on the granularity of the information
to be provided to the end user. Instead of your “smart
phone” automatically redirecting an incoming call be-
cause it “thinks” you are in a meeting, the context infor-
mation for both the sender and receiver are provided to
both parties to facilitate a smart decision being made.

Smart environment agents also provide a means for the
intelligent environment to update information about
people using the environment as their associated con-
text or rich-context changes. For example, as a person
moves through the physical environment their associ-
ated user model is updated with the changing location
information [Riché and Brebner, 2003].

3.4 Architecture: User Modelling

One class of agent assessing the Intelligent Environment
(external to Figure 1), is the Smart Personal Assistant
which takes care of a number of chores for the user.
In practice, such Smart Personal Assistants access and
manage much of the user model, along with accessing
context and rich-context from the IE repository to cus-
tomise and personalise interactions on behalf of the user.

4 Realisation

In our architecture, context information is stored as
fields of context objects that represent particular sen-
sors or higher level context entities. For example, an
environmental sensor may have an object with fields
for temperature and light level. A higher level context
entity such as a room may have a list of people that are
currently in the room.

Context objects are modified by sensor agents or by
smart environment agents. A sensor agent may have the
task of monitoring a low level environment sensor and
updating a field in the relevant context object. Smart
Environment Agents in turn may monitor context ob-
jects and add or modify fields of other context objects. A
Smart Environment Agent may monitor sensor objects
for a room and infer that several people are present and
meeting is in progress. This information is stored in a
context object for the room.

The context repository is implemented as a type of dis-
tributed object database. The objects are stored at a set
of servers distributed across the network in administra-
tive domains (Fig 2). Servers are arranged in a tree and
can locate parent and child servers.
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Fig. 2. Intelligent environment sensor cloud distribution and aggregation

Objects are referenced using a unique ID or URN. In
order to find a given object a search is carried out
starting at the local server and expanding through the
tree in a similar way to Gloss [Dearle et al., 2003] and
Globe [Ballintijn et al., 1999] systems. The key dif-
ference is that our search has a configurable limit by
administrative domain. Beyond this limit the search
switches to a distributed hash table approach. The rea-
son for this approach is to restrict most searches to the
local area where they are most likely to be satisfied and
where the natural ownership of context data lies but
still allowing a scalable solution that doesn’t default to
global flooding. Once the server for an object has been
located, operations are then carried out directly with
the server. Key features of the context repository are
that each object has a unique ID and resides at a sin-
gle point (server) in the system, and is located using a
distributed search.

Communication at the local server level is carried
out using a multicast message-based protocol. For
our initial implementation we use the Elvin sys-
tem [Fitzpatrick et al., 1999]. Communication between
servers is also message-based but unicast.

Agent programs may register with a context repository
server and ask to be notified when a specified event oc-
curs such as a particular object being updated. This
allows, for example, an agent to monitor a room for

changes. Notification occurs using the same message pro-
tocol used in other parts of the system

For a complete example of the system in operation con-
sider a person carrying a Bluetooth-equipped phone en-
tering a room with a Bluetooth sensor. The sensor de-
tects the presence of the phone and notifies its control-
ling agent which converts the (unique) Bluetooth ID of
the phone into a URN. The agent locates the local con-
text repository server and requests the home server for
that URN. The server may be the local server for a phone
that normally resides in the building but if not a search is
carried out, eventually returning the server address or a
not-found indication. The home server of the Bluetooth
device object is then contacted and information added
to the relevant object to indicate that the Bluetooth de-
vice has been detected by the sensor. Agents that have
asked for notification when this object changes are then
notified. Among these may be higher level agents that
in turn generate further context information and update
other objects which trigger notifications.

User models are stored in objects in the same dis-
tributed context database. These are complex objects
that contain user profile information in the style of Per-
sonis [Kay et al., 2002]. This system includes a “view”
mechanism that allows a subset of the user model to
be retrieved. This view definition can be specified by
the query agent, can be stored in the user model, or
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is determined according to the query agent’s identity.
This feature allows the user model to present a set of
“personas” to query agents.

Another feature of the Personis system is that values for
components of the user model are calculated from evi-
dence for particular values [Kay, 2000]. Evidence is ac-
creted and when a value of the component is required it
is calculated using an application specific resolver. This
accretion approach has many advantages when used with
context data: interpretation is delayed until a value is
required and historical data (evidence) can then be in-
terpreted (resolved) appropriately for an application.

An important feature of context-aware systems of the
future is that the user should be able to find out what
the system is doing on their behalf. Context data and
associated inferencing systems must be inspectable or
scrutable. This is a key feature of our user modelling
system [Kay, 1995].

5 Summary and Current Status

In many current context systems there is a strict distinc-
tion between low level, sensor context information and
high level context information created as a result of an
inference activity. In our system the context repository
unifies low and high level context information along with
the user model.

Our architecture also unifies the user model with context
information through the use of the accretion approach to
managing possibly unreliable context data and the views
mechanism for presenting different personae to context
aware applications.

A prototype repository has been built for a single do-
main. Bluetooth access points are being used as simple
sensors of Bluetooth devices with a sensor agent gather-
ing location information and publishing it to the repos-
itory. Some simple applications have been developed
to demonstrate tracking of people carrying Bluetooth-
equipped phones in our building. Work is continuing
on integration of the Personis user modelling system,
inter-repository communication, and the representation
of context information in standard formats.
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1. Introduction 

There are many different ways in which context information can be used to make computer systems and 

applications more user friendly, flexible and adaptive especially in ubiquitous and intimate computing where 

the interaction situation and usage needs change rapidly. Context-awareness then refers to the ability of a 

system of extracting, interpreting and using context information intelligently in order to adapt its 

functionality to the current context of use [3,6]. Considering the effects on the interaction between the user 

and ubiquitous context-aware systems, there are at least two aspects that are worth mentioning: context-

aware information presentation and service fruition. As far as the first aspect is concerned, results of 

information services could be adapted not only to more static user features such as user’s background 

knowledge, preferences, sex, and so on, but also to more dynamic context related features such as user’s 

activity, location, affective state and so on [1]. 

The second aspect regards execution of user tasks triggered by context information. For instance user's tasks 

present in a to-do-list or agenda could be proactively executed when the user enters in an environment or is 

in a situation in which those task can be executed [2,6,7]. Moreover, their execution can be contextualized 

according to available resources, location and so on.  

Then, a system supporting these two features, taking advantage from both user and context modeling,  would 

represent a good solution for achieving effective ubiquitous interaction.  

A way to approach this problem is to take inspiration from the personal interface agents research area 

[18,20]. In this paradigm, the user may delegate tasks to a personal agent that may operate directly on the 

application or may act in the background while the user is doing something else. An agent is, in this case, a 

representative of the user and acts on his/her behalf more or less autonomously. 

Moreover, it has to be able to communicate to the user in an appropriate way without being too much 

intrusive according to the context situation, user preferences, habits and needs. 

The Dream Agent definition could be the one reported in the following sentence taken by a discussion with 

Cristiano Castelfranchi [10]about these issues: "It is not enough that they do what he (the master) orders, but 

they must understand what he desires, and frequently, to satisfy him, they must even anticipate his thoughts. 

For them it is not enough to obey him, they have to please him...... They have to put attention to his words, 

to his voice and his eyes ... completely outstretched to catch his wants and to guess his thoughts. Can you 

call this "life"!" (E'tienne DeLa Boétie "Discours de la servitude volontaire", 1595).  

Then, hard life for our ubiquitous personal agents: helping without bothering too much, doing exactly what 

the user expects them to do successfully in that context. 

Our work represents a first step in this direction. D-Me (Digital-Me) is multiagent system including two 

interacting entities: a D-Me Agent, representing the user, and the Environment, a physical or logical place in 

which various services are available. In this paper we will illustrate how D-Me supports personalized 

ubiquitous interaction. In order to show how the system works, we developed, as a first prototype,  My-DIB 

that aims at modeling the Department of Informatics Bari (DIB) as a smart environment. Its users, that can 

be represented by D-Me agents, are students with different level of experience, professors, staff.  

Let us assume, as a scenario example, that the user is a second-year female student, travelling each day to go 

to the Campus. Let's suppose that her To-Do-List includes the two following tasks:  

"Give back to the library the book on HTML" (with low priority) and “Find documentation for the Web 

Programming exam" (with high priority). 

In this scenario, My-DIB and the student D-Me would behave in the following way: 

When the user comes close to the library, the student D-Me generates a reminder for giving back the 

book; it also proactively asks the library Service Agent whether Web Programming books are 

available and displays information received according to students rating. If it detects other student 



D-Mes with the same task it will contact them asking for more information. According to the user 

preferences will, eventually, put her in contact with the others. 

Let's see how the system deals with this situation. 

2. D-Me: a Context-Aware Agent 

As stated in Dey [4], a user may benefit of a context-aware application for the proactive execution of tasks 

that is scheduled, for instance, in a To-Do-List. In this case, the user lists the task to be performed in 

different contexts and environments and gives to her agent the autonomy to perform them entirely or in part. 

When the user is in a particular situation (environment, time, location, emotional state, etc.) that triggers one 

of these tasks, her agent requests personalized execution of the services necessary to accomplish it, by 

transferring to the environment the information it needs. When the task has been performed, the agent 

communicates results to the user. These may be of various nature, according to the performed service, and 

can be adapted to "user in context" features. For instance, a "remind message"  is generated when some user 

task can be performed by the user in that context; "user/context adapted information presentation" is 

generated after an information retrieval task; "assistance on task execution" is generated when help is needed 

in performing actions in the real or digital world, and so on. 

According to this vision, a D-Me Agent is a context-aware agent that uses several knowledge sources to 

assist its "owner-user" in interacting with smart environments according to an user “to-do-list”. This list 

contains whatever has been explicitly requested by the user or inferred by the agent according to its level of 

autonomy. In particular, D-Me is a BDI agent [21], since its reasoning mechanism aims at satisfying, 

triggering the opportune intentions, its desires (goals) by taking into account its belief (mental state). 

At this stage, we modelled and implemented the reasoning behaviours aiming at achieving the following 

macro-desires: 

− execute totally or in part tasks specified in the user to-do-list: this desire is quite complex and it is 

achieved by accessing the specification of task to be executed with the associated constraints in the user 

to-do-list and executing the correspondent task model. 

− create new tasks if required: sometimes the context triggers the execution of tasks that were not 

explicitly stated in the to-do-list. In this case this desire become active. 

− get user-related information relevant for adapting task execution: in order to adapt task execution and to 

communicate results to the user appropriately, the agent needs to know information about the user. 

These information can be stored in a  user profile or can be inferred. 

− get context-related information relevant for contextualizing task execution: as for user related data, 

assessing the current context situation is important especially for triggering and adapting task execution. 

− communicate personalized results: results of tasks can be of various nature (information presentation, 

reminders, notifications, and so on). The way in which the agent communicates to the user is adapted to 

user interests, knowledge, preference and so on, but also to context features. 

 

In order to achieve these goals, D-Me Agent exploits the following knowledge sources that correspond to 

ontologies used for inter-agent communication: i)the to-do-list, containing the description of the task and its 

constraints in terms of activation condition and priority; ii) the formal description of the task, in the form of 

a extended XDM-models [8], that the agent can use in order to execute it; iii) the Mobile User Profile 

(MUP), containing information about the user, and the iv) context situation. 

On the other side, as shown in Fig1, the environment is 'active' [19]: it is populated by several D-Me 

Agents and by Service Agents which execute various tasks. While the number of Service Agents depends 

on how many tasks the environment supports, there is only one “Keeper Agent” that acts as a Facilitator [12] 

and knows which (D-Me and Service) agents populate the environment. It therefore provides to D-Me 

environment-related information and the list of agents which could accomplish the required service/s. 

Users may interact with services in a remote way or by being physically in the environment and may then 

move from one environment to another. Managing inter-environment communication is the task of the 

EnvKeeper that allows to handle a federation of environments. 

 

 

 



  

The D-Me architecture has been developed using the JADE toolkit [14] which is FIPA [11] compliant. 

Communication among agents has been approached developing specific protocols and using FIPA Agent 

Communication Language (ACL) compliant messages. The only constraint is that every entity that supports 

this communication must share with the other parties a portion of an ontology [13], whose concepts are the 

subject of the conversation. 

2.1 Supporting Ubiquitous Personalization 

The need to let the user free to interact with services everywhere and continuously in time causes obvious 

changes in the way the personalization component has to be designed and developed [2,15,16,17]. In this 

optics, the following problems and challenges arise:  

a) Location, when services are ubiquitous, users can access them from everywhere and continuously in time, 

moving physically in different environments, this requires the management of different strategies for 

locating and accessing information about the user (user profiles). 

b) Security, information about the user is not always used by the same environment, but it "moves" with its 

"owner"; this requires the need of establishing privacy and security policies. 

c) Consistency, as mentioned before user may interact with more than one environment at a time; then, it is 

necessary to develop a strategy for keeping individual user information consistent. 

Possible approaches to these problems are represented by a centralized, distributed or mobile approach [17]. 

 

Fig.2  D-Me Personalization Component 

 

 

All these approaches present advantages and disadvantages. In traditional client-server information systems, 

the most frequent design choice is to store the User Model on the server side, by enabling the user to access 

her/his model after having been recognized by the system. In the distributed solution, user information are 

stored in different servers, reducing in this way the computational load but presenting problems of 

redundancy/incompleteness of user information and consistency. 

Fig.1. Overview of the D-Me model 
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The mobile approach consist of a user which "brings" always with her/himself the user model, for instance 

on an handheld device, and, when the interaction with an environment starts, her/his profile is passed to the 

environment user modeling component. This approach seems to be very promising since it presents several 

advantages such as: the continuous availability of user information, wireless data communication, absence of 

information redundancy and easy management of consistency. However, we cannot assume that the user will 

have with her/himself an handheld device and this type of device still presents hardware-related limits 

(capacity, computational speed, battery,… ). 

In the D-Me architecture we adopt a distributed-mobile solution to the personalization (see Fig. 2).   

On one hand, D-Me knows its user and how to perform delegated tasks. In order to accomplish its main 

desires it needs to reason on how to adapt tasks execution to "user in context" features, which user features 

have(are allowed) to be passed to the environment in order to get personalized service execution and how to 

presents results taking accordingly.    

At this aim, it manages the user MUP, that could be stored on a capable user device or, if the interaction 

occurs through not powerful enough devices (i.e. a smart card), on a Remote Server trusted by the user. 

Information contained in the MUP together with the context situation and the task list, deriving by 

accomplishing the relative D-Me desires, may be used by D-Me to decide how to adapt its behaviour and 

which data to pass to the environment in order to get personalized service execution. 

According to the previously mentioned scenario example, Fig.3 shows the MUP of a female second-year 

student. The XML structure reflects the user profile ontology used in D-Me and includes four main sections: 

IDENTITY (with identification data such as the user name, sex, id, password, and email), MIND 

(background knowledge, interests and know-how), BODY (disabilities or preferences in using a body part 

during interaction) and PERSONALITY (personality traits and habits). Every slot in the MUP can be 

protected by giving a 'scope' validity to the corresponding XML tag and can be made 'not public' by setting 

the 'publicly' attribute to 'false'. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig3. An example of XML file representing a MUP 
 

. 

For instance, in Fig3. the student interest towards web programming can be shared with other agents only in 

the 'DIB', while her interest in pop music is always public. In the considered example, when the user is in the 

DIB, her identification data, interest in web programming and pop music will be considered, together with 

the preferred interaction modalities (visual interaction). 



In the present prototype, data in the MUP are collected in the following three ways: i) the user can input 

information through a graphical interface, ii) other information (i.e. temporary interests) can be derived 

when the user insert a task in the To-Do-List (i.e. the second task in our example would generate an interest 

in "web programming"), iii) information inferred by the environment. 

On the other hand, the environment can adapt service execution by adopting its own modelling strategy 

depending, for instance, on the nature of the considered environment. A commercial center could use a data 

mining approach to classify user shopping habits and adapt suggestions and advertisements, while another 

environment, i.e. a University Department, could use a different approach, for instance based on logical 

reasoning. In this case, only the data that are relevant to personalization of a particular service are passed to 

the environment UserModelingAgent (UMAgent), which starts the modeling process. 

When interaction ends, the environment sends back to D-Me the inferred data that can be inspected, after a 

notification of D-Me, by the user accepting or refusing them. 

As far as consistency is concerned, our approach gives to the D-Me agent, and then to the user, the task of 

keeping consistency between the MUP data and what has been inferred by an environment. We did not face 

yet the multi-environment consistency. However, since we provided the D-Me model with an infrastructure 

able to support federation of environments, at the moment we are considering how they could exchange 

information about the user. As for the underlying architecture, agents that interact to accomplish the user 

modeling task, communicates using ACL and sharing ontology. This enables us to overcome problems due 

to agents using different representations for user profiles [15]. 

 

Both entities, D-Me Agents and the Environment, need to sense and elaborate context information. In our 

approach, Context is grounded on the concept of "user task executable in an environment". Therefore, given 

a task in the user to-do-list, once the user has been classified according to the strategy of the UM component,  

its execution and results can be influenced by the context in which the interaction occurs and, in particular, 

by: 

− static environment features: an environment is made 'active' by giving to agents which populate it the 

capability to understand its features: that is, by modeling it. In particular an environment is described by 

its scope, type, physical features, and corresponding map. In My-DIB, we identified the following 

scopes: learning, social  relations, leisure, food-services and administration. Every scope identifies a set 

of specialized services. For instance "learning" includes the following services: register for an exam, get 

information on how to prepare it, collect learning material and so on. The type of the environment refers 

to its social nature: public or private. Physical features includes a description of objects relevant for 

interacting with that environment. For instance, if there is a PC or an interactive totem that can be used 

to communicate results. Therefore, all the tasks in the To-Do-List that are enabled in the library and 

have 'learning' as a scope will be proactively activated when the user is in it or passes nearby according 

to their priority. 

- dynamic environment features: for instance noise and noise and light level; 

- dynamic user  features, that identify the physical and social surroundings of the  user(emotional state, 

location, activity the user is performing, time, ...); 

- device employed and its state at the considered time (battery, connection, and so on.). 

 

At the present stage of the prototype, we do not work on hardware sensors. They will be realized in the next 

stage. At the moment we simulate their values through an interface that sends the corresponding values to 

dedicated Sensors Agents, which communicate relevant changes to the Context Agent that knows the 

global context situation at the considered time. 

In the considered example, the Sensor Agent controlling the user location detects the user presence in the 

DIB and in particular her relative position to key places such as the library. The Sensor Agent controlling the 

device detects that the user has got a PDA. The context situation relevant at time ti is represented in an XML 

structure compliant to the context ontology. 

2.2. Context-Aware Task Models 

In the model described above, adaptation to "user in context" features can be applied at different levels: by 

triggering user tasks, by asking specialized services in the environment to execute these tasks and by 

exchanging messages with the user: for instance, remind messages or information presentation. D-Me may 



execute tasks in the To-Do-List that are enabled in the given context. To model the 'task-user-context' 

relation, we employed an extension of Petri Nets which was developed by our research group in a previous 

project [8]. 

For instance, in the previously described situation the first task in the To-Do-List corresponds to the D-Me 

goal Remind(U, Do(Task, env, Cti)), where U denotes relevant user features, Task denotes the task in the To-

Do-List, env denotes the environment and Cti the context at time ti. In this case, when the user comes close 

to the library, D-Me generates a reminder for giving back the book that is presented appropriately by the 

Interface Agent. The second task in the To-Do-List activates another D-Me goal Search(D-Me, News(U, 

Topic, env, Cti)). In the current context, for achieving this goal, D-Me asks the library Service Agent 

whether Web Programming books are available and displays information according to student ratings. 

Fig.4a shows the XDM model for the first task. In this model, the token (double coloured circle) contains 

information about the user and the context, detected at time ti relevant for executing it. The net represents 

the way in which D-Me executes the task according to this situation. Each place pi (circle) in the net 

represents the state of the system, each u-transition (square-box) represents a user action (both in the digital 

or real world), each d-transition (hexagon-box) represents a D-Me Agent action. This action can be of 

several types: i.e. detection of some context condition, to-do-list check, activation of new tasks 

corresponding to another net. 

 

In particular, each place contains the following information: user and context features that have to match 

with the token features in order to move it in that place; interaction state (IS) that is activated if the token 

matches the user and context features. The interaction states represents a communication action of D-Me. 

The token content is dynamic since it is modified after a detection action. Double circled places represent a 

nested call to another net if the place conditions are satisfied. End places determines the exit from the net. 

As for every model based on Petri nets, a transition is enabled and can fire if all the places in input to it 

contain a token and the condition attached to that transition are satisfied. 

For instance, the net in Fig 4a. represents the context-aware model of a Remind Task (return the HTML 

book to the library) with low priority. Since it has a low priority we decided to trigger it when the user is 

near or inside the Library.  

In this case the token features matches this constraints. At this point, after getting the remind the user may 

return the book (U1), accept the remind without returning the book (U2), ignore it (U3).  D-Me is detecting 

relevant context features (S1). In this case it will detect that there is another D-Me task in the To-Do-List 

triggered by the current context: Search(D-Me, News(U, Topic, env, Cti). The execution model of this task is 

another net (Fig. 4b) nested in place C4. C4 is accessible only if there are executable tasks as stated in its 

condition. 

 

 

 

Fig. 4a. XDM model describing the a remind task 
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Fig. 4b. XDM model describing the a Search task 

 

In particular, let’s suppose that there are no other users in the DIB interested in Web Programming in that 

moment, only the S3 d-transition in Fig. 4b will be triggered. This will correspond to the D-Me action of 

asking to the LibraryAgent the execution of the requested search according to user preferences. In this case, 

relevant data in the MUP will be passed to My-DIB UMAgent that will categorize the user as a beginner in 

that topic but with some prerequisites (she is a second year student then she knows about programming, 

algorithm, and so on.). The Library Agent will take these information into account and will filter results 

accordingly.  

Results will be then displayed appropriately by the D-Me Agent according to user preferences and context 

conditions. In particular this is the task of the D-Me Interface Agent as we will see in the next Section. 

 

2.3 D-Me Interface Agent 
This agent is an extension of the main D-Me Agent. It has the role of interacting with the user for 

communicating results of tasks or for asking  information/confirmations required for task execution.  

 

In My-DIB application, we consider the following families of communication tasks: 

- request for input. If, for instance, the to-do-list includes the task: “Sign for an exam next week” and 

the user is at work, D-Me will ask information about “which exam ” and  “at what time” the user wants to do 

it. 

- information provision: Information may be presented when explicitly requested by the user or 

proactively prompted by D-Me because related to the current user task. As we anticipated, in the case of the 

second task in our example, D-Me will display information about Web programming books present in the 

Libray according to student rating.  

- request for confirmation. Let’s take as an example the previous task, let’s suppose that one of its 

steps involves contacting by email the course professor for indication about suggested material to prepare 

the exam. Then, the D-Me agent will ask the user for confirmation before sending the email . 

- notification messages. Proactive task execution is notified by D-Me, for instance, in the previous 

case, if the agent has the autonomy to send emails it will not ask for permission and will just notify it. 

- remind messages. This is the typical message generated for the first task in our example. 

User and context related factors are taken into account in generating the communication about a task  in the 

following way: 

1. user preferences and features: results of information provision tasks are filtered, ordered and presented 

according to what has been inferred about the user starting from her profile data (interest, know-about, 

know-how). Possible user disabilities are taken into account for media selection. 

2. activity: this influences information presentation as follows. If the user is doing something with a higher 

priority respect to the one of the communication task, then the message is postponed until the current 

activity ends. If the communication regards the current activity, media used in the message take into account 
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the available body parts. Therefore, a voice input is preferable to a textual when, for instance, the user is 

running with her/his PDA asking for information about the next train to catch. 

3. location of the user in the environment: texts, images and other media may be selected according to the 

type of environment (public vs. private, noisy vs. silent, dark vs. lightened, etc.) in which the users are and, 

more precisely, to their relative position to relevant objects in the environment. 

4. emotional state: factors concerning the emotional state influence the level of detail in information 

presentation (short messages are preferred in stressing situation), the intrusiveness (bips and low priority 

messages are avoided when the user is already nervous), and the message content. For instance: if a user 

requests information in conditions of emergency, the agent will have to avoid engendering panic, by using 

reassuring expressions or voice timbre [5]. 

5. device: the display capacity affects the way information is selected, structured and rendered. For 

instance, natural language texts may be more or less verbose, complex figures may be avoided or substituted 

with ad hoc parts or with written/spoken comments [4, 9]. 

To accomplish the communication task,  the Interface agent applies the following strategy:  starting from 

XML-annotated results of a Service Agent,  decides how to render them at the surface level taking into 

account the rules described above encoded in XSL.   

 

3. D-Me: an Autonomous Agent 

 

As mentioned in the introduction, a D-Me Agent is exhibits an autonomous behavior when achieving its 

desires. In particular, in the context of ubiquitous computing, we recognized the need to model autonomy at 

different levels: 

− Execution Autonomy: related to execution of actions (tasks, subtasks, request of services, and so 

on). 

− Communication Autonomy: related to the level of intrusiveness in communicating to the user. Can 

the agent take the interaction initiative in every moment or there are constraints related to the user 

and the context? Then, it is necessary to determine how much a message can be intrusive in a certain 

context.   

− Personal Data Diffusion Autonomy: it is related to the autonomy of performing tasks requesting 

the diffusion of personal data like those contained in the user profile. 

− Resource Autonomy: the agent may use critical resources of the user in order to executed delegated 

tasks (i.e. credit card number, time to schedule appointments). 

Each dimension has an associated value that vary from "null" to "high" in a 5 values scale. 

The "null" value represents the absence of autonomy, the system has to execute what explicitly requested by 

the user. It cannot infer any information or decide to modify task execution without explicitly asking it to the 

user. The opposite value, "high", represents the maximum level of autonomy that gives to the agent the 

freedom to decide what to do always according to constraints imposed by the user (i.e. budget limits). The 

other values determines an incremental growing of the autonomy in making decisions and inferring 

information [10]. 

For instance, the remind task in Fig. 4a, requires only a sufficient level of communication autonomy: D-Me 

has to remind the user to return the book. Since, this task has a low priority, if D-Me has an high 

communication autonomy, then it will use all the available media to communicate with the user. Otherwise, 

it will not bother too much the user and will generate a non intrusive remind message (i.e. just 1 bip and a 

textual message).  

For executing completely the second task D-Me needs both execution and communication autonomy. If we 

consider the S4 d-transition in the net in Fig. 4b, if D-Me has a low execution autonomy on that task family 

and medium-high communication autonomy, it will remind the user to send an email to the professor 

responsible for the “web programming” exam as soon as the user is using a device able to send emails. 

While, in case D-Me has got a medium execution autonomy it will compose the email and ask the user to 

look at it and confirm the execution of that task before sending it to the professor. In case of high autonomy 

it will send it without asking for confirmation  but it will just notify the event to the user. 

Autonomy rules are revised according to the type of feedback the user provide to the agent: positive 

feedback enforces the autonomy on that category of task , negative feedback reduce it. 



 

 

4. Discussion and Future Work 

Effective ubiquitous interaction requires, besides techniques for recognising ‘user in context’ features, a 

continuous modeling of both the user and the context. Therefore, ubiquitous computing systems should be 

designed so as to work in different situations that depend on several factors: presence of a network 

connection, characteristics of interaction devices, user location, activity, emotional state and so on. As 

suggested by Dey [6], delegating to an agent tasks execution and presentation of personalised results may be 

a solution for dealing with the complexity of this problem. 

This work is our first step towards supporting personalised interaction between mobile users and a smart 

environment. Every user is represented by a D-Me Agent that, according to the content of her/his “To Do 

List”, performs tasks on the user behalf by negotiating services with the smart environment. 

Interaction between these two entities is personalised according to policies that are implemented in a 

distributed way. D-Me knows its delegating user (MUP + to-do-list) and the Environment knows how to 

personalise its services accordingly (UM and Context Agents). 

Since the interaction happens through a personal agent, we started to consider the “delegation-autonomy” 

adjustment necessary for achieving cooperation between the user and his/her representative.  However, more 

work in understanding how the user feedback influences the level of autonomy especially when this 

feedback is implicit (until now we considered only explicit feedback).  

Another aspect that has been designed and implemented in this system, but it is still subject of validation, is 

the group modeling component that is part of the environment (GroupAgent). This modeling component will 

be used by the environment to select relevant information on public displays according to recognized group 

preferences. 

What we need to do now is to work on the interaction in terms of user-agent dialog metaphors (individual 

communication) vs. Environment-user-groups interaction (public communication). 
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Abstract

In this paper, we present an approach on how to
use speech as a source for user modeling in a mo-
bile and ubiquitous context. In particular, we ex-
ploit different abstraction levels of speech features
to estimate the user’s age and gender. To solve
the classification task, we compared several well
known machine learning techniques such as artifi-
cial neural networks and support vector machines.
The results of our study imply that one can indeed
successfully extract higher level information from
the raw speech data. We show how this approach is
integrated into a generic resource adaptive system
architecture. One particular instance of this system
is an implementation of a mobile pedestrian navi-
gation system.

1 Introduction

In ubiquitous computing, speech plays an important role as
an interaction modality. Application scenarios like mobile
navigation systems, shopping, tourist or museum guides, im-
ply hands-free eyes-free situations, where the users can inter-
act with the system by speech only. Therefore, we consider
speech as an important and rich source for ubiquitous user
modeling. Speech contains information about the speaker:
Hearing someone’s voice, we can in most cases recognize the
gender of the speaker, estimate the age, and maybe even get
an idea of what mood the speaker is in with regard to stress
or emotions.

The question of how this information can be made avail-
able for user modeling is currently addressed in the project
M3I1. M3I is part of the BMB+F2 funded project COLLATE3

at the Saarland University and the DFKI4. The goal of the
M3I project is to develop a framework for resource adaptive
multi-modal dialog with mobile devices.

1A Mobile, Multi-modal, and Modular Interface
2Bundesministerium für Bildung und Forschung (Federal Min-

istry of Education and Research)
3Computational Linguistics and Language Technology for Real

Life Applications
4Deutsches Forschungszentrum für Künstliche Intelligenz (Ger-

man Research Center for Artifical Intelligence)

It consists of a central server component with which mobile
devices can communicate via wireless network connections.
While the mobile devices function on a stand-alone basis, the
availability of the server improves the coverage and quality of
the services. For example, the speech recognition that is im-
plemented on the mobile device is limited due to lack of com-
puting power and working memory. When connected to the
server, the speech can be processed in parallel on the server
much faster and with a larger vocabulary. Besides this, the
server provides additional services like topic detection. That
means that the server possesses a speech recognition module
with a general language model that recognizes the domain
to which the utterance of the user belongs. The integrated
speech recognition module uses this information to load spe-
cific language models for this domain. The M3I framework is
designed to implemented new components on the server side
first. In this manner, the approach can be tested and improved
easier before a slim embedded version is implemented. An
example of such a component is the speech-based user mod-
eling module that is described in this paper.

2 Features of Speech That Are Relevant for

User Modeling

Regarding speech as a source for ubiquitous user modeling,
the relevant features can be divided into three different levels
of abstraction (see figure 1).

On the lowest level, there are acoustic features that are re-
lated to the signal’s power and frequency and their changes
over time. An example of such a feature is the jitter value
that describes frequency variations between voiced periods of
speech. Because they are based on physical properties, acous-
tic features are relatively easy to extract from the signal and
independent from the language. They can be extracted before
the actual speech recognition process is done. On the other
hand, those features are sensitive to changes in the acoustic
environment and the recording quality.

On the next level, there are prosodic features. Prosody
refers to all aspects of sound above the level of segmental
sounds, like intonation, stress and rhythm. Speech rate and
pauses can also be assigned to this group. In most cases,
prosodic features cannot be immediately derived from the
physical properties. The extraction is therefore more expen-
sive. In the case of speech rate and pauses they also have to



Figure 1: Three levels of abstraction of speech features

be compared to a baseline, either of the individual speaker or
of a group of speakers. Still, the extraction can be performed
without understanding the content of the utterance.

This is no longer the case for linguistic features. Those
features refer to the syntactical structure of the utterance, the
number and category of the words, or even to their semantic
content. To extract these features, natural language process-
ing has to be done first.

Müller, Großmann-Hutter, Jameson, Rummer, and Wittig
(2001) describe a study where prosodic and linguistic fea-
tures were used to recognize the user’s cognitive load and
time pressure. The features were called “symptoms of cog-
nitive load and time pressure” and were extracted manually
from the speech by fully transliterating the utterances and
rating the quality of the content. Some of the prosodic fea-
tures that were found to be relevant for this task are: articu-
lation rate (the number of syllables articulated per second of
speaking time), silent pauses, and filled pauses (e.g., “Uhh”).
Besides this, the following linguistic features were consid-
ered: (a) disfluencies (the logical disjunction of several bi-
nary variables, each of which indexes one feature of speech
that involves its formal quality: self-corrections involving ei-
ther syntax or content; false starts; or interrupting speech in
the middle of a sentence or a word) and (b) content quality
(the average quality assigned to the utterance).

The results were used for learning a Bayesian network
(Pearl, 1988) that reflects the causal dependencies between
the symptoms and the cognitive load and time pressure of the
user. Müller et al. (2001) showed that this network can be
successfully used for this particular classification task.

In the remainder of this paper we present an approach on
how to extract acoustic and prosodic features of the speech for
the purpose of recognizing the gender and the age of a user.
In section 3 we provide a motivation, why the age of a user
should be estimated by a system. In section 4, we present
a case study on how to use machine learning techniques to
induce classifiers for age and gender, and describe, how this
approach is integrated into the above mentioned M3I architec-
ture. In section 5 we briefly outline how the different abstract
speech features introduced in figure 1 can be exploited within
a single framework. We conclude in section 7 by directly re-

Figure 2: Classification hierarchy

ferring to the relevant workshop questions.

3 The Elderly as a User Group

Elderly people are one of the last groups to benefit from ac-
cess to computers. What makes technology difficult for el-
derly people to use is that they very often suffer from cog-
nitive disabilities like age degenerative processes, motor im-
pairments, short-term memory problems, and reduced visual
and auditory capabilities (Jorge, 2001). These disabilities are
often magnified by a person’s unfamiliarity with the given
technology and the different learning curves possessed by in-
dividuals. Making systems easier to use for elderly people
raises two questions. First: What kind of adaptation should a
system provide, when knowing that the current user belongs
to the group of elderly users? And second: How can a sys-
tem acquire this information? Müller and Wasinger (2002)
address the first question by the example of a mobile pedes-
trian navigation system with a multi-modal dialog compo-
nent. They suggest among other things that the speech output
should be slower and the GUI should be clearer in that the
toolbars, buttons, maps and text be displayed in a larger for-
mat. In this paper, we focus on the second question: How an
appropriate user model can be obtained automatically on the
basis of speech.

4 Case Study: Using Machine Learning to

Induce Classifiers for Age and Gender on

the Basis of Acoustic Features

In the following, we will present an initial exploratory study
regarding the classification of users on the basis of low-level
acoustic features according to their gender and age. Within
a comparison of the most commonly used machine learning
(ML) approaches, we aimed to find out whether it is possible
at all to identify a user’s age and/or gender with ML methods.

The voices of men and women age differently (Linville,
2001). Therefore it is reasonable to first try to determine the
gender of the user, before the age is estimated. Figure 2 de-
picts the corresponding classification hierarchy.

By reviewing the literature, we identified jitter and shim-
mer as appropriate feature to determine the gender and the



Figure 3: Age estimation procedure

age of the user (Linville, 2001; Schötz, 2001; Minematsu,
Sekiguchi, & Hirose, 2002). Both features belong to the
group of acoustic features according to the classification that
was introduced in section 1. Besides this, the prosodic feature
speech rate is also a candidate for age estimation, but has not
yet been taken into consideration.

Jitter is defined as the maximum perturbation of fundamen-
tal frequency (F0). Jitter values are expressed as a percentage
of the duration of the pitch period. Large values for jitter
variation are known to be encountered in pathological (and
old) voices. Jitter in normal voices is generally less than one
percent of the pitch period. Shimmer represents the maxi-
mum variation in peak amplitudes of successive pitch periods.
Large values for shimmer variation are known to be encoun-
tered in pathological (and old) voices. Shimmer in normal
voices is generally less than about 0.7db (see (Baken & Or-
likoff, 2000));

Figure 3 depicts our approach. We analyzed a corpus with
speech from elderly people that was provided by SCANSOFT 5

for this purpose. This corpus contained more than ten thou-
sand utterances from 347 different speakers with an age of
over 60 years. A second corpus that was collected within the
M3I project contained about five thousand utterances from 46
speakers under 60 years. Table 1 summarizes both corpuses
including the number of female vs. male speakers. We im-
plemented feature extractors for jitter and shimmer using the
open source phonetic analyzing tool PRAAT.6

We used five different jitter and three different shimmer
algorithms that are provided by PRAAT. The main jitter algo-
rithms are: Jitter Ratio (JR) , Period Variability Index (PVI),
and Relative Average Perturbation (RAP), that are well known
from the literature ((Baken & Orlikoff, 2000)), as well as the
standard PRAAT jitter algorithm that is similar to RAP. The
major differences are the following: JR determines cycle-to-
cycle variability whereas PVI calculates a value that is akin to
the standard derivation of a period. RAP compares the average
of three cycles to a given period. In this vein, the effects of
long term F0 changes, such as slowly rising or falling pitch,
are reduced. The differences between the shimmer algorithms
are similar to the differences between the jitter algorithms.
The Amplitude Perturbation Quotient for example attempts
to desensitize long-term amplitude changes like RAP does for
frequency variations. APQ uses eleven point averaging (aver-

5www.scansoft.com
6www.praat.org

age of eleven cycles). For a detailed description of jitter and
shimmer algorithms, we refer to (Baken & Orlikoff, 2000).

All together, we received 8 features that can be used for
classification. For the following initial study, the average val-
ues per person were used. In a future phase of the project,
we plan to apply methods that continuously update the sys-
tem’s estimate of age and gender as more and more speech
samples of the current user become observed. We are cur-
rently collecting more speech samples in order to work with
a more balanced set, i.e. containing a larger number of non-
elderly persons. Nevertheless, for an initial test whether the
automatic classification is possible at all, the present data suf-
fices, although we have to keep the uneven distribution of our
samples in mind when discussing the results.

non-elderly elderly

46 347

female male

162 231

Table 1: Number of (non-)elderly and female vs. male per-
sons in the data set

We performed for each learning/classification method that
we applied a ten-fold cross-validation procedure. In our
study, we considered the following methods (for the informed
reader we list the key parameters in parentheses, if any):
C4.5 decision tree induction (DT), artificial neural networks
(ANN, learning rate 0.15, momentum 0.2, 500 iterations),
k-nearest neighbors (kNN, k=5, simple distance weighting),
naive Bayes (NB) and support vector machines (SVM, C=20,
polynomial kernel with degree 4). Particularly, we used the
implementations of the WEKA collection of machine learn-
ing tools (Witten & Frank, 1999).

Table 2 shows the results with regard to the predictive accu-
racy. As a baseline (BL), we included the results for a simple
classifier that always predicts the more frequently occurring
class, i.e. elderly (88%) and male (59%) samples, respec-
tively. This enables us to interpret the results in a more ad-
equate manner instead of simply looking at the raw percent-
ages that may lead to wrong conclusions.

C4.5 ANN kNN NB SVM BL

gender 69.10 81.73 76.41 67.26 70.43 58.78
age 92.41 96.75 95.76 91.25 96.45 88.30

Table 2: Results: prediction accuracy (percentages)

Overall the different results show that it is indeed possible
to create classifiers that are able to successfully predict age
and gender on the basis of low-level acoustic features of the
user’s speech. Each method performs significantly better than
the baselines 58.78 and 88.3 (two-tailed t-test, p<0.01). Arti-
ficial neural networks perform best in our study. This is a rea-
sonable result since this method is known to be successfully
applied frequently in such situations where raw sensor data
has to be exploited. Note, that naive Bayes is in both cases—
the prediction of age as well as gender—the alternative that



Figure 4: Integration into the M3I architecture

performs worst. This is most likely due to the fact that our
data violates the basic assumption underlying the naive Bayes
classifier: the independence of the feature values given the
class value. Those 8 features used in our experimental setup
are obviously not independent of each other. There are sub-
sets that reflect mainly the same acoustic features of speech,
i.e. variations of jitter and shimmer.

To get a better understanding of the performances of the
classifiers with regard to our unbalanced data set, we present
the true negative and positive rates in Table 3, respectively,
i.e., the rates of correct predictions for the two separate
classes. Particularly, we present the results for the artifical
neural network.

non-elderly elderly female male

82.6 98.3 69.8 88.7

Table 3: Results: true positive rates

These results show that although our data is way from be-
ing evenly distributed, the classifiers are able to predict each
class correctly with a rate higher than 70%.

Nevertheless, as already mentioned, it is of minor in-
terest which particular instance of the different learn-
ing/classification algorithms is able to outperform the others,
the main result of our exploratory study is that we can indeed
learn successful classifiers and that it is therefore worth to
follow this line of research more intensively.

Figure 4 shows in a simplified way, how the age estima-
tion component was integrated into the above mentioned M3I

architecture. It is currently implemented as a server side ser-
vice. The speech of the user is recorded on the mobile device
(PDA) and then streamed to the server over a wireless net-
work connection. On the server side, the relevant features are
extracted and the corresponding values are used to classify
the speaker according to age (elderly / non-elderly) and gen-
der (female / male). The information is written into the user
model and serves as a basis for adaptation.

5 Towards an Integrative Approach for

Exploiting a Variety of Features of the

User’s Speech

As discussed in the introduction of this paper, speech in gen-
eral is an important and rich source of information for ubiq-
uitous user modeling. Each one of the three levels of abstrac-
tion of speech features as shown in Figure 1 may make its

Figure 5: Integrative framework for exploiting a variety of
features of the user’s speech

own contribution in the context and user modeling process.
Müller et al. (2001) have shown a system that is able to esti-
mate a user’s level of cognitive load and time pressure he/she
is suffering from by interpreting high-level speech symptoms,
e.g. self corrections, sentence breaks and so on. In this pa-
per, we have described an initial study that strongly indicates
that it is possible to successfully recognize some information
about the user such as age and gender on the basis of low-
level acoustic features of his/her speech. Related literature
suggests that these features could also be used to reason about
cognitive load and time pressure (Minematsu et al., 2002). In
order to exploit a huge variety of available speech-related in-
formation for user modeling on the three different levels of
abstraction, we briefly present an outline of an integrative ap-
proach along these lines.

Figure 5 represents the basic architecture. On the top,
we have the variables of primary interest in our user/context
model. These are connected to different classifiers that are
used to interpret the different data streams on the different
speech abstraction levels. To combine their results, each
(single result of the) classifier comes along with a confi-
dence value that measures the average success of the classi-
fier. These confidence values could be estimated or computed
on the basis of empirical studies as described in this paper or
by Müller et al. (2001). If we interpret this architecture as the
structure of a Bayesian network, these confidence values play
the role of the conditional probabilities annotated at the links
between the top row variables and the classifier variables, i.e.,
the probability that a particular classifier is able to correctly
classify the speech symptoms in the situation under consider-
ation. The implementation of this “meta-reasoning” scheme
about the results of the different classifiers using BNs allows
a flexible integration of other contextual factors or aspects of
the domain that are relevant for the user model, such as input
from bio sensors. The BN provides at any time up-to-date es-
timations in the form of probability distributions (conditioned
on the available different pieces of information).

6 Coping with Mobile Speech and a Noisy

Environment

When speech is recorded with mobile devices such as hand-
held PC, the quality of the signal is reduced due to the low



Figure 6: Voiced portions of the speech signal

microphone quality and environmental noise. This raises the
question, whether the classifiers that were trained with clean
data still perform well, when applied to mobile data.

First tests with a mobile device (HP Jornada) in fact
showed, that the classification performance was far from
the above mentioned cross validation results. Whereas gen-
der was mostly recognized correct, young voices were often
wrongly classified as elderly. However, we ascribe this fact
partly to the unbalanced corpus (far more elderly voices) that
may lead to a biased classification. In our approach, the effect
of noise (environmental and microphone-induced) is reduced
by the fact, that jitter and shimmer algorithms are based solely
on voiced parts of the signal. As illustrated in figure 6, only a
subset of the signal is treated (between 75 Hz and 600 Hz).

Nevertheless, we cannot exclude any impact of signal qual-
ity. Currently, we pursue two approaches to investigate this
issue: (a) we implement filters that artifically reduce the qual-
ity of our training material. Thereby the characteristics of
mobile recorded speech are simulated as close as possible.
The performance of the resulting classifiers can then be com-
pared with the one that were trained with unmodified data; (b)
on a higher level we intend to incorporate a node NOISE into
the above mentioned Bayesian network structure to model the
impacts of noise explictly (e.g. reduce the confidence values
of the classification when noise is likely present). Whereas
(a) is under way, (b) requires a better understanding of the
impacts of noise and will be focus of further research.

7 Conclusion with Regard to Workshop

Questions and Current Work

In this paper we showed how to exploit raw speech data to
gain higher level information about the user in a mobile con-
text. In particular we introduced an approach for the estima-
tion of age and gender using well known machine learning
techniques. We classified the relevant speech features into
three levels of abstraction each implying their own character-
istics with regard to extraction costs and expressiveness.

We introduced the architecture of the M3I project, which
copes with the limited resources of the mobile scenario by
distributing services between mobiles devices and a server
(see section 1). The age and gender estimation component
that is described here was integrated into this architecture. A
demonstration of the system can be given at the workshop.

Application scenarios within the M3I include a mobile
pedestrian navigation system with a multi-modal interface.
Such an application benefits from the advanced user model-
ing by (a) the facility adapting the interface with regard to the
special needs of a particular user group (the elderly) and (b)
the improved speech recognition quality using specific acous-
tic models.

Currently, one line of work is collecting more data to bal-
ance the corpus, investigating the impacts of noise as de-
scribed in section 6, and the implementing extractors for
prosodic features such as speech rate. Another line consists
of the concrete realization of the above mentioned framework
to integrate information of all three levels of speech features.
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