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1. Coastal development is contributing to ongoing declines of ecosystems globally. Consequently,16

understanding the risks posed to these systems, and how they respond to successive disturbances,17

is paramount for their improved management. We study the cumulative impacts of maintenance18

dredging on seagrass ecosystems as an example of coastal development impacting marine ecosys-19

tems. Maintenance dredging causes disturbances lasting weeks to months, often repeated at yearly20

intervals.21

2. We present a risk-based modelling framework for time varying complex systems centred22

around a Dynamic Bayesian Network (DBN). Our approach estimates the impact of a hazard on a23

system’s response in terms of resistance, recovery and persistence, commonly used to characterise24

the resilience of a system. We consider whole-of-system interactions including: light reduction25

due to dredging (the hazard), the duration, frequency, and start time of dredging, and ecosystem26

characteristics such as the life history traits expressed by genera and local environmental conditions.27

3. The impact on resilience of dredging disturbances is evaluated using a validated seagrass28

ecosystem DBN for meadows of the genera Amphibolis (Jurien Bay, WA, Australia), Halophila (Hay29

Point, Queensland, Australia) and Zostera (Gladstone, Queensland, Australia). These three genera30

encompass the range of seagrass life histories globally. Although impacts varied by combinations31

of dredging parameters and the seagrass meadows being studied, in general, 3 months duration32

or more, or repeat dredging every 3 years or more, were key thresholds beyond which resilience33

can be compromised. Additionally, managing light reduction to less than 50% can significantly34

decrease one or more of loss, recovery time and risk of local extinction, especially in the presence35

of cumulative stressors.36

4. Synthesis and application: Our risk-based approach enables managers to develop thresholds37

for management by predicting the impact of different configurations of anthropogenic disturbances38

being managed. Many real-world maintenance dredging requirements fall within these parameters,39

and our results show that such dredging can be successfully managed to maintain healthy seagrass40

meadows in the absence of other disturbances. Here, we evaluated opportunities for risk mitigation41

using time windows; periods during which the impact of dredging stress did not impair resilience,42

especially for Halophila and Zostera.43
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1. Introduction46

Globally, coastal development poses a significant threat to valuable ecosystems (Halpern et al.,47

2008). Coastal development is commonly associated with dredging, which presents a hazard to48

ecosystem health via stressors including light degradation and water quality reduction. Worldwide,49

hundreds of millions of cubic metres of sediment are dredged annually (Erftemeijer et al., 2006;50

IADC, 2014). This dredging is contributing to serious declines in primary producer ecosystems,51

including corals (Pandolfi et al., 2005), seagrasses (Waycott et al., 2009; Orth et al., 2006) and52

mangroves (Valiela et al., 2001). However, despite the need to manage and mitigate the effects of53

such disturbances, methods available to do so are severely limited (Carpenter et al., 2009).54

Understanding cumulative impacts from a combination of stressors over time, such as repeated55

dredging events typical of maintenance dredging, is especially important (Crain et al., 2008). For56

example, widescale losses at Laguna Madre, Texas have been attributed to otherwise small-scale,57

routine maintneance dredging in 1965 and 1974 (Onuf, 1994). Yet, other long-term maintenance58

dredging programs have continued for decades with little evidence of seagrass decline, such as those59

in Gulf of Carpentaria in Australia (Rasheed and Unsworth, 2011; Unsworth et al., 2012). Methods60

for predicting how much these ecosystems are impacted and how they respond to stressors such as61

dredging, are an urgent priority to assist managers in formulating strategies to arrest these declines62

(Cote et al., 2016).63

Resilience is a critical trait that underpins the successful management of complex ecosystems64

(Levin and Lubchenco, 2008; Holling, 1973). Although many definitions exist, we focus on ecologi-65

cal resilience (Angeler and Allen, 2016), which is centred around the set of processes and structures66

underpinning an ecosystem, and which incorporates estimations of ecosystem persistence including67

resistance to and recovery from stressor scenarios (Halpern et al., 2007; Hodgson et al., 2015). We68

also include a direct measure of persistence to characterise resilience, using the probability of local69

extinction (i.e. zero population over a relevant period of time). Resistance and recovery are them-70
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selves derived from the system response over time to natural and anthropogenic stressors. However,71

predicting this response is challenging as it emerges non-linearly from cumulative interactions of72

stressors, and environmental and ecological processes with different dynamics (Holling, 2001; Crain73

et al., 2008). In addition, there are significant uncertainties associated with biological systems,74

future environmental conditions that may support or impede their recovery, and our current un-75

derstanding of the dynamics of complex ecosystems (Regan et al., 2002). Because of these high76

levels of variability and uncertainty in ecosystem states, dynamics and disturbance scenarios, it is77

impractical to predict responses solely from experiments. Whole-of-systems models that capture78

uncertainty are needed (Wu et al., 2017).79

One systematic approach to managing complex systems under uncertainty is the risk framework,80

which has been applied widely in domains including environment, engineering and health (Kaplan81

and Garrick, 1981; Pate-Cornell, 1996). At its core, risk is a composite metric composed of the82

probability of a consequence, such as a fatality, and a scenario. Typically, the scenario comprises83

hazards and the causal sequence of events that precipitated these hazard states (Kaplan and Gar-84

rick, 1981). Such an approach could be used to assess resistance by modelling the probability of85

a certain level of loss immediately after the conclusion of a dredging campaign. However, recov-86

ery and persistence are more challenging to assess due to the uncertainty associated with future87

environmental conditions.88

We developed a risk modelling approach based on a Bayesian Network (BN), a tool that has89

been applied with increasing frequency in ecology (Pearl, 1988; Korb and Nicholson, 2010; Pollino90

et al., 2007). BNs capture the conditional probabilistic relationships between system factors, and91

thus can capture interactions between different ecosystem processes and components. These rela-92

tionships are represented both visually with a directed acyclic graph to support communication and93

collaboration, and quantitatively via conditional probabilities (Uusitalo, 2007; Pollino et al., 2007).94

They demonstrate good predictive accuracy even with limited data and can be parameterised using95

a combination of data and expert knowledge.96

Most importantly, BNs directly represent and make inferences about risk, such as the risk97

of extinction, as they are a probabilisitic state space model. Risk scenarios are implemented by98
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setting observed system states as inputs, such as hazard states, which are referred to collectively99

as ‘evidence’. The model then infers the posterior probability distribution from this evidence100

to predict the whole-of-system response to the specified risk scenario. BNs applied in ecology101

are predominantly static (Chee et al., 2016). However, resilience emerges from cumulative effects102

and feedback loops characteristic of complex biological systems (Grzegorczyk and Husmeier, 2011;103

Walker et al., 2004). Dynamic BNs (DBNs) extend BNs to enable the capture of feedback loops.104

They model the system at discrete points in time (time slices), which enables the accumulation of105

potentially non-linear interactive effects from one time slice to the next, similar to Markov models106

(Murphy, 2002; Chee et al., 2016).107

BNs have been used to model seagrass ecosystems for a wide variety of decision support applica-108

tions for management and policy making (e.g. Maxwell et al., 2015). These applications demonstrate109

the capability and flexibility of the approach for modelling interactions and uncertainty in a complex110

system (Levin and Lubchenco, 2008). Many of these models are constructed using expert elicitation111

and formulated at a high level to capture average effects across a broad array of stressors. They112

cannot capture emergent effects, or the impacts of timing, as BNs are time-aggregated models.113

Differential equation models of resilience can capture cumulative effects (e.g. Anthony et al., 2015)114

but are focused on scenario analysis without an explicit means for encoding uncertainty and thus115

synthesising risk. Specifically, although existing methods capture uncertainty in disturbances (e.g.116

Mumby et al., 2014), we go further to capture uncertainty explicitly in both ecosystem function117

and disturbance as enabled by the BN and DBN framework (Pearl, 1988). A DBN model focused118

on seagrass and dredging can potentially develop new insights through the capture of emergent119

cumulative effects. In addition, such a model could potentially be validated with greater confidence120

than a general, time-aggregated, high-level model.121

We propose a scenario based DBN modelling approach based on the risk framework for predicting122

resilience. A review of existing work (Supporting Information Appendix ??) reveals opportunities123

for predicting resilience to stressors; we present our framework in Section 2. The case study of124

a seagrass dredging model is described (Section 2.1) and empirically validated (Supporting Infor-125

mation Appendix S2). We demonstrate the framework with this case study, focusing particularly126

5



on the cumulative effects of regular maintenance dredging (Section 4). From these responses, we127

derive thresholds for dredging to support decision makers as part of a risk-informed management128

strategy.129

2. Materials and Methods130

Using the seagrass dredging case study (Section 2.1), we develop a framework (Section 2.2) for131

analysing resilience using DBNs.132

2.1. Seagrass DBN and Dredging Case Study133

Here we study periodic maintenance dredging as an example of cumulative impacts applied to134

seagrass meadows. We focus on the impact of light on seagrass ecosystems in terms of environmental135

baselines and as a key stressor arising from dredging. Light is a central driver of growth and136

physiology for seagrasses and other autotrophs (Kilminster et al., 2015). We consider impacts in137

terms of three different time periods: (i) the baseline time period TB and corresponding population138

or ecosystem states against which we benchmark impacts, (ii) the period of active dredging, i.e. the139

hazard, TH , and (iii) the consequence time period TC where the dredge plume has ended but140

seagrass are potentially still affected. As maintenance dredging effects are typically localised, we141

assume that the period of active dredging is also approximately the duration of the dredge plume142

(Ports Australia, 2014; York et al., 2016).143

We focus on the population response for assessing resilience to dredging stressors (Section 2.2).144

Given the growth dynamics of seagrass meadows (McMahon et al., 2013) and seasonal variations145

in their population and life histories (Kilminster et al., 2015), we adopt a monthly time scale and146

baseline period of 12 months (i.e. TB = {Jan,Feb,...,Dec}, the length of TB is nTB
= 12). The147

consequence period was chosen as five years immediately following the hazard, nTC
= 60 months148

and TC = {Jan-Year1,Feb-Year1,...,Dec-Year5} for a hazard ending in December. We adopted the149

Western Australia Environmental Protection Agency’s regulatory framework for seagrass where a150

failure to recover within five years is considered permanent loss (Environmental Protection Agency,151

2009). Under this formulation, recovery is chosen to be the time in months when the system first152
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returns to and stays within 20% of baseline population levels during the consequence period TC .153

Resistance is the ratio of the population at the end of the last dredging period in TH to the baseline154

population level, noting that there can be gaps between dredging periods for repeated maintenance155

dredging (e.g. TH = {Jan − 2016, Feb − 2016, Jan − 2018, F eb − 2018}). Persistence here is the156

accumulated risk of zero population found by summing the probability of zero population over TC157

(Supporting Information, Appendix S1).158

We developed hazard scenarios that were combinations of each of the following dimensions:159

• Dredging durations of 1, 2, 3 or 6 months (corresponding to consecutive time points in TH),160

• Frequency of maintenance dredging, from once off, to every 5, 3, 2 years and every year,161

• Level of light stress during the dredging period δ(xlight
below sat., TH) = {1, 0.75, 0.5, 0.25},162

• Month for commencement of dredging ranging from January to December,163

giving a total of 960 hazard scenarios. We applied hierarchical models for light stress using as an164

approximation the number of days of above saturation light in that month (Section 2.3). Also, a165

12 year simulation window was used to accommodate model initialisation (two years) and up to166

five-yearly maintenance dredging.167

These scenarios were applied to the analysis of resilience for the following genera and locations:168

(i) Amphibolis at Jurien Bay, Australia, (ii) Halophila at Hay Point, Australia, and (iii) Zostera169

at Pelican Banks, Gladstone, Australia. These three genera exhibit the life history characteristics170

of each of the three major seagrass categories, namely, persistent, colonising and opportunistic,171

respectively (Kilminster et al., 2015). A meadow may be enduring, where seagrass are present all172

the time although population levels can vary, or transitory, where the population alternates between173

periods of absence and presence (Kilminster et al., 2015). Jurien Bay and Gladstone are enduring174

meadows whereas Hay Point is transitory. The baseline probability of above saturation light was175

encoded as δ(xlight
above sat., t), t = {Jan, Feb,...,Dec}. Note that δ(xlight

above sat., t) can also represent the176

proportion of days of above saturation light in that month. Therefore, dredge durations of less177

than one month could be encoded by setting this parameter as the fraction of the month over which178

dredging occurred.179

7



A DBN model of seagrass and dredging was developed and validated predominantly through180

expert elicitation (Fig. 1) (Wu et al., 2017). Although expert elicitation is widely used in existing181

seagrass models , the DBN can integrate expert knowledge and data in a dynamic, whole-of-182

systems model, overcoming limitations of existing data (Caley et al., 2014; Uusitalo, 2007). The183

DBN captured complex probabilistic relationships between factors and their impact on population,184

measured via shoot density and biomass. These factors were organised (Fig. 1) in terms of resistance185

(e.g. physiology), recovery (e.g. growth), site conditions (e.g. genera present), and environmental186

factors (e.g. light). The response of the system to cumulative disturbances arises from interactions187

between nodes cumulatively over time as governed by Conditional Probability Tables (CPTs) (for188

details, refer to Supporting Information Appendix S7), and risk scenarios. Hierarchical linear189

models were used to develop evidence for risk scenarios and for validating the model (Section 2.3).190

Here, we focus on shoot density for our analysis of resilience, although the same model is used191

for biomass. This focus is made possible by defining population states as a percentage of a reference192

site (Section 2.3). Shoot density represents the number of shoots per m2 in states of high, moderate,193

low or zero. The realised shoot density (i.e. measured shoot density) at time slice t is a function194

of loss and recovery rate in that time slice, adjusted by the baseline shoot density node. Not to195

be confused with baseline time periods, the baseline shoot density node is used to directly capture196

site-specific seasonal trends at a high level in addition to environmentally driven seasonal changes.197

Realised shoot density in turn drives potential loss and recovery at the next time slice. Loss in198

shoot density captures both natural mortality and light and water quality drivers for the dredging199

study. Despite the presence of environmental hazard states, loss is mitigated by the ability of the200

plants to resist the hazard, which is linked to the physiological status of the plants. Over time,201

the physiological status can also be affected by environmental stresses. Similarly, environmental202

stresses can affect recovery factors such as lateral growth and recruitment from seeds.203

2.2. A DBN Framework for Modelling Resilience204

Given the hazard and baseline environmental conditions, we use the DBN to infer the state205

probabilities for every node in the network during the consequence period TC (Murphy, 2002).206
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We benchmark population measures such as shoot density or biomass response in the consequence207

period TC against the baseline period TB (for details, refer to Supporting Information Appendix208

S1). Therefore, we seek to estimate resilience by comparing the consequence probability trajectory209

for shoot density P (Xshoot density(TC)|EEE) with the baseline P (Xshoot density(TB)|EEE). Here, EEE is the210

input evidence, in this case, the genus, location type, and light conditions which vary over time211

periods TB , TH and TC . We used month of year to align TC with TB to accommodate for seasonal212

variations of population in persistent or transitory seagrass meadows (Kilminster et al., 2015). In213

practice, the baseline could be the same site prior to human disturbance, or a nearby undisturbed214

reference site (ARMCANZ, 2000). Note that TB needs to be of sufficient length to capture one cycle215

of variation, and the length of TC needs to be long enough to capture relevant recovery phenomena216

and periodic variations.217

We evaluate resistance, persistence and recovery using the following criteria and a benchmarking218

function (Supporting Information Appendix S1):219

B(P (Xshoot density(TC)|EEE), P (Xshoot density(TB)|EEE)) =

∑
wαwαwαP (Xshoot density(TC)|EEE)∑
wβwβwβP (Xshoot density(TB)|EEE)

(1)

where wαwαwα and wβwβwβ are weight vectors for the consequence and baseline shoot density responses220

respectively.221

1. Resistance is computed using the system state immediately after the last dredging period,222

prior to any recovery. Here, TC = max (TH), wα = wβ = 1, where TB is the corresponding223

month of the year to TC in the baseline.224

2. Persistence is estimated as the accumulated probability of zero population during TC com-225

pared to that during the corresponding baseline time period, i.e. P (Xshoot density(TC) =226

zero state|EEE). For example, if TC = {Feb-Year1,Mar-Year1,...,Jan-Year3}, then we set TB =227

{Feb,Mar,...,Dec,Jan,...,Dec,Jan}. For persistence, wαwαwα = wβwβwβ are a vector of ones.228

3. Recovery differs from persistence in that we are interested in the entire probability distribution229

over time, not just the zero state. Thus, P (Xshoot density(TC)|EEE) is a matrix with nTC
rows230

and columns corresponding to states. We aggregate across columns first using a weighted sum231
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(weighted mean equation, Wu et al., 2017), with weights ααα,βββ derived from state thresholds232

(Section 2.3). The time tR when the consequence to baseline ratio first approaches and remains233

at one, is time to recovery.234

2.3. Hierarchical Linear Models for Risk Scenarios235

An important feature of DBNs for modelling whole-of-system responses is their modularity as236

enabled through conditional independence assumptions encoded in the structure of the network237

(Pearl, 1988). This means it is possible to interface other models as input and/or output to specific238

node(s). Here, we describe the use of hierarchical linear models to capture baseline light conditions239

for scenario analysis and for validation of predicted shoot density, biomass, physiological status and240

growth.241

The DBN is a state space model that provides a discrete representation over all factors in discrete242

time steps. We defined shoot density and biomass states using thresholds based on a reference site,243

similar to those used for decision making in water quality management guidelines (ARMCANZ,244

2000). These nodes had states of high, moderate, low and zero. We used 20% and 80% of the245

reference site population (e.g. shoot density) as thresholds between the moderate and high, and246

moderate and low states, respectively, in line with guidelines for ‘moderate protection’ assuming a247

uniform distribution. Therefore, the outputs of the model in terms of probability of high, moderate,248

low and zero shoot density correspond directly to the risk of meeting management guidelines in249

terms of probability and consequence.250

We also applied expert elicited thresholds such as uniform thresholds between 0% and 100% for251

physiological status and 1 to 10% for slow, 11 to 30% for moderate and > 30% for fast lateral growth.252

Given the complexity and uncertainty associated with marine ecosystems, discretisation can better253

represent this uncertainty through a commensurate level of precision such as high, moderate, low254

versus continuous measurements with many significant digits. Finally, discretisation can also be255

used to enhance model portability by encoding the impact of that factor on the ecosystem. Light256

is one such example.257

Light is measured as moles of Photosynthetically Active Radiation (PAR), mols photons per258
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m2 per day. It directly influences photosynthesis but also cascades to other factors in seagrass259

ecosystems such as physiological status and growth. The level of light corresponding to the onset260

of maximum photosynthetic rates is termed the saturating irradiance level (Ik) as further increases261

in light has minimal impact on the photosynthetic rate (Talling, 1957). This level varies by genera,262

temperature, season and photoacclimation to local conditions (Lee et al., 2007). For a given month,263

the probability of above saturation light thus captures environmental patterns relating to weather264

events such as storms or ice and the biological light requirement for the local meadow at that time265

of year. As a result, a separate model for light enables a portable DBN that can be applied to266

different sites globally.267

We use a hierarchical linear model to transform data observations into state probabilities. There268

are two potential approaches: (i) count the number of occurrences of each state (defined with thresh-269

olds) at each time point, and directly model the state probability via a binomial or multinomial270

model (two, or more than two states, respectively), or (ii) model the data directly and find the area271

under the posterior density curve between thresholds to estimate the probability. In a Bayesian272

framework, the former approach estimates the mean probability and uncertainty around it (as cap-273

tured by the posterior density) whilst the latter only calculates the mean. However, the former274

approach has lower precision if the number of observations at each time point is low; correspond-275

ingly, the latter is useful when there are many gaps in the data.276

We applied the latter approach to light monitoring data due to the presence of large data gaps

on the order of months. We used a simple log-linear mixed effects model, equations (2), of PAR

Yy,m,iy,m using time (month of the year m) with groupings by year y; iy,m indexes the replicate

number of the observation for that year and month. The log transformed PAR Yy,m,iy,m
is assumed

to be normally distributed with mean µy,m and precision τ (inverse of standard deviation). The

posterior density for µy,m is then compared to the light saturation threshold for that particular

meadow to determine the probability of above or below saturation light (Lee et al., 2007). Here,

estimated light µy,m is a linear regression of periodic effects from the month of year m with coef-

ficients β1y and β2y, and background light level (intercept term) β0y. Vague normal priors were

put on means and vague gamma and uniform priors on precision and standard deviation, respec-
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tively. The Gibbs sampler was used to fit the model and convergence was checked by inspecting

the posterior trace plots and autocorrelation plots.

log(Yy,m,iy,m) ∼ N (µy,m, τ)

log(µy,m) = β0y + β1y sin
(πm

6

)
+ β2y cos

(πm
6

)
βjy ∼ N (µβj

, σ2
βj

), j = 0, 1, 2

µβj
∼ N (0, 1e− 6), j = 0, 1, 2

σβj ∼ U(0, 100), j = 0, 1, 2

τ ∼ G(0.001, 0.001)

(2)

For shoot density, we used a multinomial model that captured seasonal trends and/or exper-277

imental design as we were interested in the estimated probability and its uncertainty, and not in278

inferring gaps in the data. We used light and shoot density data collected from shading experi-279

ments and long term monitoring programs to validate the predictions of the model. Here, counts280

Yi,j of the number of observations for experiment i for state j are modelled with a multinomial281

distribution M. A long term observational study of dredging was used to validate model predic-282

tions for Halophila whereas experimental studies were used for Amphibolis and Zostera (Supporting283

Information Appendix S3).284

3. Results285

Given the DBN model and scenarios, we firstly validated the model empirically for each of the286

three main seagrass life histories expressed by genera and then analysed risk scenarios to better287

understand cumulative impacts. The model demonstrated very good accuracy with Mean Squared288

Errors (MSE) on the order of 0.03 in predicting changes in overall population and intermediary289

physiological and growth factors (Supporting Information Appendix S2). MSE provides an indica-290

tion of the magnitude of the deviation between predicted and observed probability.291

Using the validated model, we analysed the ecosystem response in terms of recovery, resistance292

and persistence criteria, Fig. 2, 3, and Supporting Information Fig. S7, respectively. The responses293
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demonstrated an increase in risk with increasing probability of below saturation accumulated light294

during dredging (i.e. light reduction), dredging frequency and duration that was tempered by time295

of dredging commencement, duration and life history (i.e. genus). Let us denote a window as a296

period of time when dredging can commence such that the impact on resilience satisfies manage-297

ment objectives (Suedel et al., 2008). Specifically, we applied the resilience criteria for recovery,298

resistance and persistence defined in Section 2.2. These windows shrunk considerably with increas-299

ing probability of below saturation light and dredge duration. Overall, increasing from 50% to300

100% probability of below saturation light during dredging had a profound effect on recovery as301

indicated by a transition from predominantly short recovery times (yellow squares in Fig. 2) to302

long recovery time (red squares in Fig. 2) especially for dredge frequencies of three yearly or higher.303

Compare 50%-3-3 (predominantly yellow) to 75%-3-3 (less yellow) and 100%-3-3 (predominantly304

red) for example. Within each light reduction group (Fig. 2), a repeated pattern of increasingly305

shorter windows corresponded to longer dredging durations as demarked by gray lines. Within each306

duration band, windows decreased with increasing dredging frequency, showing a noticeable step307

change for three yearly or higher dredge frequencies.308

We defined expert elicited objectives for resistance, recovery and persistence (Hodgson et al.,309

2015) to explore their interaction as part of a holistic assessment of seagrass meadow resilience310

in response to theoretical or modelled maintenance dredging scenarios. Resistance criterion 1 was311

satisfied if there was no more than a 20% change between the weighted mean response α and the312

baseline β (Section 2.2). Similarly, recovery criterion 2 was satisfied if ααα converged to within 20% of313

βββ within six months. Finally, persistence criterion 3 was achieved if the risk of zero with dredging314

was less than 2.5% more than that without dredging. The overall score was defined and coloured315

as shown in Fig. 4: 4 if all criteria were satisfied (dark green), 3 for all except criteria three (light316

green), 2 only criteria two and three (orange), and 1 only criterion two (yellow), 0 for no criteria317

(red).318

Generally, Amphibolis meadows showed substantially fewer opportunities to mitigate the impact319

of dredging stress on resilience using time windows compared to Halophila and Zostera. Instead,320

Amphibolis achieved resilience by resisting dredging stress (Fig. 4). This result, which is reflected in321
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the resistance and persistence responses, Fig. 3 and Supporting Information Fig. S7, respectively,322

accords with the high resistance and slower growth dynamics of this genus (Kilminster et al.,323

2015). A consequence of this was higher risk of extinction compared to baseline scenarios that were324

noticeably greater than that for Halophila and Zostera (Fig. S7).325

By comparison, even with only 50% light reduction, Halophila meadows already showed time326

windows where resilience was impacted (Fig. 4) as characteristic of the low resistance of this genus.327

They were susceptible predominantly over the growth season but showed a rapid, if not totally328

unaffected, recovery response at other times (Fig. 2), especially during the senescent season which329

was a time of zero population. This pattern of windows reflects the strong demarcation of growth330

and senescent seasons for this genus which re-establishes from seed banks (Kilminster et al., 2015;331

Hovey et al., 2015) which are thought to be largely unaffected by light reduction impacts of dredging332

as the seeds are dormant and can persist for 1-2 years (Orth and Harwell, 2006).333

Zostera has life history characteristics that are intermediate between Amphibolis and Halophila334

and this was borne out in the results (Kilminster et al., 2015). Zostera had similar patterns of335

windows to Halophila but demonstrated higher resistance (Fig. 3) and a greater ability to recover336

with longer windows for longer dredging durations (Fig. 2). They had higher risk of extinction337

compared to Halophila but lower than that for Amphibolis (Supporting Information Fig. S7).338

4. Discussion339

Given specific dredging configurations and resilience criteria results (Fig. 4), thresholds for340

resilience can be derived from dredge duration, level of light reduction, start time and dredge341

frequency (Table 1). Such thresholds can help inform the management and design of monitoring342

programs for seagrass meadows affected by maintenance dredging.343

Less than or equal to three months of dredging contributed to resilient responses for all three344

genera (Table 1). This resilience was achieved by Amphibolis predominantly through resistance via345

physiological resistance, leading to windows that spanned the entire year (i.e. dredging can start346

any time). For Halophila, the window corresponded to the senescent season with zero population.347

On the other hand, Zostera was resistant with a year round window for 50% light reduction and348
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Table 1: Thresholds beyond which resilience is compromised based on dredge duration, frequency
and light reduction for each genus. Also shown is the main type of resilience achieved (resistance
or recovery), either generally, or within a time window (refer to Fig. 4).

Genera Scenario
Duration
(months)

Frequency
(once/x
years)

Light Re-
duction
(%)

Type of Re-
silience

Amphibolis
100% light re-
duction

<3 <1/3 100
Generally resis-
tant

Amphibolis
<100% light
reduction

<=3 <=1/3 50, 75
Generally resis-
tant

Halophila
50% light re-
duction

>=1 >=0 50
Resistant in
window

Halophila
>50% light re-
duction

<=3 <=1/1 >=50
Resistant in
window

Halophila
High Fre-
quency

<=3 >=1/3 >=50
Resistant in
window

Zostera
50% light re-
duction

<=3 <=1/1 50
Generally resis-
tant

Zostera
>50% light re-
duction

<=3 <=1/3 >=50
Recovery
potential in
window

Zostera Long Duration >=3 <1/3 >=50
Recovery
potential in
window
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demonstrated recovery potential in shorter windows for greater light reduction levels. Note that349

these were Zostera muelleri meadows of this species adapted to local low light conditions; other350

meadows may not show the same level of resistance.351

Dredging at greater frequencies, especially more than or equal to once every three years, dras-352

tically affected the length of windows, demonstrating the impact of cumulative effects (Table 1).353

Halophila appears to have been the least affected, surviving even annual dredging, due to the senes-354

cent season of zero population and fast growth rates (green scores in Fig. 4). However, window355

lengths decreased significantly with frequency. This was similarly the case for Zostera except that356

not only do the window lengths decrease, they also change from a resistant response to one of357

recovery (green to yellow scores, respectively, in Fig. 4). Compared to Halophila, Zostera was more358

resilient to dreding of longer durations whereas Halophila was more resilient to higher frequencies.359

The former had longer windows whilst the latter had short windows. On the other hand, the effect360

of increasing frequency of dredging on slow growing Amphibolis appears to be a predominantly361

binary response of resistance (green scores, Fig. 4) or loss (red scores).362

Actual maintenance dredging regimes at our modelled locations are generally well below the363

durations, frequencies and intensities that the model would suggest would be of concern to sea-364

grasses (Table 1). In addition, maintenance dredging plumes are often localised to small areas close365

to operations (Ports Australia, 2014; York et al., 2016). At Hay Point for example maintenance366

dredging has only occurred twice (in 2008 and 2010) since channels were established in 2006 with367

a duration of approximately 4 days on each occasion. For ports in Cairns and Townsville, main-368

tenance dredging is annual but its duration is typically less than 4 weeks (Ports Australia, 2014).369

This is similarly the case in Western Australia. Dredging of one to four weeks duration could be370

approximated in this model by a one month duration with 25% to 100% light reduction level, re-371

spectively. In these scenarios, all three genera were mostly resilient assuming a return to baseline372

conditions post-dredging. However, window effects already come into play for three yearly or more373

frequent dredging for Halophila at 50% light reduction (i.e. two weeks dredging).374

These results suggest that many existing maintenance dredging regimes already occur in ways375

that avoid some long term cumulative impacts to seagrass meadows and supports results from long376
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term seagrass monitoring that has been conducted in Australian ports with maintenance dredging377

requirements (Rasheed and Unsworth, 2011; Unsworth et al., 2012; McKenna et al., 2015; Coles378

et al., 2015). However, where maintenance dredging occurs over longer durations tending towards379

one month or more, or with increased frequencies and a greater potential to significantly reduce380

light, the application of appropriate windows developed in this model would provide a useful tool381

to manage dredging. In addition, maintenance dredging of short durations still has the potential382

to impact seagrasses especially where other non-dredging impacts, such as severe weather events383

have already occurred and acted to reduce meadow resilience prior to dredging activity (McKenna384

et al., 2015). This is an area for future research.385

In addition, our model focused on light based impacts. The approach of using probability of386

above or below saturation light as a key input and driver of the model is advantageous in that387

it inherently accounts for local light adaptation as the light saturation threshold can vary across388

meadows of the same genus. However, knowledge of the saturation threshold for the local meadow389

is required. Ways to estimate this in the absence of such data would support the widespread390

application of our approach. Additionally, the specification of probability of above saturation light391

as an input enables the analysis of impact on individual meadows located in different areas relative392

to a dredge. Combining our approach with relevant hydrodynamic and/or plume models could also393

help to customise its application in a spatially explicit context. Furthermore, although nodes for394

connectivity due to seed or vegetative fragments were included (Fig. 1), connectivity is currently395

poorly understood for seagrass ecosystems and their impact on resilience could be explored as new396

data becomes available (Grech et al., 2016). Finally, other disturbance regimes such as those related397

to sediment burial or sediment quality effects could also be explored.398

5. Conclusion399

In light of the complex nature of ecosystems and their ongoing declines worldwide, our risk-400

based DBN modelling approach provides an opportunity for better management. The framework401

explicitly captures risk vis a vis hazard, probability and consequence over time given interactions402

and cumulative effects between biological and environmental processes, and successive disturbances.403
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The approach quantifies, using risk and ecosystem baselines as a benchmark, the response of the404

ecosystem in terms of resistance, recovery and persistence, the components of resilience. It had good405

predictive accuracy with a MSE on the order of 0.01 to 0.05 in the predicted probability distribution406

using empirical data across three representative genera. When applied to the maintenance dredging407

case study for seagrass, the risk model revealed that a dredging frequency greater than once every408

three years for durations of three months or less emerged as a key threshold beyond which resilience409

was compromised across the range of life histories. Both timing of dredging commencement and410

management of light reduction to less than 50% emerged as tools for mitigating one or more of loss,411

recovery time and risk of local extinction.412

The application of this framework to other datasets, disturbance types, and biological commu-413

nities has the capacity to reveal broad insights into how to manage for lower impact and greater414

resilience across different life histories, population types and dynamics and even the effect of pre-415

dicted changes in background environmental conditions. Already our approach has revealed that416

some maintenance dredging scenarios currently in operation are likely to be appropriate (assuming417

no significant further disturbances outside baseline frequencies and probabilities) in terms of pro-418

viding adequate opportunities for maintenance of seagrass communities as well as defining limits419

where application of windows would be of assistance.420
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(a) Overall network (b) Resistance subnetwork

(c) Recovery subnetwork (d) Shoot density subnetwork

Figure 1: Illustration of overall seagrass DBN model (Wu et al., 2017) focusing on Shoot Density
for clarity (Fig. 1a). Nodes are ovals and arrows denote conditional dependence between a parent
and child node in the same time slice. Where an arrow is labelled with a 1, the child node is in the
next time slice. Rounded rectangles denote subnetworks. Yellow nodes relate to loss and recovery
in shoot density, purple nodes to recovery, green nodes to resistance, blue nodes to environmental
factors Xe and pink for all other nodes. Biomass nodes, not shown, are connected in exactly the
same way as the yellow shoot density nodes.
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Amphibolis Halophila Zostera
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Figure 2: Expected recovery time in months for seagras genera Amphibolis, Halophila and Zostera (panels
left to right) for different maintenance dredging hazard scenarios. The 12 columns in each panel correspond
to dredging starting in Jan. through Dec. to assess the impacts of seasonality of dredging. Each row
corresponds to a specific dredging light stressor scenario. Overall, they are grouped by light reduction level
(100% light reduction equates to no light during dredging, 75%, 50% and 25% reduction), then by frequency
of dredging (every year, 2, 3 or 5 years, or once off 0 years), and finally by dredging duration of 6, 3, 2, 1
month.
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Amphibolis Halophila Zostera
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Figure 3: Resistance as ratio of baseline population immediately following dredging for seagrass genera
Amphibolis, Halophila and Zostera (panels left to right) for different dredging hazard scenarios. There are
12 columns in each panel corresponding to dredging starting in Jan. through Dec. to assess the impacts
of the seasonality of dredging. Each row corresponds to a specific dredging light stressor scenario. Overall,
they are grouped by light reduction level (100% light reduction equates to no light during dredging, 75%,
50% and 25% reduction), then by frequency of dredging (every year, 2, 3 or 5 years, or once off 0 years),
and finally by dredging duration of 6, 3, 2, 1 month.
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Amphibolis Halophila Zostera
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Figure 4: Risk-based resilience scores for seagrass genera Amphibolis, Halophila and Zostera (panels left
to right) for different maintenance dredging hazard scenarios. The 12 columns in each panel correspond
to dredging starting in Jan. through Dec. to assess the impacts of the seasonality of dredging. Each row
corresponds to a specific dredging light stressor scenario. Overall, they are grouped by light reduction level
(100% light reduction is no light during dredging, 75%, 50% and 25% reduction), then by frequency of
dredging (every year, 2, 3 or 5 years, or once off 0 years), and finally by dredging duration of 6, 3, 2, 1
month. The bottommost row is the no dredging scenario. The colour of the cell describes the resilience
criteria score for (1) resistance, (2) recovery and (3) persistence criteria where dark green represents all
criteria satisfied, light green for criteria 1 and 2, orange for criteria 2 and 3, and yellow for just criteria 3.
Red denotes no criteria satisfied.
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