Managing RDF Metadata for Community Webs*

Sofia Alexaki':2, Vassilis Christophides', Gregory Karvounarakis'?2,
Dimitris Plexousakis''?, Karsten Tolle?, Bernd Amann?, Irini Fundulaki?,
Michel Scholl*, and Anne-Marie Vercoustre?

1 ICS-FORTH, Vassilika Vouton, P.O.Box 1385, GR 711 10, Heraklion, Greece
{alexaki, christop, gregkar, dp}@ics.forth.gr
2 Department of Computer Science, University of Crete, GR 71409, Heraklion, Greece
{alexaki, gregkar, dp}@csd.uoc.gr
3 Johann Wolfgang Goethe-University, Robert-Mayer-Str. 11-15, P.O.Box 11 19 32,
D-60054 Frankfurt/Main, Germany
tolle@dbis.informatik.uni-frankfurt.de
4 INRIA Rocquencourt, 78153 Le Chesnay Cedex, France
{amann, fundulak, scholl, vercoust}@cosmos.inria.fr

Abstract. The need for descriptive information, i.e., metadata, about
Web resources has been recognized in several application contexts (e.g.,
digital libraries, portals). The Resource Description Framework (RDF)
aims at facilitating the creation and exchange of metadata, as directed
labeled graphs serialized in XML. In particular, the definition of schema
vocabularies enables the interpretation of semistructured RDF descripti-
ons using taxonomies of node and edge labels. In this paper, we propose
(i) a formal model capturing RDF schema constructs; (ii) a declarative
query language featuring generalized path expressions for taxonomies of
labels (iii) a metadata management architecture for efficient storage and
querying of RDF descriptions and schemas.

1 Introduction

Metadata are widely used in order to fully exploit information resources (e.g.,
sites, documents, data, etc.) available on the WWW [13]. Indeed, metadata
permit the description of the content and/or structure of WWW resources in
various application contexts: digital libraries, infomediaries, enterprise portals,
etc. The Resource Description Framework (RDF) [21] aims at facilitating the
creation and exchange of metadata, as any other Web data. More precisely, RDF
descriptive (meta)data are represented as directed labeled graphs (where nodes
are called resources and edges are called propérties) which are serialized using
an XML syntax. Furthermore, RDF schema [7] vocabularies are used to define
the labels of nodes (called classes) and edges (called property types) that can be
used to describe and query resources in specific user communities.These labels
can be organized into appropriate taxonomies, carrying inclusion semantics. In

* This work was partially supported by the European project C-Web (IST-1999-
13479).

S.W. Liddle, H.C. Mayr, B. Thalheim (Eds.): ER 2000 Workshop, LNCS 1921, pp. 140-151, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

—

Managing RDF Metadata for Community Webs 141

this paper, we are focusing on the design of a metadata management system
for storing and querying both RDF descriptions and schemas as semistructured
data [2].

Our work is motivated by the fact that existing semistructured models (e.g.,
OEM |[23], YAT [12/11]) cannot capture the semantics of node and edge la-
bels provided by RDF schemas (i.e., taxonomies of classes and property types),
while semistructured or XML query languages (e.g., LOREL [4], UnQL [8],
StruQL [17], XML-QL [15], XML-GL [10]) are not suited to exploit taxono-
mies of labels for query evaluation and optimization (i.e., pattern vs. semantic
matching of labels). On the other hand, schema query languages as SchemaSQL
[20], XSQL [19] or Noodle [22] do provide facilities for querying both schema and
data. However, since they are based on common (relational/object-oriented) data
models, they also fail to fully accomodate RDF/RDFS features - such as specia-
lization of properties - and also impose strict typing on the data. In this context,
we propose RQL, a declarative query language for RDF. RQL relies on a graph
data model allowing us to (partially) interpret semistructured RDF descriptions
by means of one or more RDF schemas. Thus, RQL adapts the functionality
of semistructured query languages to the peculiarities of RDF but also extends
this functionality in order to query RDF schemas.

The remainder of this paper makes the following contributions: Section 2]
introduces a graph data model capturing RDF schema constructs [211[7]. The
originality of our model lies on the distinction between classes and relations-
hip types in the style of ODMG [9], as well as in the introduction of a graph
instantiation mechanism, inspired by GRAM [6]. Section B] presents the RQL
language for querying semistructured RDF descriptions and schemas. RQL ad-
opts the syntax and functional approach of OQL [9] while it features generalized
path expressions in the style of POQL [3]. The novelty of RQL lies in its ability
to query complex semistructured (meta)data and schema graphs using - in a
transparent way - taxonomies of labels. Section Bl illustrates how we can benefit
from schema information in order to validate and efficiently store RDF descrip-
tions in a DBMS. Finally, section [presents conclusions and discusses further
research.

2 Towards a Formal Model for RDF

In this section, we briefly recall the main modeling primitives proposed in the
RDF Model & Syntax and Schema specifications [21J7] and introduce our graph
model (for more details see [18]).

RDF schemas are used to declare classes and property-types, typically autho-
red for a specific community or domain. The upper part of Figure [illustrates
such a schema for a cultural application. The scope of the declarations is determi-
ned by the namespace of the schema, e.g., nsl (http://www.culture.gr/schema-
.rdf). Classes and property types are uniquely identified by prefixing their names
with their schema namespace, as for example, nsl#Artist or nsl#creates. To
simplify our presentation, we hereforth omit the namespace prefixes and denote

142 S. Alexaki et al.

by C the set of class names and by P the set of property types defined in a
schema. Moreover, classes can be organized into a taxonomy through simple
or multiple specialization. The root of this hierarchy, is a built-in class called
Resource. For instance, Painter and Painting are subclasses of Artist and
Artifact respectively, both specializing Resource. RDF classes do not impose
any structure to their objects and class hierarchies simply carry inclusion se-

mantics.
- >
e
©
& ‘
|
A :
w |
2 :
a4 T hsl#Sculpture i
nsT#sculpts i
R nsl#Painter nsl#Painting ; rdfsliteral
RN nsl#paints nsl#has méterial T
S o | 1
) "™ i
" |
o o nsl#hasstyle & ns3ffcubism
: nsl#has material
i
g ‘ o)
ks \ ! nsl#has material =
S| T
: s P
N |
S | e |
LL nsl#scul pts
5 :
o "Claudel” Dx&ianame
”””” = typeOf (instance) nsL:http:/Avww.culture.gr/schema.rdf
== subClassOf (isA) ns2:http://www.museum.gr
> subPropertyOf (isA) ns3:http://www.museum.gr/artstyles.xml

Fig. 1. An example of semistructured RDF data and schemas

RDF property types serve to represent attributes of resources as well as rela-
tionships (or roles) between resources. For example, creates defines a relationship
between the resource classes Artist (its domain) and Artifact (its range) while
fname is an attribute of Artist with type Literal.! As we can see in Figurel[l],
property types may also be refined: paints is a specialization of creates, with its
domain and range restricted to the classes Painter and Painting, respectively.
We denote by H = (N, <), a hierarchy of classes and property types, where
N =CUP. H is well-formed if < is a smallest partial ordering such that :

— if ¢ € C then ¢ < Resource (i.e., the root of the class hierarchy).
— if p1,pa € P and p; < ps then domain(p;) < domain(p2) and range(p;) <
range(pz).

! As RDF literals we can have any primitive datatype defined in XML as well as XML
markup which is not further interpreted by an RDF processor.

Managing RDF Metadata for Community Webs 143

Besides literal and property types, RDF also supports container types, i.e.,
Bag, Sequence or Alternative. Members of containers are identified by a unique
integer index label 4, while no restriction is made on their types (i.e., may have
heterogeneous member types). RDF classes and container types correspond to
schema graph nodes whereas property types correspond to edges.

Definition 1. An RDF schema is a directed labeled graph RS = (Vs, Eg, ¢, \, H)
where, Vg is the set of nodes and Eg is the set of edges, H = (N, <) is a well-
formed hierarchy of classes and property types (including Bag, Seq, Alt, Literal),
A is a labeling function A\ : Vg U Es — N, and v is an incidence function
¥ BEg — Vg x Vg, capturing the domain and range of properties.

In RDF, Resources are described through a collection of Statements commit-
ting to a schema (see lower part of Figure[[)). As a resource we consider anything
identifiable by an URI: it may be a Web page (e.g., http://www.museum.gr/picas-
so.htm), a fragment of a Web page (e.g., http://www.museum.gr/artstyles.xml-
#cubism) or an entire Web site (e.g., http://www.museum.gr). In the sequel,
we denote by O the set of resource identifiers composed by a namespace and
a file name or anchor id (e.g., &ns2#picasso, &ns3#cubism). A non-disjoint
population function 7 assigns to each class ¢ in C' a set of object identifiers 7(c),
such that: U{w(c) | ¢ < ¢} C 7(c).

A specific resource together with a named property and its value form an
RDF statement, represented by an ordered pair < vy, ve >, where v is its subject
and vq is its object. The subject (e.g., &ns2#picasso) and object (e.g., “Pablo”)
should be of a type compatible (under class specialization) with the domain and
range of the used predicate (e.g., fname). Figure [l shows that RDF properties
can be multi-valued (e.g., two paints properties for &ns2#picasso), optional (e.g.,
there is no fname property for &ns2#rodin) and they can be inherited (e.g., the
creates property of &ns2#rodin). Finally, resources can be multiply classified
under several classes (e.g., &ns2#rodin is a Painter and a Sculptor). An RDF
statement is simply an edge labeled with a property type, whereas an RDF
description introduces a semistructured data graph. The semantics of edge and
node labels in this graph is given by one or more associated RDF schemas.

Definition 2. Given a population function w, an interpretation function is de-

fined as follows:

— for a class c € C, [c] = w(c) (note that [Resource] = O),

— for a property type p € P, [p] = {< vi,v2 >| v1 € [domain(p)],v2 €
[range()]} VU, -, [p']

— for a container type [Bag|Seq|Alt] = {1:v1,...n: vy} where vy,...v, are
values in O.

Definition 3. An RDF description, instance of a schema RS, is a directed
labeled graph RD = (Vp, Ep,¢¥,v,7,0OUL), where: Vp is a set of nodes and Ep
is a set of edges in an RDF data graph, v is the incidence function v : Ep —
Vp X Vp, v is a value function v : Vp — O UL and 7 is a labeling function
7:VpUEp — N which satisfies the following :

144 S. Alexaki et al.

— for each node v in Vp, 7(v) is a set of names n € CU{ Literal, Bag, Seq, Alt}
where v(v) € [n];

— for each edge € from a node v to a node v’ in Ep, 7(€) is a property type name
p € PU{1,2,...}, such that v(v) € [domain(p)] and v(v') € [range(p)]; ad-
ditionally, if p € {1,2,...}, v should be of a container type: (Bag|Seq|Alt) €

7(v).

It should be stressed that our RDF graph model roughly corresponds to a fi-
nite, many-sorted relational structure. In fact, besides literal values and resource
identifiers, the model relies on relations for class or property extents and con-
tainers. Note that resource URIs and names of class or property types may also
be considered as values (i.e., strings), denoted as val. Then, an RDF data graph
can be viewed as an instance of the following schema (with unnamed tuples):

cls(val) prop(val, val) cont(val, val, val)

Here cls, prop and cont correspond to specific schema classes, property
types and to the Bag, Seq, Alt container types, respectively. Then prop(rl,r2)
indicates that r1,r2 are resource URIs connected through an edge labeled prop,
while cont(s1,1,r2) indicates that the first member of container value s1 is the
resource 2. RDF schema vocabularies can also be represented using the relations
Class and Property as well as two additional relations capturing the partial
ordering (<) of classes and property types.

3 The RQL Query Language

In this section, we present the language RQL which allows us to query semi-
structured RDF descriptions using taxonomies of node and edge labels defined
in an RDF schema. The following examples depict the use of generalized path
expressions with variables on both kinds of labels.

Q1: Find the resources that are classified as both, Painter and Sculptor.

select X e
from X Painter, Y Sculptor Grodimn
where X =Y

Q1 is a simple, OQL-like query, with two variables ranging over sets of nodes.
One of the original features of RQL is the ability to also consider property-types
as entry-points to a semistructured RDF (meta)data graph. Q2 depicts this
functionality.

Q2: Find the resources that ”created” something, and their creations

source |target
&rodin |&crucifixion
&picasso|&guernica
&picasso|&womanbird
&claudel|&eternalidol

select X, Y
from {X}creates{Y}

Managing RDF Metadata for Community Webs 145

In Q2, the variables X and Y are range restricted to the source and target
(considered as position indices) values of the creates extend (including instances
of the sub-properties of creates). We actually treat a property-type as a binary
relationship over its domain and range, whose interpretation is a set of ordered
tuples. Using these basic constructs, we can now introduce queries on node and
edge labels.

Q3: Find the resources created by a Painter, which have material “oil on
canvas”.

select Y Y
from {X:$C}creates{Y}.has_material{Z} &guernica
where $C = Painter, Z = “oil on canvas” &woman

Q3 essentially implies a navigation through the structure of descriptions and
a filtering on both RDF data and schema information. Data variables, like Y and
Z are range-restricted to the target and source values respectively of the creates
and has_material extents. Schema variables, prefixed with the symbol $, are
range restricted to the meta-collections Class and Property. In Q3, $C denotes
a class name variable, which is valuated to the domain (e.g., Artist) of the
property creates and its subclasses (e.g., Painter and Sculptor). Then, the first
condition in the where clause restricts $C to Painter. The expression “X : $C”
(similar to a cast) restricts the source values of the creates extent only to the
Painter instances, as for example, &ns2#rodin and &ns2#picasso. Note that if
the class name in the where clause is not a valid subclass of the domain of creates,
the query will return an empty answer. Moreover, the composition of paths,
through the “.” operator in the from clause, implies a join between the extents
of creates and has_material on their target and source values respectively. This
way, RQ) L captures the existential semantics of navigation in semistructured data
graphs: there exist two ”paints” properties for &ns2#picasso while there is no
” has_material’ property for &ns2#crucifix, created by &ns2#rodin (declared
also as a Painter). More formally, Q3 is interpreted as:

{v2] c1 € C, 1 < domain(creates),v1 € [c1], < v1,v2 >€ [creates],
< vg,v3 >€ [has-material], c; = Painter and vs = "oil on canvas”}

RQL can also be used to query RDF schemas, regardless of any underlying
instances. The main motivation for this is the use of RQ L as a high-level language
to implement schema browsing. This is justified by several reasons: a) in real
applications RDF schemas may be very large, and therefore they cannot be
manipulated in main memory [5]; b) due to class refinement, RDF schemas
carry information about the labels of nodes and edges which is only implicitly
stated in the schema graph (e.g., by inheritance of properties). Consider, for
instance, the following query computing all the outgoing edges of a specific node
(or nodes) in the schema graph:

Q4: Find all the property types and their corresponding range, which can be
used on a resource of type Painter or any of its subclasses.

146 S. Alexaki et al.

select $P, $Y $P t th‘f t
from {$X}$P{$Y} creates|Artifac

. creates|Paintin
where $X <= Painter i e
paints |Painting

The formal interpretation of Q4 is:
{<p,ca>|3p € P,c1,c2 € C,c1 < domain(p), ca < range(p),c1 < Painter}

Some of these edges are explicitly declared in the schema (e.g. paints) while
others are inferred from the class hierarchy (e.g. creates). The same is true for
the target nodes of the retrieved properties (e.g., Painting and Artifact). It
should be stressed that due to multiple classification of nodes (e.g., &ns2#rodin),
we can query paths in a data graph (e.g., in Q3) that are not included in the
result of the corresponding schema queries (e.g., Q4). Still, the ability of RQL
GPEs to combine filtering conditions on both graph data and schema, permits
the querying of properties emanating from resources only, according to a specific
class hierarchy (e.g., view the properties of &ns2#rodin only as a Painter and
not as a Sculptor). As a last example, we illustrate how RQL can be used
to express the AboutEachPrefir retrieval function of RDF [21], returning both
schema and data information.

Q5: Tell me everything you know about the resources of the site “www.mu-
seum.gr”.

X $Z $P Y sw
select X. $Z. $P. Y. §W &rodin |Painter |creates |&crucifix |Painting

from {X:$SZ1$P{Y:$W} &r(?din Sc1.11ptor crgates &cruciﬁx Pa%nt%ng
where Y like &picasso |Painter |paints |&guernica|Painting
sk &claudel |Sculptor|sculpts |&eternal |Sculpture
&picasso |Painter |fname |”Pablo” |Literal
&claudel |Sculptor|lname |”Claudel” |Literal
&guernica|Painting|hasstyle|&cubism |Style

www.museum.gr*”
or X like

“fwww.museum.gr

%99

Q5 will iterate over all property names ($P), then for each property over its
domain ($Z) and range ($W) classes and finally over the corresponding extents
(X,Y). Finally, the result of RQL queries represented in this section in a tabular
form (e.g., as =1NF relations) can be naturally captured by RDF Bag containers
permitting heterogeneous member sorts (e.g., literals, URISs, sequences). Closure
of RQL queries is ensured by supporting access operators for containers [18].

4 The RDF Metadata Management System

The metadata management system currently under development (see Figure H)
comprises three main components: the RDF validator and loader (VRP), the
RDF description database (DBMS) and the query language interpreter (RQL).

Managing RDF Metadata for Community Webs 147

4.1 Parsing, Validation, and Storage

The Validating RDF Parser (VRP) is a tool for analyzing, validating and pro-
cessing RDF descriptions. Unlike existing RDF parsers (e.g. SIRPAC?), VRP? is
based on standard compiler generator tools for Java, namely CUP/JFlex (simi-
lar to YACC/LEX). The stream-based parsing support of JFlex and the quick
LALR grammar parsing of CUP ensure a good performance, when processing
large volumes of RDF descriptions. The most distinctive feature of VRP is its
ability to validate RDF descriptions against one or more schemas, as well as the
schemas themselves.

IRDF,Resource@4487| l RDF _Class@4455 ‘

URI ns2#Picasso URI nsl#Painter

rdf:type|nsl#Painter rdf:type rdfs:Class
rdfs:subClassOf|ns1# Artist

l RDF _Property@5678 ‘

URI nsl#paints

rdf:type rdf:Property

rdfs:subPropertyOf|nsl#creates

rdfs:domain nsl#Painter

rdfs:range nsl#Painting

link list (ns2#Picasso, ns2# Guernica)
(ns2#Picasso, ns2#Woman)

Fig. 2. Example objects in the VRP internal model

The VRP validation module relies on an internal object model implemented
in Java, separating RDF schemas from their instances. Instances of those sche-
mas adhere to the graph model presented in section[@. More precisely, the VRP
model consists of the following classes (see Figure[d): Resource, RDF Resource,
RDF_Class, RDF_Property, RDF_Container and RDF_Statement. Since, for RDF,
everything is a resource, Resource is the root of the class hierarchy of the VRP
internal model. Proper instances of this class represent the various resources (e.g.,
Web pages) in RDF descriptions which are identified by a URI (a hash map is
used to transform string URIs to Java object ids). RDF_Resource is a direct sub-
class of Resource, representing resources with defined RDF/S properties (e.g.,
rdf:type, rdfs:label, rdfs:seeAlso). The other classes, RDF_Class, RDF _Property,
RDF_Container and RDF_Statement,* are subclasses of RDF_Resource. The Java
objects representing schema resources are instances of the classes RDF_Class and
RDF_Property. Figure[d shows the objects created for the resources ns2#Picasso,
nsl#Painter and nsl#paints, from the example of Figure[d.

%|http://www.w3.org/RDF/Implementations/SiRPAC/
3|nttp://www.ics.forth.gr/proi/isst/RDEhttp://www.ics.forth.gr/proj/isst/RDF
4 The RDF _Statement class represents reified statements.

http://www.w3.org/RDF/Implementations/SiRPAC/
http://www.ics.forth.gr/proj/isst/RDF

148 S. Alexaki et al.

Resource
-URI

RDF_Resource

-rdfs:comment
-rdfs:label
-rdfs:seeAlso
-rdfs:isDefinedBy

-rdf:type
-rdf:value \

| | RDF_Statement

RDF_Container 'rg?SUbé‘?Ct

rdf -rdf:predicate

rdf:_n -rdf:object

Fig. 3. VRP internal object model

RDF_Class
-rdfs:subClassO

RDF_Property

-rdfs:subPropertyOf
-rdfs:range
-rdfs:domain
-link_list (list of tuples

This representation scheme, compared to the flat representation of triples
produced by other RDF parsers, simplifies the manipulation of RDF metadata
and schemas to a great extent. Firstly, the classification of resources in hierarchies
makes semantics explicit. Moreover, the necessary information for loading such
descriptions into a DB is straightforwardly represented in this model. Finally, by
separating RDF Schemas from their instances, it allows easier manipulation of
schema information, while verification of schema constraints can be performed
more efficiently. This separation also facilitates a two-phase loading of schemas
and their instances, as described below.

The Loader module APIs are based on the VRP internal model and comprise
a number of primitive methods, which can be implemented for various DBMS
technologies (e.g., relational, object). These primitive methods are defined as
member functions of the classes of the VRP model, for storing the attribute va-
lues of the created objects. For example, the method storetype () is defined for
the class RDF_Resource, in order to store type information of the objects. The
primitive methods of each class are incorporated in a storage method defined in
the respective class invoked during the loading process. The Loader takes ad-
vantage of the Java method-overriding mechanism, in order to store both RDF
descriptions and schemas in a DBMS using a two-phase algorithm: During the
first phase, RDF schema information (i.e., class and property descriptions) is
loaded in the database, to create the corresponding storage schema. It should
be stressed that the storage schema is a direct image of the associated RDFS
schemas as presented in section B] During the second phase, this schema is used
to populate the database with resource descriptions. For example, Figure Bl il-
lustrates the representation of RDF descriptions in a relational DBMS, using
specific schema information. We should note there is significant current interest
in storing semi-structured data (especially XML data) in RDBMS (e.g., [14]).
Our representation consists of four tables capturing the class and property-type

Managing RDF Metadata for Community Webs 149

DBMS

VRP RQL
Class : Troperty [|
a c_name domain | p_name range
Validator [PSI#AS | |nSTRAS nsl#creates nsT#ATTact] c CGraph
5 | SubClass SubProperty - -%_g onstructor

[. '8 O] | subClass |superClasg | subProp |superProp o 38’ m
B ! VRP Model i o < nsl#Painter| nsl#Artist | [nsl#paints| nsl#creates < ELLI g
(a8 I - (i Optimi

1%% ; nsl#Painter nsl#cr eates ptimizer

I i UR | [source | target | Module

_ l nsz#rodinl an#rodin[nsZ#crucifixion l

Fig. 4. System architecture

hierarchies defined in an RDF schema, namely Class, Property, SubClass and
SubProperty. Then, for every new class or property loaded in the database, we
create a new table to store its instances. This implementation conforms to our
graph model and permits a uniform representation of both RDF descriptions
and schemas, while capturing in a precise way the semantics of the latter.

4.2 Query Processing

The RQL interpreter consists of (a) the parser, analyzing the syntax of queries;
(b) the graph constructor, reflecting the semantics of queries and (c) the eva-
luation engine, accessing RDF descriptions and schema information from the
underlying database. As in the case of the loader, the RQL evaluation engine re-
lies on high-level APIs that can be implemented as front-end access functions for
various DBMS technologies. The development of the RQL optimizer is ongoing
and will be mainly based on heuristic methods for query rewriting (join reorde-
ring, etc.), making use of realistic assumptions about the queried extents and
exploiting possible index structures. In particular, we plan to implement indices
for RDF schema classes (or property-type) hierarchies (see Subclass and SubPro-
perty relations) in order to handle efficiently recursive access to all subclasses
(or subproperties) of a given class (or property).

In applications where the RDF schema contains deep and voluminous classi-
fication hierarchies, queries accessing subclasses or subproperties of a given class
or property respectively, are extremely time consuming. As demonstrated in [5],
in cultural applications a schema could consist of rather deep and broad taxono-
mies of concepts (terms) originating from application specific vocabularies. In [5]
the authors demonstrate the creation of an RDF schema by integrating the rat-
her shallow ICOM/CIDOC Reference Model [16] and the rich Art & Architecture
Thesaurus [1]. The former is a conceptual schema defined by the International
Council of Museums to describe cultural information, containing around 30 con-
cepts and 60 roles. The latter is one of the largest thesauri in the area of western
art and historical terminology containing around 28.000 terms. In the schema re-
sulting from the integration of the above conceptual structures, ICOM/CIDOC
concepts and AAT terms are modeled as RDF classes, the latter considered as
sub-classes of the former, organised in monohierarchical inheritance taxonomies.
Those simple inheritance hierarchies are rather deep and broad and queries that

150 S. Alexaki et al.

require access to the subtree of a given class or property are essentially traversal
queries over the SubClass relation of Figure Ml and are rather costly. The idea
is to transform such traversal queries into interval queries on a linear domain,
that can be answered efficiently by standard DBMS index structures. To do this,
noder names are replaced by ids for which a convenient total order exists. An
encoding to provide those ids is exposed in detail in [5].

5 Conclusions and Future Work

This paper puts forth the idea that declarative query languages for metadata,
like RQL, open new perspectives in the effective and efficient support of WWW
applications. RQL can be used as high-level language to access various RDF
metadata repositories, by exploiting its ability to uniformly query (meta)data
and schema vocabularies and to handle incomplete information. RQ L can exploit
transparently taxonomies of classes in order to facilitate querying of complex
semistructured data using only few abstract labels. The paper also presents
an architecture for metadata management comprising efficient mechanisms for
parsing and validating RDF descriptions, loading into a DBMS and RQL query
processing and optimization.

Current research and development efforts focus on desining appropriate ac-
cess path selection mechanisms and heuristic methods for query rewriting and
optimization. Appropriate index structures for reducing the cost of recursive
querying of deep hierarchies need to be devised as well. Specifically, an imple-
mentation of hierarchy linearization is under way, exploring alternative node
encodings. The performance of the system will be assessed using benchmarks for
relational and object-oriented DBMS platforms.

References

1. The Art & Architecture Thesaurus. http://www.ahip.getty.edu/vocabulary/-
aat_intro.html.

2. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

3. S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and J. Siméon.
Querying Documents in Object Databases. International Journal on Digital Li-
braries, 1(1):5-18, April 1997.

4. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel Query
Language for Semistructured Data. International Journal on Digital Libraries,
1(1):68-88, April 1997.

5. B. Amann and I. Fundulaki. Integrating Ontologies and Thesauri to Build RDF
Schemas. In ECDL-99: Research and Advanced Technologies for Digital Libraries,
pages 234-253, Paris, France, September 1999.

6. B. Amann and M. Scholl. GRAM: A Graph Model and Query Language. In
Proceedings of the ECHT’92 European Conference on Hypermedia Technologies,
pages 201-211. ACM Press, December 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Managing RDF Metadata for Community Webs 151

D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema Spe-
cification. Technical report, World Wide Web Consortium, 1999. W3C Proposed
Recommendation 03 March 1999.

P. Buneman, S.B. Davidson, and D. Suciu. Programming Constructs for Unstruc-
tured Data. In Proceedings of International Workshop on Database Programming
Languages, Gubbio, Italy, 1995.

R.G.G. Cattell and D. Barry. The Object Database Standard ODMG 2.0. Morgan
Kaufmann, 1997.

S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-
GL: a Graphical Language for Querying and Restructuring XML Documents. In
Proceedings of International WWW Conference, Toronto, Canada, 1999.

V. Christophides, S. Cluet, and J. Siméon. On Wrapping Query Languages and
Efficient XML Integration. In Proceedings of ACM SIGMOD, Dallas, 2000.

S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your Mediators Need Data Con-
version! In Proceedings of ACM SIGMOD, pages 177—-188, Seattle, 1998.

L. Dempsey and R. Heery. DESIRE: Development of a European Service for In-
formation on Research and Education, 1997. http://www.ukoln.ac.uk/metadata,/-
desire/overview /rev_ti.htm.

A. Deutsch, M. Fernandez, and D. Suciu. Storing Semistructured Data with STO-
RED. In Proceedings of ACM SIGMOD, pages 431-442, Philadelphia, 1999.

A. Deutsch, M.F. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Langu-
age for XML. In Proceedings of the 8th International WWW Conference, Toronto,
1999.

M. Doerr and Nick Crofts. Electronic Communication on Diverse Data - The
Role of an Object-Oriented CIDOC Reference Model. In CIDOC’98 Conference,
Melbourne, Australia, October 1998.

M.F. Fernandez, D. Florescu, J. Kang, A.Y. Levy, and D. Suciu. System De-
monstration - Strudel: A Web-site Management System. In Proceedings of ACM
SIGMOD, Tucson, AZ., May 1997. Exhibition Program.

G. Karvounarakis, V. Christophides, and D. Plexousakis. Querying Se-
mistructured (Meta)data and Schemas on the Web: The case of RDF
& RDFS. Technical Report 269, ICS-FORTH, 2000. Available at:
http://www.ics.forth.gr/proj/isst/RDF /rdfquerying.pdf.

M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Procee-
dings of the ACM SIGMOD, pages 393-402, 1992.

L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian. SchemaSQL - a language for
interoperability in relational multi-database systems. In Proceedings of Internatio-
nal Conference on Very Large Databases (VLDB), pages 239-250, Bombay, India,
September 1996.

O. Lassila and R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. Technical report, World Wide Web Consortium, 1999. W3C
Recommendation 22 February 1999.

I.S. Mumick and K.A. Ross. Noodle: A Language for Declarative Querying in an
Object-Oriented Database. In Proceedings of International Conference on Deduc-
tive and Object-Oriented Databases (DOOD), pages 360-378, December 1993.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across
Heterogeneous Information Sources. In Proceedings of IEEE International Confe-
rence on Data Engineering (ICDE), pages 251-260, Taipei, Taiwan, March 1995.

	Managing RDF Metadata for Community Webs
	Introduction
	Towards a Formal Model for RDF
	The RQL Query Language
	The RDF Metadata Management System
	Parsing, Validation, and Storage
	Query Processing

	Conclusions and Future Work
	References

