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Abstract—The Self-Organizing Networks (SON) concept is
increasingly being used as an approach for managing complex,
dynamic mobile radio networks. In this paper we focus on the ver-
ification component of SON, which is the ability to automatically
detect problems such as performance degradation or network
instability stemming from configuration management changes. In
previous work, we have shown how Key Performance Indicators
(KPIs) that are continuously collected from network cells can be
used in an anomaly detection framework to characterize the state
of the network. In this study, we introduce new methods designed
to handle scope changes. Such changes can include the addition of
new KPIs or cells in the network, or even re-scoping the analysis
from the level of a cell or group of cells to the network level.
Our results, generated using real cellular network data, suggest
that the proposed network-level anomaly detection can adapt to
such changes in scope and accurately identify different network
states based on all types of available KPIs.

Index Terms—network automation, self-organized networks
(SON), SON verification, anomaly detection, diagnosis

I. INTRODUCTION

Modern radio networks for mobile broadband (voice and

data) are complex and dynamic, not only in terms of behavior

and mobility of users and their devices, but also in terms of

the many elements that make up the network infrastructure.

Effective management of such networks requires some form

of automated detection of problems such as performance

degradation or network instability. In order to prevent network-

level degradation, either the actions that change network-

element configurations must be coordinated a priori, or their

effects must be verified by a SON verification framework.

A. SON Verification

In previous work [5], we proposed a novel SON verifi-

cation framework that uses anomaly detection and diagnosis

techniques and operates within a certain spatial scope larger

than an individual cell, e.g., a small group of cells or cell

cluster being in scope for a SON optimization, an existing

administrative network domain, etc. Key Performance Indica-

tors (KPIs) are continuously collected from network cells and

used as indicators (e.g., call-drop statistics, channel-quality-

indicator statistics, handover statistics, throughput, etc.) for

network performance.

The first component of the SON verification framework [5]

was the network-level anomaly detection component, which
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Fig. 1. Illustration of topic modeling on clustering KPI data in a multi-level
clustering framework.

aimed to detect anomalies within a given scope of analysis (at

the level of either a network or group of cells). The anomaly

detection framework used a multi-level clustering approach in

which KPI data was first clustered to form different states

in which the network could be, and to express the overall

state of the network as a combination of states that correspond

to different parts of the network. Our framework used topic

modeling [1], a type of statistical model that provides an

efficient framework for training of clusters and performing

inference of the mixing proportion of the clusters (Figure 1).

Given the raw KPI data, topic models learn clusters of network

states, and output the codebook and the mixing proportions of

the clusters at each timestamp. For each cluster, a codebook

records a profile: the average of the cluster, called a centroid.

Clusters are also known as the topics in topic modeling. The

mixing proportion of clusters at each timestamp represents the

overall state of the cells in scope.

A second component of the anomaly detection frame-

work [5] was an interpretation module that could characterize

topic model clusters as either normal or abnormal. This simple

classifier used the semantics of the KPI to generate labels;

consequently, classification was achieved only for KPIs that

were supposed to maintain a low level (e.g., drop call rate) or

a high level (e.g., call success rate).

B. Contributions

The key challenge for deploying a SON verification in a real

environment is to cope with changes in the networks. This



paper proposes novel methods for managing scope changes

which are prevalent in real cellular networks. Our implemen-

tation and experiments focus on the problem of adapting to

changes in the types of KPIs and cells, and also changes in

the analysis scope that span smaller to larger group of cells.

The work described here provides several contributions by:

• proposing a novel approach that uses cell-level degra-

dation information as features for the topic modeling to

adapt to all KPIs,

• applying an incremental topic modeling approach that

can adapt to changes in the analysis scope, and operates

across all KPIs,

• building a system to implement the algorithms, applying

the system to a real KPI dataset, and analyzing the

performance of the proposed framework.

II. NETWORK-LEVEL ANOMALY DETECTION AND SCOPE

CHANGES

Due to the dynamic nature of cellular networks, the scope

of anomaly detection analysis can change with the addition

of new KPIs or cells in the network, or from the level

of a cell or group of cells up to the network. The first

step towards addressing scope changes was to consider the

neutral KPIs (e.g., throughput), which were not included in

the original framework. Neutral KPIs exhibit an operating

area, which is deployment-specific with both a lower and

upper bound. Hence, they cannot be directly used by the

topic modeling component because the interpretation module

cannot interpret them. To address this, we propose to combine

anomaly detection capabilities applied at different scopes: cell

level and group/network levels.

Another important aspect of our SON verification frame-

work is adaptability to different cell scopes (increased or

decreased number of cells in the scope). With the previous

approach [5], clustering is first applied for the largest scope

(the largest number of cells) and then, the state of the network

can be determined for subsets of the largest number of cells.

However, in a real deployment, if the scope needs to be

enlarged (e.g., when new cells are added to the network), we

would require an incremental approach for topic modeling,

which will gradually update the clusters with information from

the larger scope. Consequently, we propose an incremental

approach for topic modeling.

A. Topic Modeling Using Neutral KPIs

To cope with all types of KPIs, we propose to extend the

topic-modeling framework (Figure 2) to include output from

our previous work on cell-level anomaly detection [3], [4].

Hence, for the neutral KPIs we propose to use the KPI degra-

dation level generated by our ensemble method when applied

to multiple individual univariate and multivariate methods.

The KPI degradation level computes a numerical measure to

indicate the severity of a degradation. Ideally a normal cell

would exhibit a KPI level of 0; thus, the interpretation module

would know how to label the neutral KPIs. For the non-neutral
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Fig. 2. Illustration of topic modeling on clustering both non-neutral and
neutral KPI data in a multi-level clustering framework.

KPIs, we continue to use the raw KPI values in the topic

modeling.

B. Incremental Topic Modeling

We follow an online learning version of the Hierarchical

Dirichlet Processes (HDP) proposed in [9], which utilizes a

stochastic gradient optimization to allow the training process

to evolve incrementally over time, and we adapted it to use

all KPIs as multivariate input. The idea behind the stochastic

gradient optimization is that we subsample data, compute an

approximation of the gradient based on the subsample and

follow the gradient with a decreasing step-size. Instead of

running over the whole dataset, the algorithm uses each data

sample on the fly, and updates the model parameters by the

gradients of that single data sample. The ideal assumption

behind stochastic gradient learning is that there exists infi-

nite data. Theoretically, with infinite data, stochastic gradient

learning will eventually converge to an optimum point, as does

training with all available data.

There are two main considerations for implementing an

incremental learning algorithm for topic modeling on a real-

world system: convergence and speed. Since the incremental

learning algorithm sees one data point at a time and updates

the model parameters according to one single data sample, the

convergence will be more treacherous than its batch-learning

counterpart and could require more time [2].

Depending on the size of the data, the speed of convergence

of online learning may be slower or faster than its batch-

learning counterpart. When batch-learning algorithms cannot

or can barely handle the amount of data, online learning

algorithms may converge faster [7]. However, the speed of

each iteration is supposed to be fast, since online learning

algorithms consider only one single data sample at a time.

III. EXPERIMENTAL EVALUATION

Our experimental corpus consisted of real KPI data from a

3G network for the period 01/2013 through 03/2013, contain-

ing information for approximately 2,000 cells.

A. Topic Modeling with Neutral KPIs Results

Throughout our work, we assume that the type of KPI

(neutral, increasing or decreasing) is given by the semantics of

the KPIs. The set of eleven non-neutral KPIs consists of call-

setup success rates and drop call rates. This was the original



Fig. 3. Comparison between the cluster weights when using only the non-neutral KPIs (left) and when using all KPIs (right). Each row represents the weights
for one cluster over time, where the x-axis denotes the time, and the y-axis denotes the weight. There are different numbers of clusters (6, respectively 7)
and the order in which the clusters were number does not imply a one-to-one mapping. The mid-February anomaly is circled in red.

set of KPIs that was used in the previous work [5]. The neutral

KPIs set includes throughput KPIs. These are the new KPIs

for which topic modeling uses the KPI degradation level based

on the ensemble method for cell anomaly detection [3], [4]

instead of the raw KPI values.

For our initial experiments, we considered 100 handpicked

cells and analyzed them for the period January 2013 to March

2013. The goal was to first determine if the KPI levels provide

useful information on the network status before expending to

a larger number of cells.

Figure 3 presents a comparison between the cluster weights

that were generated using only the non-neutral KPIs (left) and

using all KPIs (right). Each row represents the weights for

one cluster over time, where the x-axis denotes the time, and

the y-axis denotes the weight. Note that there are different

numbers of clusters for the two cases (6, respectively 7) and

the order in which clusters were numbered does not imply a

one-to-one mapping, i.e., if Cluster 2 corresponds to a normal

state in one case, Cluster 2 might not correspond to the same

state for the other case. However, in both cases, we notice the

mid-February anomaly that we referred to in the previous work

(for Cluster 2, respectively Cluster 5) [5]. We recall that the

number of clusters can be different because the topic modeling

implementation uses an HDP [8] approach, which determines

the number of topics automatically.

Table I summarizes the analysis of the 6 and 7 clusters,

respectively. The analysis included a manual investigation

of the histograms of each cluster (which lead to detailed

characteristics), and has been confirmed by the automated

cluster interpretation module (which provided either normal

or abnormal labels for each cluster). We notice that Cluster

2 for the baseline case and Cluster 5 for the case with all

KPIs correspond to strong anomalies across all 11 raw KPIs

Baseline: 11 raw KPIs 11 raw KPIs + KPI degradation
levels of new KPIs

Cluster 0 Normal Normal

Cluster 1 Periodicity of some KPIs Minor anomaly

Cluster 2 Strong anomaly Normal, shows some periodicity

Cluster 3 Bad DCR cs voice Normal, shows some periodicity

Cluster 4 Minor anomaly, Anomaly conditions in the new
periodicity of some KPIs 9 KPIs (11 raw KPIs are normal)

Cluster 5 Bad cell availability Strong anomaly in 11 raw KPIs

Cluster 6 N/A Bad DCR cs voice

TABLE I
SUMMARY OF THE ANALYSIS FOR EACH CLUSTER AND FOR EACH CASE.

NOTE THAT THERE IS NO ONE-TO-ONE MAPPING BETWEEN THE CLUSTERS

GENERATED FOR THE TWO CASES.

Fig. 4. Cluster weights for Cluster 12 for February. We notice the
predominant anomaly in mid February.

exhibited in mid-February. Overall, the KPI levels seem to

provide some discrimination on the network status, given the

appearance of Cluster 4, which is characterized by abnormali-

ties in the neutral KPIs. The rest of the clusters correspond to

very similar states without a one-to-one mapping (i.e., different

types of clusters were generated in different order for the two

cases).

Given that the results on the small sample of cells

indicated that the neutral KPIs could discriminate even

better the network state, we further performed our analysis

on the 2,000 cells. The total number of timestamps was
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Fig. 5. KPI Histograms for Cluster 12. Anomaly conditions are circled.

1,834. The topic modeling method generated 20 clusters

for the 2,000 cells, which were very similar to the

original experiments presented in the previous work [5].

One interesting cluster was Cluster 12 for which we could

observe the mid-February anomaly (Figure 4). Figure 5

presents the KPI histograms for Cluster 12. We can

observe that the anomalous KPIs are the non-neutral ones:

3G CS CSSR, 3G CS CSSR Ph2, RNC 305a and the

neutral ones: Rell99 DL throughput, Rell99 DL throughput,

UL cell data volume, HSDPA throughput and

DL cell data volume (for which we used the KPI levels

computed using the ensemble method, hence they are

prefixed by wma). Cluster 9 is an example of a normal

cluster (Figure 6). After applying the interpretation method,

which automatically classifies each cluster as either normal or

abnormal based on KPI characteristics, we obtained 9 normal

clusters and 11 abnormal clusters.

B. Incremental Topic Modeling Results

We have implemented the incremental learning algorithm

proposed by Wang et al. [9]. This algorithm has previously

only been used for experimentation on academic data sets

and is still an ongoing research topic [10], [6]. Indeed, the

algorithm requires many parameters that need to be tuned

beforehand with background knowledge; it lacks an automated

methodology for self-tuning parameters. The nature of stochas-

tic learning behind this algorithm makes the convergence

very unstable; significant effort is required to smooth the

process. Therefore we demonstrate what we have investigated

so far about the possibility of extending topic modeling for

ever-increasing data with some initial results. To the best of

our knowledge, this is the first time that incremental topic

modeling is applied to real cellular network data.

We experimented with the incremental topic modeling on

the full 3G dataset and both non-neutral and neutral KPIs.

The ideal assumption behind stochastic gradient learning is

that there exists infinite data. While we only have a finite

set of data, we can loop through the dataset to simulate an

infinite data environment. We ran the incremental algorithm

for HDP by randomly choosing timestamps from the 3G

dataset, and updated the model parameters accordingly. After

running through 500 timestamps (out of 1,834 timestamps in

total), one cluster that represented a normal condition was

generated, while the other clusters included random noise.

For the remaining of the timestamps, nothing changed. The

profile of the normal cluster is almost identical to the one

represented in Figure 6 (due to lack of space we do not show

it). The reason we only got one normal cluster is that the

500 random timestamps are mostly normal, and the model

is still far from convergence. This is in agreement with the

fact that this algorithm did not produce meaningful clusters

until it processed 200K documents from the Nature corpus [9].

With one normal cluster generated, our current results are

not exhaustive. However, we believe they illustrate the initial

feasibility of the incremental topic modeling approach in the

context of cellular network data, and pave the way for future

investigation using larger datasets.

In terms of speed, for 500 timestamps, the incremental

learning algorithm for HDP took about 15 minutes on a single

core of a server-level Linux machine, without extensive code



Fig. 6. Example of a normal cluster: Cluster 9

optimization. As a comparison, when the original HDP is

trained, it takes 1-2 hours for one sweep of the same dataset on

the same machine; convergence is usually achieved in about 20

iterations (sweeps of data). On a real deployment system, the

incremental algorithm would update the model incrementally,

whenever a new set of KPIs is collected from the cells. This

action will take only a few seconds.

IV. CONCLUSIONS

This paper proposes novel extensions to a SON verification

framework, designed to manage scenarios where the scope

changes with the addition of new KPIs or cells in the network,

or from the level of a cell or group of cells to the network

level. The design was implemented and applied to a dataset

consisting of KPI data collected from a real operational cell

network. The experimental results suggest that the augmented

network-level anomaly detection accurately identifies different

network states based on all types of KPIs and can adapt to

changes in scope. We are currently planning to apply the

incremental topic modeling to a larger dataset (when available)

and to explore techniques for tuning relevant parameters such

as model priors, learning rate and annealing temperature, to

achieve convergence.
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