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Consider a firm that can actively manage and customize the service offered to customers in a repeat business

context. What is the long-term value of such flexibility, and how should firms manage the service rela-

tionship over time? We propose a dynamic model of the firm–client relationship that relies on behavioral

theories and empirical evidence to model the evolution of service quality expectations and their impact on

customer retention and profitability. We find that firms can extract higher long-term value by managing

service experiences and expectations over time. Varying service in the long run is not optimal, however. We

characterize the optimal dynamic service policy and show that it converges to a steady-state service level.

Loss aversion expands the range of constant optimal service policies, suggesting that behavioral asymmetries

limit the value of responsive service. Sensitivity results characterize the effect of customer margin, loyalty,

and memory on policies and profits.

Key words : service management, service quality, managing relationships, managing expectations

1. Introduction
The growth of the service sector has combined with increased availability of customer-level data

to bring about a paradigm shift from managing transactions to managing customer relationships

in both business-to-business (B2B) and business-to-consumer (B2C) sectors. As service providers

focus on capturing long-term revenue streams from each customer, managing retention has emerged

as a primary driver of profitability (Jones and Sasser 1995). Evidence suggests that a customer’s

assessment of the value of the relationship, as well as subsequent repatronage decisions, are critically

influenced by the dynamics of service experiences with the firm (Bolton et al. 2006). The question

for firms is then how to manage service experiences over time in order to capture the most value

from each customer relationship.

Practitioners have recognized the importance of managing a series of service experiences in

repeated interactions. “Every year companies have thousands, even millions of interactions with

human beings, also known as customers. Their perceptions of an interaction are influenced by [. . .]

the sequence of painful and pleasurable experiences. Companies care deeply about the quality of

1
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those interactions [. . .] Yet the application of behavioral science to service operations seems spotty

at best”, a recent McKinsey study reveals (DeVine and Gilson 2010).

We respond to this need by proposing a behavioral dynamic model for managing customized

services over time in order to maximize expected long-run discounted profit from a firm’s customer

base. In each period, the provider decides what service level to offer to each customer. Improving

service is costly, but it increases overall perception of service quality and hence the probability

that a customer will renew the contract. We rely on empirical evidence and behavioral decision

theories (adaptive expectations, prospect theory) to model realistic effects of service experiences

on customer’s service quality expectations, utility, and renewal decisions.

Our focus is on contractual settings in which the firm can use responsive service to manage

retention. Here, the relevant defining feature of a contractual setting is that customer departure

is observable, as explained in Fader and Hardie (2009); for example the customer cancels the

contract or declines to renew a subscription or membership.1 Examples include subscription and

membership services, product service systems, insurance, banking or utilities contracts in B2C, as

well as maintenance, support, or advertising contracts in B2B.

In this context, we define responsive service broadly as the noncontractible level of extra effort

that the firm expends on retaining an individual customer, including sales-force effort (Liu et al.

2007; DeVine and Gilson 2010), number of contact hours (Bowman and Narayandas 2004), response

time, value-added services, and so forth. For example, DeVine and Gilson (2010) report how an

insurance company has implemented a schedule of customized phone calls from nurses to individual

patients, in order to improve satisfaction and retention. Survival Chic, a lifestyle membership,

manages retention through customized service in the form of weekly information and access to

special deals and events. For TV stations or internet publishers selling advertising contracts, a

controllable measure of service quality which affects future business is the percentage of target

audience (or make-goods) delivered to the client over the year (Araman and Popescu 2010). A

longitudinal study of high-technology markets shows that renewal of support service contracts is

predicted by the sequence of service experiences as measured by additional resources (e.g. engineer

work time) devoted to each encounter (Bolton et al. 2006). We prescribe how this sequence of

service experiences should be optimized.

From a modeling perspective, our work fills a gap at the interface of the literatures on service

operations and marketing by addressing a dual need to “incorporate findings from psychology and

marketing into OM models of service management” (Bitran et al. 2008, p. 80) and to develop

dynamic models that “determine fully personalized levels of marketing interventions ... over time,

1 By contrast, in noncontractual settings (e.g., retail or airline travel) the firm does not know when customers become
inactive, so the focus is on customer share as opposed to retention.



Aflaki and Popescu: Retention Dynamics
3

in such a way as to maximize CLV [customer lifetime value]” (Rust and Chung 2006, p. 575).

Our contribution to these literatures is threefold: (i) we propose a behavioral dynamic model to

maximize customer value by managing service at the individual level in contractual relationships

while assuming that past service experiences affect retention; (ii) we characterize the structure of

the firm’s optimal service policy in the long run and also in a transient regime; and (iii) we explain

how behavioral characteristics (e.g., customer loyalty and memory) affect the firm’s policy and

profits, and we identify the aspects of such behavior that should be assessed in this setting.

Our findings suggest that, even though firms can increase customer value by appropriately adjust-

ing service and managing customer expectations, it is not optimal in the long run to vary service.

In other words, the optimal service policy converges to an ideal long-run service level from which it

is suboptimal to deviate. The optimal long-run service level is higher for customers who focus more

on recent experiences, but it is not necessarily so for more loyal or higher margin customers. It is

interesting that behavioral asymmetries drive the structure of our results and also limit the benefits

of responsive service. Loss aversion—in other words, customers being more sensitive to perceived

downgrades than to upgrades in service (Tversky and Kahneman 1991; Bolton et al. 2006)—leads

to a range of optimal constant policies, which is confirmed by their practically observed prevalence.

In contrast, if consumers are “gain seeking” (i.e., if service levels above expectations are more

salient than those below expectations) then the optimal service policy oscillates.

Our results show how firms can improve long-term profitability by managing service over time

and also show how behavioral characteristics—such as loyalty, memory, and loss aversion—affect

policies and value. With the aim of providing analytical insights for this complex problem, we follow

an evolutionary approach to model building. Focusing on retention, we develop a parsimonious

model of service dynamics in response to realistic customer behavior in Section 3, characterize

its optimal solution in Section 4, and report sensitivity results in Section 5. We then relax our

assumptions and enrich the setup as follows. Section 6 allows for more general profit models that

include volume effects, customer visits, and/or acquisition. Section 7 discusses general adaptation

models, including such behavioral asymmetries as loss aversion. Section 8 incorporates parameter

uncertainty, customer heterogeneity, and shared resources. Overall, as summarized in Section 9,

these extensions reinforce our main insights and illustrate the versatility of our basic framework.

Proofs for all formal results are given in the Appendix.

2. Related Literature
Our work bridges the literature on behavioral and service operations (Loch and Wu 2007; Bitran

et al. 2008) and the marketing literature on customer and service relationship management, and

customer lifetime value (Venkatesan and Kumar 2004; Rust and Chung 2006).
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In the marketing stream, a few papers consider optimal investment decisions in terms of maxi-

mizing lifetime value. Ho et al. (2006) model customer purchases as a Poisson process whose rate

depends on customer satisfaction, where the probability p that a customer is satisfied in a given

period is controlled by the firm. Focusing on static policies, these authors find that customer value

is increasing and convex in service quality. Ovchinnikov and Pfeifer (2011) show how to manage

acquisition and retention spending between loyal and nonloyal customers when only a limited num-

ber can be served. They find that firms may prefer lower CLV customers and may spend more on

retention when facing capacity constraints. Our focus is uncapacitated settings.

The papers cited so far do not capture dynamic effects of past firm policies on customer behavior,

nor address the “lack of techniques for using individual-level data to create dynamic customer-

marketing policies” (Lewis 2005, p. 986). This paper by Lewis is an exception in that it provides

numeric results for dynamic relationship pricing without defection. We focus on managing service,

but our analysis translates to managing any costly driver of retention—including prices—when

defection is observable. For such contractual settings, Fader and Hardie (2009) provide a model of

retention and lifetime value with heterogeneous customers, but they do not optimize it; we do so

in Section 8.1.

In the service operations literature, Gans (2003) characterizes the firm’s optimal stationary

service policy in an oligopoly when customers learn about the firm’s quality of service in a Bayesian

fashion. By contrast, in our model the firm dynamically manages strategic, observable service levels

and, in the process, may learn about the customer. In a duopoly setting, Hall and Porteus (2000)

consider a finite-horizon dynamic model where demand is a function of “service failures”, which are

determined by the firm’s investment in capacity. The customers in their setting are purely reactive

in their switching behavior and have no memory of experiences prior to the current period. Olsen

and Parker (2008) study the optimality of base-stock policies when customers who face stockouts

defect with some probability but can be reacquired via advertising. Unlike these papers, we capture

competition indirectly through customer choice and focus on modeling probabilistic retention as a

function of the sequence of service experiences.

In that sense, our work belongs to a growing behavioral literature on dynamic models in which

demand evolves adaptively based on the firm’s past policies, including pricing (Popescu and Wu

2007), capacity (Liu and van Ryzin 2009), and quality (Caulkins et al. 2006). Liu et al. (2007) study

the intertemporal allocation of an exhaustible resource (sales-force effort) over a customer’s fixed

lifetime when prior service experiences affect short-term profit but not retention. Gaur and Park

(2007) derive steady-state results in an oligopoly where market shares evolve based on adaptive

customer expectations about retailers’ fill rates. In parallel work, Adelman and Mersereau (2010)

use approximation techniques to dynamically manage capacity among clients whose stochastic
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demands depend adaptively on past fill rates. Contrary to our findings, they show that prioritizing

clients by margin is optimal and that customer memory does not affect the steady state when

demand is deterministic. Retention considerations and loyalty are absent from these models, as

customers never defect.

Thus, a combination of features distinguishes our work from the preceding literature. First, we

specifically model customer retention (or defection) as an observable and controllable probabilistic

construct that is inherent to a contractual relationship (cf. Fader and Hardie 2009). In doing so,

we draw on behavioral theories—such as prospect theory and adaptive expectations—to capture

realistic effects of previous service experiences on customer behavior and retention in a dynamic

service quality framework. Finally, we go beyond steady-state analysis to investigate the dynamics

of customized service decisions over time and their sensitivity to behavioral factors such as customer

loyalty, loss aversion, and memory.

3. The Model
A profit-maximizing firm decides in each period t what service level xi

t ∈ [0,1] to offer each active

customer i ∈ {1, . . . ,N}.2 This decision—as well as the customer’s history of service experiences

with the firm, X i
t = (xi

0, . . . , x
i
t−1)—affect not only short-term profit from the customer, πi(xi

t;X i
t),

but also repatronage behavior. Indeed, in each period the customer may decide to terminate the

relationship (e.g., by canceling or not renewing the contract). This decision depends on the entire

sequence of service experiences, including other customer or contract-specific factors and uncertain

events, as described in Section 3.1. Defection is observed by the firm, and we assume that a customer

who defects is lost forever; this assumption is typical in contractual settings, in contrast with

non-contractual settings where “always a share” models are the norm (Fader and Hardie 2009).

By dynamically managing service levels for each customer, xi
t, the firm’s objective is to maximize

the expected long-term value from its customer base. This value is given by

lim
T→∞

T∑
t=0

βt

N∑
i=1

P(customer i is active by time t|X i
t)πi(xi

t;X
i
t), (1)

where β ∈ (0,1] is the firm’s discount factor. In the absence of pooling effects, Problem (1) is

separable at the customer level; hence we can omit the customer index i from notation and focus

on managing individual relationships—that is, maximizing the CLV obtained from each customer.

This assumption is common in the literature, as detailed in Ovchinnikov and Pfeifer (2011). We

relax it in Section 8, where we consider customer heterogeneity in addition to shared costs and

resources.

2 Measuring service in percentage terms allows us to capture a variety of service decisions, including the binary
(service, no service) models typically used in the literature; in this case, x represents the fraction of time that (good)
service is offered within a given time period.
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3.1. Customer Behavior

This section establishes a general, parsimonious model for the probability that a customer quits

the relationship at time t as a function of the history of service experiences Xt. Renewal decisions

are typically captured by a random utility model (e.g., Lewis 2005; Bolton et al. 2006); thus, at

time t, the customer’s utility from the relationship with the firm is given by

Ũt = Ut(Xt; I)+ ε̃t. (2)

Here Ut is a deterministic value function of the entire history of service experiences including an

information vector of parameters, I, that captures individual characteristics (such as loyalty, mem-

ory, initial expectations) as well as factors that are contract, firm, or industry specific (e.g., price

P, and switching costs). Additional random factors and events that affect the customer’s decision

are summarized in the random component ε̃t, to be assumed i.i.d with a general distribution.

For tractability, we assume that the history Xt of service experiences can be represented by a one-

dimensional recursive construct st that acts as a sufficient statistic to predict customer repatronage

behavior—namely, Ũt = U(st; I) + ε̃t. So the probability that an active customer renews at time

t is given by an increasing function F (st) = F (st; I) = P(Ũt ≥ 0) = P(ε̃ ≥ −U(st; I)). This model

can be estimated from longitudinal data and can be extended to account for customer inertia (Su

2009) and choice among competing offers.3 We refer to st as (the customer’s perception of overall)

service quality as determined recursively through an exponentially smoothed memory process:

st+1 = λst +(1−λ)xt. (3)

The memory parameter λ ∈ [0,1) is the weight that the customer puts on prior experiences. Cus-

tomers with lower λ focus more on more recent experiences; in the limit, if λ = 0 then customer

decisions are determined solely by the most recent service experience.

The exponential smoothing model (3) captures the essence of theoretical models of belief for-

mation (Hogarth and Einhorn 1992), service quality expectations (Cronin and Taylor 1992), and

economic goodwill (Nerlove and Arrow 1962). Such models have been tested empirically in a service

context (Boulding et al. 1993; Bolton et al. 2006) and used extensively to capture memory effects

in operational models (e.g., Caulkins et al. 2006; Gaur and Park 2007; Liu et al. 2007; Popescu

and Wu 2007; Adelman and Mersereau 2010). In addition to being widely used and empirically

supported, model (3) is arguably the simplest that renders the main insights from our framework.

Extensions capture smooth nonlinearities (st+1 = H(xt, st)) as well as asymmetries in perception,

notably loss aversion, motivated by prospect theory (Tversky and Kahneman 1991); see Section 7.

3 In this case F (st; I) = P(Ũt ≥ τ + Ṽt) = P(ε̃ − ε̃ ≥ V − U(st; I)), where Vt = V + ε̃t is the i.i.d. utility from the
competitive offer and τ is a parameter reflecting consumer inertia.



Aflaki and Popescu: Retention Dynamics
7

In sum, our consumer behavior model makes no assumptions about the renewal probability F (s)

beyond that it is increasing. In other words, customers who have had overall better experiences

with the firm are less likely to defect, as widely supported in the literature (see Zeithaml 2000).

This assumption is consistent with the adaptive expectations framework (Cronin and Taylor 1992),

under which previous service experiences create endogenous “will” expectations that evidence a

positive effect on retention (Boulding et al. 1993).4 Retention functions F commonly estimated in

the literature include logit (Rust et al. 2004), exponential (Berger and Nasr 1998), and double-

exponential functions (Bolton et al. 2006).

3.2. The Firm’s Dynamic Optimization Problem

Based on the customer behavior model just described, the maximum expected long-term value from

an active customer—given her history of service experiences as summarized by the state st—can

be formulated recursively as the following stochastic dynamic program:

J(st) = max
{xt}

π(xt;st)+
∞∑

l=1

βl

(
l∏

k=1

F (st+k)

)
π(xt+l;st+l) = max

xt∈[0,1]
π(xt;st)+βF (st+1)J(st+1); (4)

here, for all t, st+1 = λst +(1−λ)xt by (3). This is a stochastic shortest path problem with state- and

decision-dependent transition probability F (λst +(1−λ)xt) (Bertsekas 2007). The model assumes

perfect screening and information regarding customer characteristics I; in Section 8.1 we extend

this to incorporate customer heterogeneity and parameter uncertainty.

The main trade-off in (4) is between the short-term cost of providing high service and the long-

term benefit of increasing retention and future revenue streams. To isolate the effect of past service

experiences on retention, which is our main focus, for now we ignore volume effects; that is, we

suppose π(xt;st)≡ π(xt). This assumption is consistent with need-based services (e.g. insurance,

utilities) and all-inclusive subscriptions (e.g. lifestyle memberships, broadband access). In Section

6 we show that our insights remain valid even after we account for the positive effect of past

service experiences on current customer spending as well as on visit frequency, timing of renewal

decisions, and customer acquisition. In short, the following model provides the basic framework for

our results:

J(s) = max
x∈[0,1]

π(x)+βF (λs+(1−λ)x)J(λs+(1−λ)x). (5)

4 These authors distinguish between will and should expectations, and their respective effects on retention; the former
are based on the customer’s previous experiences with the firm and typically dominate the latter, which are based on
such exogenous factors as the firm’s advertising, industry standards, and competitive offers. Our focus is on service
quality expectations that are based on prior experiences with the firm (as summarized by st) and hence on will
expectations.
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As a static benchmark, consider a firm that ignores the effect of service quality expectations on

retention and offers a constant service over time, xt = st ≡ s. In this case the long-term profit is

given by the well-known CLV formula (Rust et al. 2004):

Π(s) =
∞∑

t=0

βtF t(s)π(s) =
π(s)

1−βF (s)
= π(s)L(s). (6)

Given a constant service quality level s, the expected customer lifetime value Π(s) is the product of

the short-term profit π(s) of each active customer and her expected lifetime L(s) = 1/(1−βF (s)).

We assume that the short-term profit π is strictly concave; its unique maximizer s∈ [0,1] is the

service level offered by a myopic firm (i.e. one that ignores future revenues). We further assume

that the static objective Π has a unique interior maximizer s̄ ∈ [0,1]; in other words, we assume

that Π is strictly quasi-concave.5 Diminishing marginal returns to static service quality, and a

non-monotone service–profitability relationship are supported empirically (Rust et al. 1995).

Our first formal result illustrates the advantage—relative to static and myopic benchmarks—

of dynamically managing service in our framework. Let x∗(s) denote the (largest) service that

maximizes (5).

Lemma 1. (a) The value function J(·) is increasing, and Π(s)≤ J(s)≤ π(s)
1−β

for all s ∈ [0,1].

(b) The optimal service level always exceeds the myopic one, x∗(s)≥ s, for all s.

Lemma 1 follows directly from the service quality–retention relationship F being increasing. This

result shows that firm’s dynamic management of service levels in response to customer expectations

will result in higher than myopic service, and yield higher profits, than a static policy. Moreover, the

firm can extract, on average, more value from customers who have had better overall experiences

with the firm.

This setup raises several questions. Can the firm do better than offer xt = s̄ every period and, if

so, how? Is it optimal to vary service on the long run, or is there an ideal service level for which the

firm should aim? What about the short run? How do behavioral characteristics, such as memory

and loyalty, affect the firm’s service policy and customer lifetime value? We provide formal answers

to these questions in what follows.

4. Optimal Policy
This section describes the optimal policy of the firm. We first characterize an ideal long-run service

level from which it is suboptimal to deviate. We then investigate the firm’s optimal transient

policy—that is, the optimal sequence of service experiences and its convergence properties.

5 To guarantee uniqueness of optimal solutions, it is sufficient to assume that π′(s)/L′(s) is strictly decreasing in s. This
condition is satisfied for common parametric models used in the literature, such as logistic F (x) = 1/(1+ exp(−αx))
or exponential F (x) = 1− exp(−αx) retention, and for power cost c(x) = x1+θ with θ≥ α.
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4.1. Steady State

By definition, s∗∗ is a steady state if the firm has no incentive to move away from it (i.e., it is a fixed

point of the optimal service policy: x∗(s∗∗) = s∗∗). In other words, if customers are accustomed to

a service level s∗∗, then it is optimal for the firm to offer x≡ s∗∗ in each period.

Our next result establishes necessary conditions for a steady state to exist. Existence and global

stability are subsequently confirmed in Proposition 2. In order to ensure uniqueness, we assume

throughout that the following function is strictly quasi-concave:

W (s) = λπ(s)+ (1−λ)Π(s). (7)

Proposition 1. If Problem (5) admits a steady state s∗∗, then this is the unique interior max-

imizer of W (s) over s∈ [0,1]. Furthermore, in this case s≤ s∗∗ ≤ s̄ and s∗∗ is increasing in β.

The result shows that, in steady state, the firm balances short-term profit π and long-term

customer value Π weighed by customer memory λ, by solving W ′(s) = λπ′(s)+(1−λ)Π′(s) = 0. In

particular, if customer renewals are insensitive to past service experiences (i.e., if F is constant),

this reduces to π′ = 0 and so a myopic policy s∗∗ = s is optimal.

Proposition 1 is useful for relating the firm’s long-run service policy to its strategic outlook and

to customer- and contract-specific factors (further discussed in Section 5). A firm with a short-term

outlook puts less weight β on future cash flows (e.g., β = 0 for a fully myopic firm), and it provides

less long-run service and lower service quality, because it focuses on (short-term) cost savings. In

particular, the ideal long-run service level exceeds the myopic benchmark: s∗∗ ≥ s.

On the other hand, s∗∗ ≤ s̄; that is, the steady-state service level is lower than the level offered by

a strategic firm that is oblivious to customer expectations and their impact on retention. This result

is robust, and preserved under volume effects and nonlinear adaptation models, as shown in Section

6. Indeed, by appropriately managing and responding to customers’ endogenous expectations, a

strategic firm achieves systematic cost savings in the long run.

4.2. Transient Policy and Global Stability

The previous section characterized a steady-state service policy but did not indicate if and how

the firm might reach it. The following result establishes existence and global stability of the unique

interior steady state determined by Proposition 1, and it also characterizes the structure of the

transient policy. Define the optimal service quality (or state) policy as s∗(s) = λs+(1−λ)x∗(s).

Proposition 2. The optimal service quality policy s∗(·) is increasing. Moreover, all optimal

paths {s∗t} converge monotonically to the unique steady state s∗∗ characterized by Proposition 1.

The optimal service path {x∗t} also converges to the steady state s∗∗.
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Figure 1 Optimal service quality paths (a), policies (b) and customer value (c). π(x) = 1− x2, F (s) = 1/(1 +

exp(−αs)), λ = 0.5, β = 0.94.

Proposition 2 demonstrates the existence of an ideal long-run service level s∗∗ that does not

depend on customers’ prior expectations s0. In general, the firm benefits from adjusting service

levels, and the optimal way of doing so induces a monotone service quality path that converges to

s∗∗; this is illustrated in Figure 1(a).

If customers have relatively low initial perceptions of service quality (based on prior experiences

with firm), then our model prescribes gradually increasing service quality to s∗∗; the opposite holds

if customers have high initial perceptions. To illustrate these situations we consider, for example,

a firm that has been ignoring future revenue streams and thus offering (in each period) the myopic

service level s. When customer perceptions are anchored at s0 = s≤ s∗∗, this firm can maximize

customer lifetime value by gradually improving service quality perceptions up to s∗∗. In contrast,

the opposite prescription applies for a firm that has been ignoring customer adaptation processes,

and thus offering the constant service level st = s̄≥ s∗∗.

Our results in this section indicate that, in a transient regime, the firm can benefit from managing

customers’ service quality perceptions/expectations. Initially, these may not be perfectly known

to the firm. For a customer who has a history with the firm, s0 summarizes the service quality

delivered so far, and can be estimated from longitudinal data (as in, e.g. Bolton et al. 2006); for

new customers, s0 represents an initial stock of goodwill, as from word of mouth or other ‘will’

expectations. The assumption that s0 is perfectly known is relaxed in Section 8.1.

Proposition 2 shows that all service paths x∗t converge to the same steady state, but it makes

no statement regarding monotonicity of the service policy. Indeed, it is possible that the optimal

service policy is not increasing, as illustrated in Figure 1(b) and explained in the next section.

4.3. Marginal Returns to Service Quality and Service Policy

Here we investigate both the structure of the optimal service policy and the nature of marginal

returns to service quality as captured by the shape of the value function J . We argue that both
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depend on the shape of the retention function F (see Section 3.1); this can be convex if customers

have low switching costs, as evidenced in more competitive industries (Jones and Sasser 1995).

Proposition 3. If F is convex, then the optimal service policy x∗(s) is increasing and the value

function J(s) is convex. These relationships are ambiguous if F is concave; see Figure 1(b,c).

A convex value function J goes against the conventional wisdom of diminishing marginal returns

to service quality (Rust et al. 1995). Ho et al. (2006) find that customer value can be convex if

costs are not too steep; our result is not driven by cost but rather by the shape of the retention

function, which does not figure in their paper. Jones and Sasser (1995), suggest that the effect

should be determined by whether the retention rate is convex or concave. Although it confirms

their intuition for F convex, Proposition 3 implies that firms may experience increasing marginal

returns to service quality even when the latter has a diminishing marginal effect on retention (i.e.,

when F is concave). Indeed, panel (c) of Figure 1 shows that J can be either convex or concave

for F concave. Intuition suggests that the shape of the value function J depends on the degree of

concavity of F ; in particular, J is concave for sufficiently concave F . This intuition is confirmed in

numerical experiments for parametric logit, exponential, and power specifications of F . However,

characterizing the relationship analytically is complicated by the multiplicative interaction effects

in the value-to-go (5), which make preservation of concavity difficult.6

5. Sensitivity to Price and Behavioral Characteristics
As stated in the Introduction, part of our goal is to understand how long-run service and customer

lifetime value are affected by behavioral characteristics (such as customer loyalty and memory)

and by prices and switching costs.

5.1. Customer Memory

The firm provides higher long-run service to customers who are more forgetful—that is, those who

anchor on more recent experiences, as captured by a lower λ (this is a consequence of Proposition

1). In other words, customers who adapt faster should receive better service in the long run, ceteris

paribus, and so are more costly to maintain. But are these customers more profitable? The next

result states that the value function is locally monotonic in the adaptation parameter λ, but the

direction of monotonicity depends on customer initial expectations.

Proposition 4. (a) The steady-state service level s∗∗(λ) is decreasing in λ. (b) For any given

λ, the marginal effect of memory on the value function d
dλ

J(s;λ) is positive for s > s∗∗(λ) and

negative for s < s∗∗(λ).

6 A sufficient condition for J(s) to be concave (resp. convex) is the concavity (convexity) of (FJ)(s); see the proof of
Proposition 3. Yet this property is not preserved in general because FJ need not be concave even when both F and
J are (increasing and) concave.
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Figure 2 Sensitivity to loyalty (α) and price (P ); π(x,P ) = Pd(x,P )− c(x), c(x) = x2, d(x,P ) = 0.5x− P + 2,

F (s) = 1/(1+ exp(−α1s + α2 + P )), β = 0.94. (a) α2 = 1; (b)α1 = 3; (c, d) α2 = 1, λ = 0.5.

Among customers who had relatively good prior experiences with the firm, those who adapt

more slowly provide a better long-term return on investment because they yield higher value J

and demand lower long-run service s∗∗. Among dissatisfied customers, those with shorter memory

are more profitable but do require higher maintenance cost in the long run.

5.2. Loyalty and Switching Costs

The steady-state service level is affected by factors that increase retention, such as customer inertia,

loyalty, and switching costs. We capture these factors using a generic parameter α such that F (s;α)

is increasing. This implies J(s;α) is increasing in α, confirming the intuitive result that, all else

equal, loyal customers are more valuable. But do they also receive better service?

As illustrated in Figure 2, the steady state s∗∗(α) is typically nonmonotonic: it increases up to a

certain point but then decreases. This suggests that there is an “ideal” loyalty level beyond which

the firm will treat customers as a captured audience and therefore reduce its costly investment in

retention. In the additive specification, α can be viewed a proxy for customer inertia, or switching

costs, whereas in the multiplicative case it reflects customer’s sensitivity to prior service experiences.

By moderating F ’s degree of concavity, α affects marginal returns to service quality and the

nature of the transient service policy (cf. panels (b,c) in Figure 1). This parameter also links to the

level of competition in the market environment (Jones and Sasser 1995), suggesting that—from
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the customers’ point of view—there is an optimal level of market competition that results in the

highest service level. This is partially consistent with Hall and Porteus (2000), who find that loyalty

decreases long-run service levels in an oligopoly. Our model captures competitive effects implicitly,

through customer choice; strategic interaction remains an interesting topic for future research.

5.3. Price

There are multiple arguments for managing service levels, as opposed to prices, in long-term rela-

tionships; see for example Bolton and Drew (1991), Liu et al. (2007), and Ovchinnikov and Pfeifer

(2011). We assume for simplicity that prices are exogenously fixed throughout the customer’s life-

time (e.g. based on strategic, competitive, or brand image considerations); our framework can be

adapted to manage discounts rather than service levels.7 In this context, we investigate the effect

of price P on long-term service and customer profitability. Higher prices may increase margin, but

they also diminish customer surplus, and thereby reduce the probability of retention; in other words,

F (s;P ) is decreasing in P (because U is so, cf. (2)). Proposition 1 shows that the effect of price on

long run service s∗∗(P ) is determined by their interaction in W (s;P ) = λπ(s;P )+ (1−λ)Π(s;P ).

In general, we find that the unilateral effect of margin on long-run service is nonmonotonic, if

short-term profit π is unimodal, in particular increasing in P as with subscription services (i.e.,

π(x) = P − c(x)). The unimodal relationship illustrated in Figure 2(c) suggests that higher-margin

customers command better service—up to a certain point, where the pattern is reversed and the

relationship becomes more transactional. Prices that are too high make it easier for customers to

defect, and better service cannot indefinitely make up in retention what is lost by extracting such

high rents. This trade-off is reflected in the unimodal relationship between price and customer

lifetime value, illustrated in Figure 2(d).

Figures 1 and 2 illustrate the trade-offs among customer characteristics (margin, adaptation,

and loyalty), and how they affect value and long-run service. The insights, which are summarized

in Section 9 (see Table 2), remain robust when customers are heterogeneous (see Section 8) as well

as under more general profit and adaptation models discussed next.

6. General Profit Models
This section shows that our insights remain valid when we account for more general profit models,

including volume effects. Unlike need-based services (e.g., insurance, utilities), certain hedonic and

utilitarian services are such that past service experiences can have a positive impact on customers’

volume and/or frequency of purchase. For example, a more satisfied client may purchase additional

7 In this case xt captures the discount from the reference price, and customers form adaptive price expectations that
affect demand and, in our case, renewal; this is unlike the treatment in Lewis (2005) and Popescu and Wu (2007).
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insurance services or use a certain loan service more often. Bolton et al. (2006) show that prior ser-

vice experiences affect the purchase of additional support contracts. So far, our stylized model has

focused on customer retention, and ignored the positive effect of past service experiences on cus-

tomer spending, purchase frequency, and acquisition. This section demonstrates that incorporating

these effects does not change the nature of our insights. For simplicity we discuss each extension in

isolation, but combining them will not change the results. We conclude that, despite its simplicity,

the stylized model (5) captures essential features of the problem at hand.

6.1. Volume Effects

Suppose that better past experiences increase purchase volume, so instant profit π(x, s) is an

increasing function of s. For example, an advertiser may spend a larger share of its budget with

a publisher who delivers more audience. Redefine W (s) = λπ(s, s) + (1 − λ)Π(s), where Π(s) =

π(s, s)L(s), and denote partial derivatives with corresponding subscripts, in particular π2(s, s) =
∂
∂s

π(x, s)|x = s. Then we have the following result.

Proposition 5. The statements in Lemma 1 and Propositions 1–4 extend under volume effects

provided that short-term profit π(x, s) is supermodular, concave in x, and increasing and convex

in s and that π(s, s) is concave in s. In particular, the steady state s∗∗ ∈ [s, s̄] solves W ′(s) =

(1−λ)π2(s, s).

Our main insights are robust to volume effects. The steady-state service level is lower than its

static counterpart, and this remains true even if defection decisions are affected only by the most

recent service encounter (λ = 0) because s∗∗(0)≤ s̄. In the absence of volume effects (π2 ≡ 0) we

recover Proposition 1, and in particular s∗∗(λ = 0) = s̄. With volume effects, π2(s, s) is positive;

hence, ceteris paribus, the firm needs to invest less effort over the long run in customers who can

be easily enticed to spend more (e.g., through cross- or up-selling). These customers are also more

profitable, providing an overall higher return on investment. This finding underscores the benefit

of value-added services that stimulate customer spending and reduce retention costs.8

Existing models of adaptive demand have focused on the effect of past policies on volume but

not on the probability of defection (see Section 2). Without defection (i.e., with F constant),

Proposition 5 shows that customer value J is convex and the optimal service policy x∗ is increasing;

this extends Proposition 3. In contrast with Adelman and Mersereau (2010), who find no memory

effect under deterministic demand, the effect persists in our model (s∗∗(λ) decreasing in λ).

We next provide intuition for the assumptions underlying Proposition 5. Increasing marginal

effects of service quality on demand (i.e., assuming that π(x, s) is convex in s) is consistent, for

8 We have not even included the increase in customer switching costs (and hence retention) that results from capturing
a larger share of the customer wallet.
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example, with Gans (2003) and the concept of consumer “delight” (Bowman and Narayandas

2004). Supermodularity means that customers who had better experiences with the firm are more

sensitive to changes in service, or that the marginal cost of serving them is lower; this assumption,

together with the concavity of π in x, ensures global stability. The last condition, which is used to

show that s∗∗ is unique and decreasing in λ, requires that service have diminishing marginal effects

on immediate profit for a firm that keeps service quality constant. For example, these conditions

hold when π(x, s) = r(s)− c(x) if both customer spending r and costs c are increasing and convex

in their respective arguments and if the marginal cost of service grows faster than the marginal

effects of past service quality on demand.

6.2. Customer Visits

Our stylized model (5) assumes that customers periodically visit the firm and decide whether or

not to renew. However, our main insights are not changed by uncertainty in visits and renewal

timing decisions nor by the positive effects of service quality on the frequency of these events.

6.2.1. Endogenous visit frequency. Suppose that, in each period, a customer who has

received better quality of service s has a higher probability v(s) of visiting the firm. We then obtain

J̄v(s) = v(s){maxx π(x, s) + βF (λs + (1−λ)x)J̄v(λs + (1−λ)x)}+ β(1− v(s))F (s)J̄v(s). Denoting

Fv(s) = v(s)

1−βF (s)(1−v(s))
, we obtain that Jv(s) = J̄v(s)/Fv(s) solves model (5) with F replaced by

F ·Fv, which is increasing in s. All our results so far extend in this case.

6.2.2. Viscous demand. In contractual settings such as insurance, utilities, and subscrip-

tions, the customer visits the firm regularly but only occasionally—that is, with probability p(s)—

considers whether or not to defect. A boundedly rational attention budget can explain such demand

viscosity: “the consumer rethinks such decisions from time to time, regularly or at some random

intervals, perhaps triggered by some events” (Radner 2003, p. 190). The resulting model Jp(s) =

maxx π(x, s)+β[p(S)F (S)Jp(S)+(1−p(S))Jp(S)], where S = λs+(1−λ)x, has the same structure

as model (5) but with F replaced by the increasing function 1− p(s)(1−F (s))≥ F (s).

6.3. Customer Acquisition

Although the main focus in this paper is on maximizing profit from an existing customer base (i.e.

models for customer base analysis, e.g. Fader and Hardie 2009), our framework can be adjusted

to incorporate the positive effects of service experiences on customer acquisition through referrals.

Suppose that, in each period t, an existing customer may bring in a new customer with the same

service quality expectations st; this reflects “word of mouth”, which occurs with probability Fa(st).

In this viral marketing type of acquisition model, growth is proportional to the customer base and

so the problem remains separable at the customer level. All our results extend by replacing F

with F +Fa if this sum does not exceed 1/β (in order to ensure a bounded value function; see the

Appendix).
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7. General and Asymmetric Adaptation Models
This section extends our model, based on exponential smoothing (3), to allow for smooth non-

linearities, as well as non-smooth behavioral asymmetries in memory and adaptation processes.

7.1. Nonlinear Adaptation Models

In order to account for smooth nonlinear effects in the customers’ perception and adaptation pro-

cess, we set st+1 = H(xt, st). Our results extend under this general adaptation process by replacing

λ with λ(s) = H2(s, s), which is the derivative of H(x, s) with respect to s evaluated at x = s; for

exponential smoothing (3), we recover precisely λ(s) = λ.

Proposition 6. Suppose that the adaptation process satisfies the following assumptions: (a)

H(x, s) is increasing in x and s, and H(s, s) = s; (b) H11(x, s)≤ 0; (c) H12(x, s)≥ 0; (d) H22(s, s)≥
0. Then the results in Lemma 1 and Propositions 1–4 extend to this model, and the corresponding

steady state solves λ(s)π′(s)+ (1−λ(s))Π′(s) = 0.

It is interesting that, when service is aligned with expectations, the steady state depends on the

adaptation process only via λ(s), the marginal effect of previous experiences on service quality.We

next discuss the assumptions in Proposition 6. Part (a) states that, all else equal, both current and

previous service levels have a positive effect on service quality; this is consistent with empirical

evidence (Boulding et al. 1993). Diminishing marginal sensitivity to service, part (b), is a natural

assumption. Parts (c) and (d) are technical conditions stating that perception of service quality is

more sensitive to a change in (current or past) service for customers who had better past experiences

with the firm. To our knowledge, these latter two hypotheses have not been tested.

The assumptions in Proposition 6 are satisfied, for example, by exponential smoothing models in

which the weight attached to the current experience depends on the current service level: H(x, s) =

λ(x)s+(1−λ(x))x, provided that λ(x) is increasing with bounded curvature, λ′(x)≥ |λ′′(x)|/2 (as

with, e.g., λ(x) = x, ex−1, and 1−e−x). In this model, lower service is more salient in memory—that

is, the lesser the current experience, the more it weighs on service quality. Section 7.2 describes a

model in which experiences below expectations are more salient than those above expectations.

7.2. Loss Aversion

In this section we investigate, along lines that are consistent with prospect theory and empirical

evidence, the effect of behavioral asymmetries on adaptation and decision processes. We find that

these asymmetries—in particular, loss aversion—have important effects on the firm’s policy: (i)

they make constant service policies more prevalent, leading to a range of steady states; and (ii)

optimal service policies oscillate if the asymmetries are reversed.9

9 These insights are preserved in an alternative retention model, driven by disconfirmation–i.e., the gap between
experience and expectation, F (x− s), where customers react more to changes in service quality than to absolute
levels.
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Prospect theory postulates that decision makers code new information as gains or losses relative

to a status quo, a principle that applies to both decision and experience utility (Kahneman et al.

1997). “Experienced utility” is the decision maker’s hedonic value at the moment of experience, a

value that in our model is captured by the concept of service quality. Moreover, a negative change

from the status quo has a larger effect on value than a positive change of the same magnitude.

Generally known as “loss aversion”, this phenomenon has received vast empirical support in the

service quality literature—not only in B2C but also in B2B markets (Bolton et al. 2006).

Consider the following asymmetric (kinked) service quality updating process:

sK
t+1 =

{
st +(1−λG)(xt− st) if xt ≥ st,
st +(1−λL)(xt− st) if xt < st,

(8)

where 1− λL > 1− λG expresses loss aversion. Such a kinked learning model is used by Gaur and

Park (2007) for consumers who form expectations about product availability.

The Bellman equation for loss-averse adaptation can be written as

JK(st) = max
xt∈[0,1]

π(xt)+βF (sK
t+1)J

K(sK
t+1), (9)

where sK
t+1 follows the transition dynamics (8). Let JL and JG denote the value functions of the

smooth problems (5) corresponding to λL and λG, respectively. Loss aversion implies that, by

Proposition 1, the corresponding steady states satisfy s∗∗L = s∗∗(λL) > s∗∗(λG) = s∗∗G . We show in

the Appendix that JK(s)≤min{JL(s), JG(s)}. This suggests that loss aversion—in other words,

the asymmetric effect of disappointing experiences relative to pleasurable ones—has a negative

effect on profitability, which is consistent with the findings in Gaur and Park (2007).

Proposition 7. Assume that customers are loss averse, λL < λG. Then Problem (9) admits a

range of steady states [s∗∗L , s∗∗G ]; that is, starting from any s0 ∈ [s∗∗L , s∗∗G ], a constant service path x∗t =

s∗t = s0 is optimal. For s0 > s∗∗L , the service quality path {s∗t} decreases to s∗∗L and JK(s0) = JL(s0).

For s0 < s∗∗G , {s∗t} increases to s∗∗G and JK(s0) = JG(s0). The optimal service path {x∗t} converges

to the same steady state as the corresponding service quality path.

Adding loss aversion to the model does not affect the general structure of the transient policy,

but it does enlarge the set of steady states and thereby increases the prevalence of constant service

policies (see Figure 3(a)). Intuitively, the firm has less leverage to improve perception when cus-

tomers anchor more strongly on negative experiences. Technically, this is due to the kink in service

quality updating.

For completeness, we briefly consider the case where customers are “gain seeking” (i.e., where

λG < λL). This means that service experiences above expectations (positive disconfirmation) are

more salient than those below expectations (negative disconfirmation). Bolton et al. (2000) find
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Figure 3 Optimal service quality paths for (a), loss averse and (b) gain seeking customers. π(x) = 1−x2, F (s) =

1/(1+ exp(−5s)), λ = 0.5, β = 0.94. (a) λL = 0.4 and λG = 0.6; (b) λL = 0.6 and λG = 0.4.

evidence that members of loyalty rewards programs tend to discount or overlook negative service

experiences. In this case, we find that no interior steady state exists. Under a high–low policy (cf.

Figure 3(b)), the firm benefits in the long run by manipulating customer expectations. Here the

benefits to the firm are attributable to the positive net effect of first increasing service and then

decreasing it.

Proposition 8. If λL > λG, then problem (9) admits no interior steady state; that is to say,

any optimal service path oscillates.

8. Extensions: Heterogeneous Customers and Shared Resources
This section extends our setup to incorporate such “pooling” effects as customer heterogeneity,

shared resources, and shared costs. In these cases, Problem (1) is no longer separable and so the

firm must make trade-offs between customers.

8.1. Customer Heterogeneity and Parameter Uncertainty

So far we have assumed that the firm is fully informed about customer characteristics, I, and

that it can perfectly customize service. In this section, we relax these assumptions to acknowledge

the firm’s uncertainty about customer types—in particular, regarding initial expectations s0 and

retention drivers (loyalty or switching costs) α. This model reflects the case in which a firm offers

the same service levels to a heterogeneous pool of customers that cannot be targeted individually.

Suppose the firm knows the distribution θ̃ of customer types, and F (·;θ) is strictly increasing

in θ; that is, suppose higher types are more likely than lower types to renew, ceteris paribus. Here

θ̃ may capture the uncertainty about loyalty α̃ or about initial expectations s̃0 (or both).10 The

firm’s objective, given θ̃, can be written as

10 Technically, for θ̃ = s̃0, we keep uncertainty separate from the state st by defining the latter as “delivered” service
quality, i.e., setting s0 = 0 in the recursive definition of st and Ft(st; s̃0) = F (st + λts̃0), a minor abuse of notation.
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Figure 4 Optimal state paths (dashed lines s̃t) when customers are heterogeneous in (a) initial expectations

s̃0 (for α = 3) and (b) loyalty α̃ (for s0 = 0.5). Solid lines represent state paths st for homogeneous

customers; π(x) = 1−x2, F (x) = 1/(1+ exp(αx)), λ = 0.5, β = 0.94.

J̃(θ̃) = max
X={xt}

Eθ̃[J(X; θ̃)]. (10)

A recursive expression of this imperfect observation model requires, for a given policy X, the

probability that the consumer renews at stage t given that she has renewed in all previous stages:

P
(
Ũt+1(st+1; θ̃)≥ 0|Ũi(si; θ̃)≥ 0, i = 1, . . . , t

)
=

Eθ̃

[∏t+1

i=1 F (si; θ̃)
]

Eθ̃

[∏t

i=1 F (si; θ̃)
] = Eθ̃t

[F (st+1; θ̃t)].

The distribution θ̃t of types who are alive at time t is updated recursively each period in a Bayesian

fashion: θ̃t+1 ∼ (θ̃t|customer renews at time t) with θ̃0 = θ̃. The following Bellman equation holds

for the finite T -horizon version of (10):

J̃T
t (st, θ̃t) = maxπ(xt)+βEθ̃t

[F (st+1; θ̃t)]J̃T
t+1(st+1, θ̃t+1), J̃T

T (sT , θ̃T ) = 0, (11)

where st+1 = λxt +(1−λ)st and

P(θ̃t+1 ≥ k) =
E[F (st+1; θ̃t)|θ̃t ≥ k]P(θ̃t ≥ k)

E[F (st+1; θ̃t)]
, ∀k ∈ [θL, θH ].

In particular and by the same argument as in Proposition 2, concavity of π implies that, all else

equal, the optimal transient policy s̃∗t+1(st, θ̃t) is increasing in st for any given θ̃t. However, this

term θ̃t also affects the optimal state paths, which need not be monotonic (see Figure 4).

Proposition 9. For any distribution θ̃ with support [θL, θH ], Problem (10) admits the unique

steady state s̃∗∗(θ̃) = s∗∗(θH).

Proposition 9 characterizes the optimal long-run policy of the firm under parameter uncertainty.

It shows that, among a pool of heterogeneous customers, the firm targets the highest types in the
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long run because they are more likely to be active. Since lower types are more likely to defect, the

distribution of surviving types, θ̃t, increases every period (in the sense of first-order dominance)

in a Bayesian fashion. This sorting argument can explain the empirical evidence of increasing

retention rates, as illustrated in Fader and Hardie (2009) for the special case of F (st;θ)≡ θ. Our

result extends their model and insights to capture the effect of service dynamics on retention and

to explore possible implications for the optimization problem of the firm.

Problem (11) is generally intractable owing to the high dimensionality of the state space. For

two-point distributions θ̃ = [θH , p;θL,1− p], (11) is amenable to a two-dimensional state dynamic

program with θ̃t replaced by pt and updated as pt+1 =
ptF (st+1;θH)

ptF (st+1;θH)+ (1− pt)Ft(st+1;θL)
. We shall

use this formulation in numerical experiments to illustrate the effect of customer heterogeneity in

initial expectations and loyalty (or switching costs) on the firm’s policy and profit.

8.1.1. Heterogeneity in initial expectations. A consequence of Proposition 9 is that—

regardless of the distribution of customers’ initial expectations, θ̃ = s̃0—the optimal service paths

converge to the same steady-state s∗∗ given by Proposition 2, because s̃∗∗(s̃0) = s∗∗(sH
0 )≡ s∗∗. In

other words, facing heterogeneous customers, the firm will provide the same long-run service level

as if assuming “average”, or incorrect initial expectations. Figure 4(a) illustrates this effect as well

as the transient policy of the firm. Consumers with different initial expectations maintain different

perceptions of service quality (grey versus black dotted lines), but these converge relatively fast to

the same steady state as the memory effect of initial expectations fades. In the short run, unlike the

homogeneous case (Proposition 2), heterogeneous customers may each experience nonmonotonic

service quality as the firm optimally juggles between extracting rents from low-type customers

(who defect earlier) and maintaining its long-term relationships with high types.

8.1.2. Heterogeneity in retention drivers. A similar transient oscillation effect is triggered

by customer heterogeneity in loyalty or switching costs, θ̃ = α̃. As illustrated in Figure 4(b), the firm

first targets transactional customers and then converges to the optimal policy for loyal customers

in the long run. Unlike the case with initial expectations, ignoring heterogeneity in loyalty (i.e.,

assuming α = Eα̃) may lead the firm to offer service levels that are either too high or too low, in the

long run, because of the unimodal relationship between long-run service and loyalty (cf. Section 5.2).

Indeed, Figure 4(b) shows that s̃∗∗(α̃ = [1, 1
2
; 5, 1

2
]) = s∗∗(5) > s∗∗(3) > s∗∗(4) = s̃∗∗(α̃ = [2, 1

2
; 4, 1

2
]).

8.1.3. Value of information. Table 1 reports, along three dimensions, the value of informa-

tion regarding customer types: (1) the effect of parameter uncertainty (variance) in θ̃ on customer

value (i.e., the percentage gap from certainty equivalence); (2) the cost of assuming that cus-

tomers are homogeneous of average type θ = Eθ̃ and delivering the optimal service policy X∗(Eθ̃) =

argmaxJ(Eθ̃)) corresponding to the homogeneous case; and (3) the value of full information and
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Table 1 Value of information about s0 and α with parameters as in Figure 4; s̃0 = [0.3, 1
2
; 0.7, 1

2
], α̃ = [3, 1

2
; 7, 1

2
].

Uncertainty Measure Initial Expectations s̃0 Loyalty α̃

Price of uncertainty J(Eθ̃)−J̃

J̃(Eθ̃)
6% 45%

Cost of ignoring uncertainty J̃(X∗(Eθ̃);θ̃)−J̃

J̃
4% 30%

Value of screening E[J(θ̃)]−J̃

J̃
5% 70%

targeting of individual customer types. These measures all suggest that information on customer

loyalty is more valuable than initial expectations, and so is targeting service on that dimension.

At the cost of higher computational complexity, our framework in this section extends to simul-

taneously optimizing service and learning about customer parameters by updating a prior on θ̃

in each period. Numerical results (not reported here for conciseness) evidence a similar policy

structure with relatively limited additional profit gains (less than 3% for α̃ and even less for s̃0).

In sum, our results in this section show that the service trajectory for heterogeneous customers

converges to a steady state s∗∗(θH) that corresponds to the most loyal types but is independent of

the distribution of initial expectations. Convergence need not be monotonic, and it occurs faster

for s̃0 than α̃ because of the decaying effect on service quality perceptions, and hence on retention.

Overall, our results support the importance of measuring retention drivers such as loyalty and

switching costs—more so than initial expectations—and of targeting service along these dimensions.

8.2. Shared Resources and Costs

In this section, we briefly discuss how our framework can extend to incorporate shared resources and

cost-pooling effects across customers. For simplicity, we assume that the firm serves two customers,

A and B, with corresponding retention functions FA and FB and memory parameters λA and λB.

The total short-term profit from offering service levels xA and xB to these two customers is denoted

π(xA, xB); we assume it to be concave in each dimension and submodular. We further consider the

possibility of resource constraints, xA +xB ≤Q, and without loss of generality we normalize Q = 1.

For example, π(xA, xB) = πA(xA) + πB(xB) + πC(xA + xB), where the first two terms capture the

individual short-run profit (or revenue) from each customer and the latter the pooled cost of total

resources deployed, or the salvage value of unutilized resources (e.g. spot market profit in the case

of advertising contracts). Concavity of πC ensures that π is submodular.

The Bellman equation to account for capacity constraints can be written as

J(sA
t , sB

t ) = max
xA

t +xB
t ≤1

R(xA
t , sA

t , xB
t , sB

t )+βFA(sA
t+1)FB(sB

t+1)J(sA
t+1, s

B
t+1), (12)

where sj
t+1 = λjs

j
t +(1−λj)x

j
t , for j ∈ {A,B} and

R(xA
t , sA

t , xB
t , sB

t ) = π(xA
t , xB

t )+βFA(sA
t+1)F̄B(sB

t+1)JA(sA
t+1)+βF̄A(sA

t+1)FB(sB
t+1)JB(sB

t+1)
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Figure 5 Steady states vs. loyalty (a), price (b) and memory (c), for two customers with shared resources.

π(xA, xB) = P1 +P2, β = 0.94, Fi(x) = 1/(1+exp(−αix+ρiP +1), si
0 = 0.5, i∈ {A,B}. (a) λi = 0.6, Pi =

ρi = 1; (b) λi = 0.6, αi = 10, ρi = 5; (c) αi = 5, Pi = ρi = 1.

for JA and JB the expected long-term profit in the corresponding single-customer models. Define

Π(xA, xB) = R(xA,xA,xB ,xB)

1−βFA(xA)FB(xB)
, the profit that corresponds to offering a constant policy (xA, xB) until

the first customer dies and thereafter using the optimal single-customer policy for the remaining

customer. Define also W j(xA, xB) = λjπ(xA, xB)+ (1−λj)Π(xA, xB) for j ∈ {A,B}.

Proposition 10. (a) The steady states for Problem (12), (s∗∗A , s∗∗B ), satisfy one of the following

conditions: (i) W A
1 (sA, sB) = 0,W B

2 (sA, sB) = 0 and sA + sB ≤ 1; (ii) W A
1 (sA, sB) = W B

2 (sA, sB)

and sB = 1− sA; (iii) sA is a steady state of JA and sB = 0; (iv) sB is a steady state of JB and

sA = 0. (b) The optimal service quality policy for customer A, s∗A(sA, sB) is increasing in sA and

decreasing in sB, and conversely for customer B.

Part (a) of the proposition characterizes steady-state service levels for the two customers under

capacity constraints, extending Proposition 1. In the first two cases, unlike the latter two, both

customers are served in the long run. In particular, if capacity is binding (case (ii)) then the

firm balances in steady state the marginal long-term profit from each customer. In this case,

Figure 5 illustrates the robustness of our sensitivity results in Section 5 when π(xA, xB) = P1 +P2

and xA + xB ≤ 1. Specifically, the steady state s∗∗ remains unimodal with respect to changes in

loyalty α and price P , and it also remains decreasing in memory λ. This is contrary to Adelman

and Mersereau (2010), who find that higher-margin customers always get better service and that

memory does not affect the steady state when demand is deterministic; however neither retention

nor loyalty is captured in their average reward model.

Part (b) of Proposition 10 extends Proposition 2 in the capacitated case. Our numerical results
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suggest that the optimal service quality paths need not be monotonic (since there may be strategic

substitution between the two customers) but in the long run they converge to a steady state.

9. Conclusions
We relied on behavioral theories to develop a dynamic programming model of using responsive

service strategies to manage retention over time in a contractual relationship. In this context, we

showed that firms can extract more value in the long run by gradually managing service experiences

and expectations over time toward an “ideal” steady-state service level from which it is suboptimal

to deviate. This steady state does not depend on customers’ service quality expectations, and it is

lower than the optimal constant service offered by firms that ignore the effect of past experiences

on retention. We discover that behavioral asymmetries (such as loss aversion) drive the structure

of optimal long-run policies by ensuring convergence, and increasing the prevalence of constant

service policies. Indeed, the more customers are averse to service downgrades, the wider is the

range of optimal constant service policies offered by the firm and the lower are its profits from

those policies.

Higher-margin customers are not always more valuable, and they need not receive better service

because prices above a threshold make the relationship more transactional. Customers who are

more loyal are more valuable, but they may not receive better service if they are inherently too

sticky. Our model predicts a unimodal relationship between loyalty and service. From the customers’

perspective, this means that there is an ideal, intermediate level of loyalty (driven, e.g., by switching

costs or the level of market competition) that fetches the best service. The firm offers less service

in the long run to less adaptive customers (i.e., those who anchor more on past experiences); these

are more profitable than customers who focus on recent experiences, but only if they have received

better treatment in the past. The relationships between various consumer characteristics and the

firm’s policy and profits are summarized in Table 2.

These findings are robust when customers are heterogeneous and when accounting for the impact

of prior service experiences on purchase volumes, visit frequency, and referrals. It is interesting that

the insights reported here are also independent of the shape of the retention function. However, that

function does influence the initial sequence of service experiences as well as the marginal returns to

service quality. Indeed, in a transient regime, we find that customers who had better experiences

may receive higher or lower service depending on the marginal effect of service quality on retention.

In heterogeneous markets, the firm capitalizes first on customers who are more transactional but,

over the long run targets those who are most likely to renew (e.g., because they are more loyal,

have lower switching costs, or had better past experiences). Ignoring heterogeneity in loyalty or

switching costs is more costly than ignoring differences in service quality expectations, and the

value of information and screening on these dimensions is significantly higher.
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Table 2 Effects of Margin and Consumer Behavior on Policy and Value

Characteristics Long-run Service Customer Value
(I) (steady state s∗∗) (J)
Price (P ) Inverse U-shape Inverse U-shape

Loyalty (α) Inverse U-shape Increasing

Adaptation (λ) Increasing Increasing for high s0;
decreasing for low s0

Loss aversion Expands range Decreasing
(ρ = λG/λL > 1) (oscillates if ρ < 1)

Initial expectations (s0) No effect Increasing

This paper is a first step toward capturing behavioral effects of service dynamics on customer

retention and profitability in a business relationship. We have therefore strived for parsimony in

developing the simplest stylized model capable of transmitting the main insights from this frame-

work. Ample opportunities exist for future research to extend this model and address its limitations

from an operational, marketing, or economic perspective—for example, by incorporating strategic

interactions, acquisition spending, or richer operational structures. For expository purposes, we

cast our model and results in the context of managing service relationships. However, our setup

can be expanded to broader contexts, including dynamic pricing, employee retention and effort and

quality management.
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Appendix A: Proofs
Proof of Lemma 1. (a) Monotonicity of the value function holds because F (λs + (1− λ)x) is

increasing in s. Monotonicity is preserved by induction for the corresponding finite-horizon model

and then at the limit for our infinite-horizon formulation. The firm can extract at least Π(s) from

the customer by maintaining the service quality at current expectations (i.e., by offering {xt ≡ s}),

so Π(s)≤ J(s). An upper bound on customer value is obtained if the customer never defects and the

firm offers the short-term profit maximizing service; in this case J(s)≤
∑∞

t=0 βt maxs π(s) = π(s)

1−β
.

(b) Part (a) and F increasing imply that the profit-to-go in the Bellman equation is increasing.

Because π is concave, its maximizer s≤ x∗(s) for all s; in particular, π′(x∗(s))≤ 0.
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Proof of Proposition 1. Define π̄(s,S) = π(S−λs
1−λ

). Then, in terms of the variable st+1 =

λst +(1−λ)xt, Problem (5) becomes

J(st) = max
st+1∈s(st)

π̄(st, st+1)+βF (st+1)J(st+1). (13)

Here s(st) = [λst, λst +(1−λ)] is the feasible set of next-period service quality st+1 associated with

the constraint xt ∈ [0,1]. We will use this alternative formulation for technical convenience and

because it facilitates extensions.

First, boundary steady states can be ruled out because π and Π have interior maximizers. Indeed,

by Lemma 1(b), s∗∗ ≥ s > 0 and so 0 cannot be a steady state. Also, s = 1 cannot be a steady state

because J(1)≥ J(s̄)≥Π(s̄) > Π(1); hence the constant path xt ≡ 1 cannot be optimal.

We can therefore focus on interior steady states, which are given by the following Euler equation:

∂

∂st+1

{
π̄(st, st+1)+βF (st+1)

(
π̄(st+1, st+2)+βF (st+2)Π(st+2)

)}
st=st+1=st+2=s

= 0.

This can be rewritten as

π̄2(s, s)+βF ′(s)Π(s)+βF (s)π̄1(s, s) = 0. (14)

Differentiating Π(s) = π̄(s,s)

1−βF (s)
then gives (1−βF (s))Π′(s) = π̄1(s, s)+ π̄2(s, s)+βF ′(s)Π(s), which

allows to write the Euler Equation (14) as

Π′(s) = π̄1(s, s). (15)

This is equivalent to W ′(s) = λπ′(s)+(1−λ)Π′(s) = 0 because π̄1(s, s) =− λ
1−λ

π′(s). Thus a steady

state maximizes W , and the strict quasi-concavity of W ensures uniqueness. Furthermore, s∗∗ ≤ s̄

follows because Π is unimodal and Π′(s∗∗) =− λ
1−λ

π′(s∗∗)≥ 0 by Lemma 1 (b).

To show that s∗∗(λ) is decreasing in λ, we use the envelope theorem to derive Wsλ(s∗∗) =

π′(s∗∗)−Π′(s∗∗) = 1
1−λ

π′(s∗∗)≤ 0, as argued previously.

To show that s∗∗(β) is increasing, it is sufficient to show that Π(s;β) and hence W (s;β) are

supermodular. In fact, it suffices to show that log(Π(s;β)) = log(π(s))− log(1− βF (s)) is super-

modular in (s,β). The derivative of this expression with respect to β is F (s)L(s), so indeed it is

increasing in s.

Proof of Proposition 2. Since π(x) is concave, it follows that π̄(st, st+1) is supermodular and

so is the term on the right-hand side of the Bellman equation (13). Moreover, the feasible sets s(st)

are ascending in st; that is, for any st ≤ s′t, r ∈ s(st), and r′ ∈ r(s′t) we have min(r, r′) ∈ s(st) and

max(r, r′) ∈ s(s′t). Therefore, by Topkis’s theorem (Topkis 1998, Thm. 2.8.2), the policy function

s∗(·) is increasing on [0,1]. It follows that s∗(·) has a fixed point, s∗∗ = s∗(s∗∗), that is a steady

state of Problem (13).
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Finally, monotonicity of s∗(·) implies that the state path {s∗t} is monotonic (by induction);

because the feasible set s(·) is compact, {s∗t} must converge to a steady state. Hence a steady state

exists, and our assumptions ensure that it is unique and interior. Note that, in steady state we

have s∗∗ = λs∗∗ +(1−λ)x∗∗, so s∗∗ = x∗∗. In particular, because the service quality paths converge

monotonically to s∗∗ (which maximizes the unimodal function W ), it follows that W is a Lyapounov

function for our problem.

Proof of Proposition 3. The result holds because convexity is preserved by maximization

and limits. Indeed, if F (·) is convex then it follows by induction that the corresponding finite-

horizon value function is also convex. By value iteration, we can take limits to obtain that the

infinite-horizon value function J(s) is convex; therefore, V (s) = F (s)J(s) is convex.

We further show that V convex (resp. concave) is sufficient for the service policy to be increasing

(decreasing) and the value function J to be convex (concave), confirming the statement at the

end of Section 4.3. Now, V convex (concave) is equivalent to the argument on the right-hand side

of the Bellman equation, Q(x, s) = π(x) + βV (λs + (1− λ)x), being supermodular (submodular).

Monotonicity of the optimal policy then follows by Topkis’s theorem. Moreover, V convex implies

that Q(x, s) is convex in s, so J is convex. On the other hand, V and π concave implies that Q(x, s)

is jointly concave, so J must be concave.

Proof of Proposition 4. For a given s0, consider the optimal service path st+1 = s∗(st) for all

t. By the envelope theorem, for all t we have

∂

∂λ
J(st;λ) =

st+1− st

(1−λ)2
π′
(st+1−λst

1−λ

)
+βF (st+1)

∂

∂λ
J(st+1;λ). (16)

In particular, at the steady state st = st+1 = s∗∗(λ), this gives ∂
∂λ

J(s;λ)|s=s∗∗ = βF (s) ∂
∂λ

J(s;λ)|s=s∗∗

or ∂
∂λ

J(s;λ)|s=s∗∗ = 0. For s0 ≥ s∗∗(λ), by Proposition 2 the optimal service quality path is decreas-

ing st+1 ≤ st for all t. Because π′(xt)≤ 0 on an optimal path by Lemma 1(b), the first term on the

right-hand side of (16) is positive. Thus, for any t > 0, we have

∂

∂λ
J(s0;λ) ≥ βF (s1)

∂

∂λ
J(s1;λ) (17)

≥ β2F (s1)F (s2)
∂

∂λ
J(s2;λ)≥ · · · (18)

≥ lim
t→∞

βt

(
t∏

i=1

F (si)

)
∂

∂λ
J(st;λ) = 0. (19)

The last derivative is bounded as t→∞ because st → s∗∗(λ) (Proposition 2). The case s0 ≤ s∗∗(λ)

is proved similarly.

Proof of Proposition 5. It is easy to see that Lemma 1 extends—in particular, π1(x∗(s), s)≤ 0.

Here we follow the same steps used to obtain the Euler Equation (15) in the proof of Proposition 1.
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In this case, Π′(s) = π̄1(s, s) = π2(s, s)− λ
1−λ

π1(s, s) or equivalently W ′(s) = (1− λ)π2(s, s), which

gives the desired results. The right-hand side of the first equation is positive at an optimal solution,

via Lemma 1(b), which implies s∗∗ ≤ s̄ = argmaxΠ(s). That s∗∗ is unique and decreasing in λ

follows if π̄1(s, s) is increasing in s, which in turn is implied by the assumptions in the proposition.

Indeed,

∂

∂s
π̄1(s, s) =

1
1−λ

∂

∂s

(
π2(s, s)−λ

∂

∂s
π(s, s)

)
=

1
1−λ

[
∂

∂s
π2(s, s)−λ

∂2

∂s2
π(s, s)

]
.

The first term is positive because π(x, s) is supermodular and convex in s, and the second because

π(s, s) is concave in s.

For Proposition 2 to extend, all we need is supermodularity of π̄(s,S) = π(S−λs
1−λ

, s) in (s,S); this

ensures that the state path is monotonic. The condition obtains because π(x, s) is supermodular

in (x, s) and concave in x. Convexity of π(x, s) in s ensures that Proposition 3 extends. It is also

easy to see that Proposition 4 extends, via Lemma 1(b).

Proof of the Results in Section 6.3. Let J(N,st) denote the expected profit from N con-

sumers in state st. With the referral acquisition process, the problem remains separable at the

customer level; that is, J(N,st) = NJ(1, st). Denote by F̄ = 1− F and F̄a = 1− Fa the defection

probabilities. The Bellman equation for the latter is

J(1, st) = max
x

π(x)+βF (st+1)Fa(st+1)J(2, st+1)+β[F (st+1)F̄a(st+1)+ F̄ (st+1)Fa(st+1)]J(1, st+1)

= max
x

π(x)+β(2F (st+1)Fa(st+1)+F (st+1)F̄a(st+1)+ F̄ (st+1)Fa(st+1))J(1, st+1)

= max
x

π(x)+β(F (st+1)+Fa(st+1))J(1, st+1).

We can recover our original model by using F + Fa instead of F . To explain the first equation we

remark that, for every customer who is alive at time t, we have at time t + 1: (a) two identical

customers in state st+1 with probability F (st+1)Fa(st+1); (b) one (old or new) customer in state

st+1 with probability F (st+1)F̄a(st+1) + Fa(st+1)F̄ (st+1); or (c) no customer. The second equation

follows from the separability property and the last by rearranging terms.

Proof of Proposition 6. Let h denote the inverse function of H(x, s); thus, h(H(x, s), s) = x.

The Bellman equation can be rewritten with respect to the variable st+1 as

J(st) = max
st+1∈s(st)

Q(st, st+1) = π(h(st+1, st))+βF (st+1)J(st+1), (20)

where s(·) represents the corresponding feasible set. Monotonicity of H ensures that the results in

Lemma 1 are preserved—in particular, π′(xt)≤ 0 at an optimal solution—so we can focus on the

interval where π is decreasing. Much as in the proof of Proposition 2, supermodularity of Q implies
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monotonicity of the policy function s∗(·). The reason is that H(xt, st) is increasing in st and so the

feasible sets s(st) are ascending. We have

Q12(st, st+1) = π′′(h(st+1, st))h1(st+1, st)h2(st+1, st)+π′(h(st+1, st))h12(st+1, st), (21)

where, as before, derivatives are denoted by corresponding subscripts. Differentiating

H(h(st+1, st), st) = st+1 (22)

with respect to st+1 and st yields (respectively)

h1(st+1, st) =
1

H1(xt, st)
> 0 and h2(st+1, st) =−H2(xt, st)

H1(xt, st)
≤ 0 (23)

by the assumptions in the proposition. Finally, we take the cross partial derivative of (22) with

respect to (st+1, st) and substitute h1(st+1, st) and h2(st+1, st) from (23); the result is

h12(st+1, st) =
H2(xt, st)H11(xt, st)−H12(xt, st)H1(xt, st)

[H2(xt, st)]3
≤ 0. (24)

Since π is decreasing and concave on the relevant domain, it follows from (23) and (24) that Q12 ≥ 0.

The rest of the proof is similar to that of Proposition 1.

Proof of Proposition 7. We transform Problem (9) to obtain

JK(st) = max
sK
t+1∈s(st)

π̄(st, s
K
t+1)+βF (sK

t+1)J
K(sK

t+1), (25)

where the state transition sK satisfies (8). This can also be written as sK
t+1 = min{sG

t+1, s
L
t+1}, where

sj
t+1 = st + (1− λj)(xt − st), j ∈ {G,L}. Indeed, when xt ≥ st we have sK

t+1 = sG
t+1 ≤ sL

t+1 (because

1−λL > 1−λG) and when xt ≤ st we have sK
t+1 = sL

t+1 ≤ sG
t+1.

We shall use (Pκ) to denote the smooth Problem (5) with λ = λκ = κλG + (1− κ)λL, so sκ
t+1 =

κsG
t+1 + (1− κ)sL

t+1. We also define (PG) and (PL) as (Pκ) when κ = 0 and κ = 1, respectively. Let

J i(st) denote the value function and s∗∗i the steady state of the corresponding problems (Pi), i ∈

{G,L,κ}. In particular, s∗∗κ=0 = s∗∗L and s∗∗κ=1 = s∗∗G .

Lemma 2. (a) JK(s) ≤ Jκ(s) for all s. (b) If s∗∗κ is a steady state for (Pκ), then it is also a

steady state for Problem (25).

Proof. (a) The claim follows from sκ
t+1 = κsG

t+1 + (1 − κ)sL
t+1 ≥ min{sG

t+1, s
L
t+1} = sK

t+1 if we first

use induction on the finite-horizon versions of the corresponding problems and then employ value

iteration. (b) Starting from s∗∗κ , a constant service quality path is optimal for (Pκ). This path is

feasible for our kinked Problem (25) and achieves the same value JK(s∗∗κ ) = Jκ(s∗∗κ ). Therefore, by

Lemma 2(a), the constant path s∗∗κ must be optimal for Problem (25) and so s∗∗κ is also a steady
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state for this problem. �

By Proposition 2, if we start from s0 > s∗∗κ=0 = s∗∗L then the optimal service quality path in (PL)

decreases to s∗∗L . This path is feasible for Problem (25) and gives the same value in both problems.

Because JL(s)≥ JK(s) for all s, the optimal path for (PL) is also optimal for Problem (25). The

case s0 < s∗∗κ=1 = s∗∗G is analogous.

By Proposition 1, s∗∗κ solves W ′(s;λκ) = 0 when λκ = κλG +(1−κ)λL. For κ = 0 (resp. κ = 1), the

solution to W ′(s;λκ) = 0 is s∗∗L (resp. s∗∗G ). Continuity of W ′(s;λ) ensures that, for all s∈ [s∗∗G , s∗∗L ],

there exists a κ ∈ [0,1] such that W ′(s;λκ) = 0; in other words, s is a steady state for (Pκ). By

Lemma 2, it is also a steady state for Problem (25) and hence for Problem (9).

Proof of Proposition 8. Suppose that the interior steady state exists and is equal to x. It

follows that, starting from s0 = x, any deviation from the constant service path {xt ≡ x, ∀t} is not

profitable. Consider the following two deviations:

℘+(e) = {x1 = x+ e, x2 = x− d, xt = x, t≥ 3}, (26)

℘−(e) = {x1 = x− e, x2 = x+ f, xt = x, t≥ 3}; (27)

here d = λL(1−λG)

1−λL
e and f = λG(1−λL)

1−λG
e. It follows that s2 = x for both paths. The profit associated

with each path is

J℘+(e)(x) = π(x+ e)+βF (λGx+ (1−λG)(x+ e))
(
π(x− d)+βF (x)Π(x)

)
, (28)

J℘−(e)(x) = π(x− e)+βF (λLx+ (1−λL)(x− e))
(
π(x+ f)+βF (x)Π(x)

)
. (29)

Suboptimality of any deviation from the constant path {x} implies that the derivative of J℘+(e)(x)

and J℘−(e)(x) with respect to e, evaluated at e = 0, should be negative. Since π′(x)≤ 0 at a steady

state by Lemma 1(b), it follows that

d

de
J℘+(e)(x)+

d

de
J℘−(e)(x)

∣∣
e=0

= β(λL−λG)
(

F ′(x)Π(x)− 1−λLλG

(1−λG)(1−λL)
F (x)π′(x)

)
≤ 0. (30)

This expression contradicts λL > λG, so an interior steady state does not exist. Boundary steady

states are ruled out in the same way as in Proposition 1.

Proof of Proposition 9. Monotonicity of the policy function follows as usual from the super-

modularity of short-term profit π̄. For notational convenience, we omit the horizon-length super-

script T. Because F is increasing in θ we have E[F (s; θ̃t)|θ̃t ≥ k]≥E[F (s; θ̃t)] for all t and k ∈ [θL, θH ],

which implies that

P(θ̃t+1 ≥ k) =
E[F (st+1; θ̃t)|θ̃t ≥ k]P(θ̃t ≥ k)

E[F (st+1; θ̃t)]
≥ P(θ̃t ≥ k). (31)



Aflaki and Popescu: Retention Dynamics
32

Hence θ̃t+1 �FSD θ̃t and so, by the monotone convergence theorem (Primas 1999), the distributions

must converge to that of θ̃∗ �FSD θ̃. Rearranging terms and taking limits in (31) yields that, for any

k ∈ [θL, θH ], either 0 = P(θ̃∗ ≥ k)≥ P(θ̃≥ k) (implying k = θL) or 0 = limt
E[F (st;θ̃

∗)|θ̃∗<k]

E[F (st;θ̃∗)]
. Because F

is strictly increasing in θ, the latter cannot hold for all k ∈ [θL, θH ] unless θ̃∗ is a Dirac at θH .

Proof of Proposition 10. Define π̄(sA, SA, sB, SB) = π(xA, xB) and similarly

R̄(sA, SA, sB, SB) = R(xA, sA, xB, sB), where xA = SA−λAsA

1−λA
and xB = SB−λBsB

1−λB
.

(a) The system of Euler equations obtains by equating to zero the partial derivatives with respect

to sA
t+1, respectively sB

t+1, of

R(sA
t+1, s

A
t , sB

t+1, s
B
t )+βFA(sA

t+1)FB(sB
t+1)

(
R(sA

t+2, s
A
t+1, s

B
t+2, s

B
t+1)+βFA(sA

t+2)F̄B(sB
t+2)Π(sA

t+2, s
B
t+2)

)
,

evaluated at si
t = si

t+1 = si
t+2, i∈ {A,B}. These equations, with arguments omitted for convenience,

can be written as

R̄2 +βFAFBR̄1 +βF ′
AFBΠ = R̄4 +βFAFBR̄3 +βFAF ′

BΠ = 0.

Differentiating Π with respect to each component we obtain

(1−βFAFB)Π1 = R̄1 + R̄2 +βF ′
AFBΠ and (1−βFAFB)Π2 = R̄3 + R̄4 +βFAF ′

BΠ.

Pairing these expressions up with the Euler equations, the latter can be written as R̄1 = Π1 and

R̄3 = Π2. Moreover, from the definition of R̄ it is easy to see that R̄1 = π̄1 and R̄3 = π̄3. Finally, we

use the definition of π̄ to obtain precisely the equations in case (i).

The system just described might not admit a solution that meets the capacity constraint. In that

case, either the firm serves only one customer (case (iii) or (iv)) or the resource is fully utilized in

steady state; that is, s∗∗A + s∗∗B = 1. Plugging this into the Euler equation gives the desired result.

(b) This part follows from the Topkis theorem (Topkis 1998, Thm. 2.8.2) because π submodular

and concave implies π̄ supermodular in (sj, Sj) and submodular in (si, Sj) and in (Si, Sj), i 6= j.



 

  


