
836 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiEEE TRANSACTiONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 6, NOVEMBEWDECEMBER 1999

Managing Standards Compliance
Wolfgang Emmerich, Member, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI€€€ Computer Society,

Anthony Finkelstein, Member, /€€E Computer Society, Carlo Montangero,
Stefan0 Antonelli, Stephen Armitage, Member, /€€E Computer Society, and Richard Stevens

Abstract-Software engineering standards determine practices that "compliant" software processes shall follow. Standards generally
define practices in terms of constraints that must hold for documents. The document types identified by standards include typical
development products, such as user requirements, and also process-oriented documents, such as progress reviews and management
reports. The degree of standards compliance can be established by checking these documents against the constraints, It is neither
practical nor desirable to enforce compliance at all points in the development process. Thus, compliance must be managed rather than
imposed. We outline a model of standards and compliance and illustrate it with some examples. We give a brief account of the
notations and method we have developed to support the use of the model and describe a support environment we have constructed.
The principal contributions of our work are: the identification of the issue of standards compliance; the development of a model of
standards and support for compliance management; the development of a formal model of product state with associated notation: a
powerful policy scheme that triggers checks; a flexible and scalable compliance management view zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Index Terms-Software processes, software engineering standards, software development environments, compliance, consistency
management.

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N this section, we outline the general problem of I managing standards compliance in software develop-
ment, motivate the development of automated support for
this activity and describe the main elements of our
approach.

1.1 Compliance

"Standards are documented agreements containing techni-
cal specifications or other precise criteria to be used
consistently as rules, guidelines, or definitions of character-
istics, to ensure that materials, products, processes and
services are fit for their purpose," [15].

Existing well-established software and systems engineer-
ing standards such as IS0 12207 [17], IEEE 1074 [14], and
PSS-05 [23] set down the properties that both the process
and its products must possess at given points in develop-
ment. There is intense interest in adopting such standards
in industry. This interest arises for a number of reasons: 1)
as a means of transferring "good practice" in software
engineering; as a result of the demands of clients or
procurement agencies, 2) as a result of the demands of
software process improvement (9'1) initiatives, IS0 9000

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW . Emmerich zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand A. Finkelstein are with the Department of Computer
Science, University College London, London WClE 6BT, UK.
E-mail: lw.emmerich, af(nkelsteinlbcs.ucl.ac.uk.

9 C. Monfnngero is with the Dip. di zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInformafica, Universifa'di Pisa, 56125
Pia. Nalw. E-mail: montaC3di.unioi.if.

Science Park, Oxford OX4 4GA, UK.
E-mail: lsteve.armitage, richard.stevenslboxford,qss.co.uk.

Manuscript receiued 15 Sept. 1997; revised 25 July, 1998.
Recommended for acceptance by C. Ghezzi.
For information zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon obtaining reprints of this article, please send e-mail to:
tsebcompufer.org, and reference IEEECS Log Number 109064.

0088-5589199181 C

[16] certifications and IS0 15504 I191 trials, and 3) as a
consequence of product certification requirements.

In each case, once a standard has been adopted it is
important to manage compliance with the standard. By
compliance we mean the extent to which software devel-
opers have acted in accordance with the "practices" set
down in the standard. More narrowly we can think of this
as consistency between the actual development process and
the normative models embedded in the standard. The
standards are both large and complex, and though they
aspire to precision they are often incomplete and ambig-
uous. Determining the degree of compliance with specified
practices, in particular as development progresses, is thus a
challenging task. Compliance management is more difficult
when you wish 'to use information about compliance to
support remediation.

Significant resources are devoted to managing standards
compliance. It is particularly critical in large systems
engineering projects, such as in the defense, telecommuni-
cations and aerospace sectors. In such projects, much of the
time of developers, managers, and quality assurance teams
is occupied with identifying particular breaches in com-
pliance and with tracking and managing the overall state of
compliance of a project. Our treatment of this problem is
thus strongly industrially motivated.

1.2 Approach
We take advantage of a n important feature of the standards
we have examined. They tend to express the requirements
of the standard as constraints on the structure or contents of
documents. Even the more "high-level" standards, such as
the IS0 9000 series, are devoted to a considerable extent to
requirements of this general form, though we have selected
as a running case PSS-05, which is a particularly
clear example.

1.00 0 ISSS IEEE

http://af(nkelsteinlbcs.ucl.ac.uk
http://richard.stevenslboxford,qss.co.uk
http://tsebcompufer.org

EMMERICH ET AL.: MANAGING STANDARDS COMPLIANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA837

1 standard I
wescribes

composed of

rationale

is in

~ _ . . ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t assesses

diagnostic support

A
occurs on

evaluates

state check

triggers

updates

Fig. 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStandards and compliance model,

Following from the standards themselves and from our
experience with the development and use of software
process technology [lo], we adopt what might be termed a
"tolerant" approach in which developers are free to
organize for themselves the way they reach the goals set
by project management. They are provided with ways to
assess where they are with respect to their duties to
conform to the practices. Policies set down the points at
which different sorts of compliance should be established.
Policies can however be overridden by an appropriately
authorized developer who can postpone or even renounce
compliance. We have a strong aversion to inflexible
automated environments-early language based editors
come to mind. We recognize that for significant periods of
time developers leave work incomplete and inconsistent
and that they may depart from normative practice for good
reasons. Our approach assumes developers and managers
are motivated to see the effective progress of the work.

It must be emphasized that our approach differs from
conventional approaches to modeling sofhvare processes.
We build on a starkly document-centered approach in
which process is represented in the product and hence
represented implicitly in the form of project plans and
progress reports. We further assume that developers and
managers are mutually committed to the maintenance of
effective plans and reports. We argue strongly that this
approach is entirely appropriate for most of the highly
document-oriented industrial development processes with
which we are familiar. The approach yields simple
descriptions which are readily understandable by practi-
tioners and amenable to inspection and improvement.

In our current work on compliance, we have focused on
requirements management, and drawn our examples from
this area. We have done so because it is a document-
intensive activity of critical importance in software devel-
opment. More significantly, because requirements pro-
cesses cross-organizational boundaries, common standards

and compliance play a particularly significant role. How-
ever, we believe that our findings are directly applicable to
other stages of the software development process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.3 Outline
In Section 2, we describe our model of standards and
compliance and illustrate this with an example. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,
we outline notations used to specify the main elements of
the model. In Section 4, we outline activities that are needed
to formalize standard compliance using our notation. In
Section 5, we describe a support environment that we have
used to validate our approach. Section 6 sets out some
important pieces of related work. In Section 7, we outline
further work and conclude with a summary of our principal
contributions.

2 MODEL
This section outlines the model of standards and compliance
underlying our approach. Fig. 1 shows an entity-relationship
diagram which summarizes the principal elements.

There are two parts to the model. The first, shown in the
top part of the figure presents a simple view of standards
and their use. The second, depicted in the bottom part of the
figure, shows the main elements of our support for
compliance management. In this section, a word in this
font denotes entities or relationships in Fig. 1.

2.1 Standards
As discussed above, in order to express their requirements
on the development process, software development stan-
dards tend to prescribe a number of practices to be
followed. They usually leave ample room for tailoring of
the actual processes, within the broad constraints they lay
down. The distinction between mandatory and recom-
mended practices, common to most standards, is one way
of supporting this tailoring. For our purposes the distinction

838 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 6, NOVEMBERIOECEMBER 1999 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is irrelevant: We want to handle all the practices that the
process owner demands compliance with.

PSS-05, for example, lists almost 200 practices, counting
only mandatory practices. A typical practice taken from
PSS-05 is the following:

UR04 For incremental delivery, each user requirement shall
include a measure of priority so that the developer can
decide the production schedule.

Aside from the UR04 identifier, it is easy to recognize
two parts to the practice: 1) a rationale: "so that the
developer can decide the production schedule" and 2) a
compliance requirement "for incremental delivery; each
user requirement shall include a measure of priority."

Some standards, for example ISO-12207, distinguish
between normative sections, which collect the practices
and tend to exclude rationale in favor of conciseness and
informative sections, which usually carry the rationale,
albeit in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan unstructured way. Since we assume that
practices get into standards only after they have proven
effective, we think it important, for user guidance, that
practices are justified by a rationale which can motivate
compliance: this suggests that the normative and informa-
tive sections be explicitly tied together. Standards, such as
PSS-05 and IS0 12207, are both large and complex. They
often prescribe several hundred practices. To cope with this
complexity it is necessary to impose some structure on
practices. The standard definitions are generally organized
in a hierarchical manner, for instance according to different
development stages or the document types that are to be
produced. We reuse the structuring pattern of the standard
to organize practices into a hierarchy. This leads to practices
that are composed of other practices.

In PSS-05, for example, the practices related to the User
Requirements Document (URD) can be subsumed in a
composite practice. Apart from UR04 it contains another
fifteen practices. Other composite practices in PSS-05 will be
defined for the system requirements document, the archi-
tectural design document and so on.

A compliance requirement is an intrinsic part of any
practice, and in many cases, as in UR04, it entails a given
predicate on the product of the process that shall hold at
some point. We highlight the static facet of a practice in the
model, the property of interest. It may be convenient to
break down a practice that we find in a standard into
several properties. In our example we have the property:

For incremental delivery, each user requirement includes a
measure of priority,

We aim to provide support to the user to assess the
current state of compliance with respect to this property.
Some careful reading of the standard allows us to discover
that the property entailed by UR04 concerns a specific
document, namely the URD.

It should be noted that not all the practices obviously
define compliance requirements with respect to the pro-
duct. For instance, URlO states:
UR10 A n output of the User Requirements phase shall be
the URD.

This is, on the face of it, a constraint on the process. We
believe that these constraints can be readily expressed as

constraints on the product, by considering with more care
those management documents, such as project plans and
progress reports, that capture the essential features of the
dynamics of the process. These documents, which actually
constitute a large proportion of the documents produced
during software development, have up to now received
little attention in research on software process support and,
on process technology in general.

As an example, URlO might entail the following
property:

The Software Project Management Plan for the User
Requirements phase includes a task or work package for
the construction of the URD.

A similar argument applies to the conditional clause in
UROGfor incremental delivery. This condition on the state
of the process, which relates to the overall strategy of the
project in PSS-05, can be transformed into a condition on the
product, in a straightforward manner: the general descrip-
tion of the project, in the Software Project Management Plan
(SPMP), shall include a "project mode" attribute, which
may take as value, among others, "incremental" delivery.
The property in UR04 then becomes:

If the project mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the project general description in the
SPMP is "incremental" delivery, each user requirement in
the URD shall include a measure of priority.

Once the properties that the practices entail have been
characterized in terms of document states, they can be
formalized to define a compliant process. So, we can
characterize compliance precisely, with respect to the
process state as it is embedded in a formal model of the
product states. We are less concerned with modeling the
dynamics of the process. However, the product needs to
evolve, to reach a compliant state, and we capture this
evolution by considering the actions that occur on docu-
ments, and may affect the value of a property. Our
characterization of actions will be limited to what is needed
to monitor them so as to advise the user about compliance
before some critical step is performed.

Before considering the bottom part of Fig. 1, it should be
clear that not all the relations in Fig. 1 are one-to-one: A
standard usually recommends many practices and some
practices may entail several properties. Properties may be
defined that need to access information included in more
than one document. Obviously, a document may participate
in more than one practice, and is, therefore, required to
satisfy many properties. Similarly, a composite practice may
be composed of several component practices. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2 Support
The basic mechanism to support the user is the check,
which evaluates a practice and identifies those elements of
the documents which are noncompliant and the properties
to which they fail to comply. In the case of UR04, this is the
list of the requirements for which priority is undefined.
Clearly, this is not always the most helpful information that
could be provided. A check, therefore, informs a diagnostic,
which could for example produce the percentage of the
noncompliant document elements or a traversal which
allows the relevant document elements to be accessed. This
information would allow the engineer to assess the

EMMERICH ET AL.: MANAGING STANDARDS COMPLIANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
importance and the difficulty of making the document
compliant. They may also indicate the range of possible
repairs that can he performed. Though in line with our
approach, we do not compute an exhaustive list of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

839

perform a check, but find the execution of the check
disruptive or are already aware of compliance problems.

Different diagnostics may be appropriate in different
circumstances. We, therefore, allow the diamostic to be

corrective actions. Such diagnostics should he provided by identified as part of the policy. F~~ example, a in
"canned functions.

Even the best motivated user may fail to apply all the
checks that are needed before some sensitive action, such as
baselining. Also, given the scale and complexity of the
practices, they may be uncertain of the hest points to
establish compliance. To ensure that no unintended breach
of compliance occurs, we introduce policies that trigger the
avvrooriate checks whenever some event or vattern of

guideline mode may most appropriately be accompanied
by a statistical diagnostic while a policy in warning mode
may have a traversal diagnostic associated with it.

A practice can be in a state other than simply compliant
or noncompliant. These states are displayed in the
Statechart [121 in Fig. 2, which identifies Composite states,
such as defined and not checked, that subsume more zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

events occur. In other words, policies monitor :vents.
event occurs on a document when (here is an attempt to

Primitive state% such as not required and unsafe.
For any standard, not all the practices are likely to be

formally defined. This may be because of difficulties in the an action on that document, we that
perform one action on one document at any one time,
events occur on exactly one document. Events can he
detected at any level of granularity. They can be distin-
guished for a document as a whole as well as for
paragraphs and even individual attributes of paragraphs.

Policies have a mode that designates the extent of
freedom to breach the compliance requirement. In each of
the cases below, the user attempts to perform an action
thereby generating an event. On the detection of this event

in the error moded the check is immediately executed
and the failure of the check prevents the action from
being completed, in which case the problem should
be fixed using the diagnostic as support;
in the warning mode, the check is immediately
executed and the failure of the check provides the
user with the diagnostic but the user is permitted to
perform the action and knowingly become non-
compliant;
in the guideline mode, the user is informed that it is
advisable to execute a check but allows the user to
perform the action, without executing the check
if desired.

The most useful mode, given our tolerant approach, is
the warning mode. The others open the door to more varied
compliance management for example, besides providing
strict compliance enforcement, the error mode might he
useful when the fix is so simple that there is no point in
letting the breach occur, and the guideline mode allows the
introduction of discretionary practices. In practice, we have
found that developers wish to know when it is advisable to

formalism, customization, or evolution of the standard. A
defined practice can be in one of two states: checked and
not checked. For a practice that is not checked, we
distinguish whether the check is not required at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis point
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe development, from an unsafe state where a guideline to
perform a check has been overridden by the developer. The
execution of a policy or the manual execution of a check
updates the state.

It is desirable to identify states for composite practices,
too. These states are useful for providing a high-level
perspective on how compliant the project is. They can be
used to identify paths to hot-spots of noncompliant atomic
practices that need the attention of developers. We, there-
fore, define the state of a composite practice in such a way
that it is equal to the state of the component practice that
requires most attention. Hence, we define an order between
states:

compliant < check not required < undefined < unsafe
< noncompliant

The state of a composite practice is then maz(il,. . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,in)
where ij are the states of the component practices. For
example, if three of the practices relating to the URD are
compliant, three are not required, three are undefined, three
are unsafe, and three are noncompliant; the overall state of
the composite practice would be noncompliant.

Notations are needed in order to specify the structure of
documents, properties, practices, and their composition,
policies, and events. These notations will he introduced in
the next section.

Fig. 2. States of practices.

840 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 6, NOVEMBERIDECEMEER 1999

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Document gchema specification in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUML zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 NOTATIONS
3.1 Documents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The specification of properties is based on the structure of the
underlying documents. The formalization of UR04 will
assume, for instance, that paragraphs in the URD that state
functional requirements have an attribute to which priorities
are attached. It also assumes that the paragraph identifying
the delivery mode in the SPMP has an attribute that expresses
whether or not the delivery is incremental. As these
assumptions are specific to a given standard, or to a company
specific customization of a standard, theneed arises to specify
a schema for the underlying document structure.

This document schema specification serves various
purposes. Standards provide a definition of the structure
of documents. The document schema specification elabo-
rates and formalizes these definitions so that properties
can be checked against them. It is also used for creating
instances of documents as templates that users of the
support environment can then fill. It is exploited for the
generation of checks as to whether the documents
continue to conform to the type structures that are set
down in the schema as development proceeds and
changes are introduced.

We use a subset of class diagrams as specified in the
Unified Modeling Language (UML) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[26] for the document
definition. Classes are used to model the documents and
their components, such as sections, subsections and para-
graphs. Attributes of classes model values we want to
attach to components. Aggregation relationships are used to
specify the decomposition of documents into components.
Associations model links that exist between different
components. Association classes are used to model the
attributes of these links.

We assume that a number of classes are predefined.
Among those are classes Document and Component.
Document determines the common properties of a docu-
ment, such as attributes for the document owner, the last
modification date, the current version number and so on.
component determines common properties of any section,
subsection, or paragraph.

Fig. 3 provides an example. It displays an excerpt of the
document schema specification for PSS-05. The document
schema includes two types of documents, URD and SPMP.
Both document types contain an aggregation of sections,
subsections, and paragraphs, that is partially displayed. The
aggregation hierarchy was derived straightforwardly from
the appendix of PSS-05 that gives "templates" for the
different documents to be produced. We have added
attributes to the component types taken from these
templates. Let us now focus on type Requirement,
instances of which will be used to define the users
functional requirements, and type Delivery, instances of
which define the delivery mode in the project management
plan. An attribute pr io r i t y was added to the type for
R e q u i r e m e n t s and an attribute mode was added to the
type for Del ivery.

UML attribute initializations and aggregation relation-
ships are used to specify the creation of document
instances. They formalize the instance level of abstraction
of the document templates defined in standards. In the
example of UR04 given in Fig. 3, initializations define
section titles that are assigned to title attributes as soon as
section and subsections are created. The aggregation
relationships are exploited to propagate the creation of
components upon creation of a composite. For a section of
type Reqs we know due to the aggregation relationship
that two subsections should be created for the "Capability

EMMERICH ET AL.: MANAGING STANDARDS COMPLIANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Requirements” (cap) and “Constraint Requirements”
(const r) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2 Properties and Practices
We use first-order logic in order to specify properties. The
vocabulary that is used to form these logical expressions are
operations of predefined attribute types, relationships, and
attributes of document or component types identified in the
document schema, names of instances of document types,
operations of the Boolean algebra and universal ’ and
existential quantifiers.

Classes in the document schema have a type. The class
type determines the attributes that instances of the type will
have. Attributes also have a type. While we need to be able
to define new classes, we can restrict ourselves to a limited
set of attribute types that we can pre-define. This is because
we only need to define type structures for software
engineering document components rather than general-
purpose objects. Hence, we predefine a number of attribute
types, including Boolean, char, i n t , real, s t r i n g , and
enum. Each of these types have a number of straightforward
predicates and functions, which can be used in expressions
for the definition of properties.

As an example, consider attribute p r i o r i t y , which is of
type in t . We assume that the priority increases with the
value of this attribute. We use 0 to indicate an undefined
priority. Hence, the formalization of UR04 will have to
compare values of requirement’s priorities with 0. For that
purpose we use the # operator that is defined for type i n t .

One of the main purposes for defining the document
schema above is to be able to make assumptions about the
structure of documents when defining properties; the
property spccification language must be able to refer to,
and use concepts of, the document schema. We now
introduce a notation for access to attributes and traversing
along relationships defined in the document schema. If a
type t includes an attribute a we specify access to attribute
a for an instance i of type t as i . a. The result of that
expression is a value in the domain of the type of the
attribute. Likewise, if the type t has a relationship r we
denote traversal along the relationship as i . r. The result of
that expression is a component of the type at the other end
of the relationship (if the other relationship is 1:l) or a set of
components of that type if the other end of the relationship
is of cardinality many. Relationship traversals can be
concatenated into path expressions formed by the relation-
ship names delimited by ”.”. Only the last item in such path
expressions may be an attribute name. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As an example, d.org.mode1 .de l ivery .mode de-
notes the value of the mode attribute of a component of type
Delivery that i s included in software management plan
document identified by constant d, where d is an instance of
SPMP.

The document schema specification is at a type-level of
abstraction. Attribute accesses, traversal along relationships
and operations of predefined attribute’types are at type-
level, too. In order to determine whether zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor not a property
holds we need to look at particular instances of documents
and entities. We can denote instances either by quantifying
over the universe of all instances of a particular type or by
referring to named instances. Universal and existential

841

quantifiers can be used for the former, but we need to
introduce a notation for the latter. Standards generally limit
the number of documents to be produced in a project. We
assume that each document has a name and we allow these
names to occur in formulae. Their names and types are
declared at the beginning of the specification. The name for
the user requirements document is introduced by u rd : URD.

Now we are in a position to specify the property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUROIp1

entailed by practice UR04:

I1

spmp : SPMP;

urd : URD;

UR04pl : =

A I.Curri.ranr.ca,,.rl,,~~~.,~~,~

(spmp.org.model.de1ivery.mode = incremental)

i r . p r i o r i t y # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

should be relatively straightforward to define a
I

static semantics for the first-order language sketched
above. This static semantics would rely on the type
system induced by the document schema and support
consistency checks of the property specification. We
could for instance detect the use of operations that are
unavailable for an allribule lype, the traversal along
undefined relationships or the use of attributes that are
undefined for a document or component type.

One might argue that first-order logic is insufficient to
express compliance to standards that specify how activities
should be ordered in time. We believe that we do not need
the expressive power of temporal logic, at the level of
checks, as the standards we have looked at assume that
proper records are kept in project management reports
about the temporal order of activities. This seems an
entirely reasonable assumption. The structure needed for
these records is expressed in the document schema and the
primitives outlined above are appropriate to use this
structure to specify properties. We do, however, need the
expressive power of first-order logic as we have to use
universal and existential quantifiers for relationships of
cardinality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmany in property specifications and for proper-
ties that must hold for all, or at least one, instance of a type.

Practices are conjunctions of one or more properties.
They are specified as a structured document by defining the
practice identifier and enumerating all the properties that
are part of it. For a composite practice, we give its name and
enumerate all its component practices. We have not defined
a notation for rationale. Each practice has associated with it
a short piece of natural language text.

3.3 Policies and Events
Policies determine when practices are checked, the rele-
vance of the result and the diagnostic provided to the user.
A policy is given by a quadruple (E , P, M, D) where E is an
event, P is a practice identifier, M t {ERROR, WARNING,
GUIDELINE} identifies the policy mode and D identifies a
canned diagnostic function. We have implemented three
such functions in our prototype: LIST generates a list of the
noncompliant items; STAT generates a simple statistical
analysis (number, percentage) of the noncompliant items;
TRAV generates a traversal of the underlying document base

842 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, NOVEMBEWOECEMBER 1999

so as to retrieve a filtered document containing all the
noncompliant items.

For a full appraisal of the expressive power of our policy
language, we need to discuss the specification of events.
Policies trigger checks on the occurrence of certain events
recognizd for a document, a component or a component
attribute.

We have found that the events which feature most
frequently in policies are:

Open(<document>)
Close(<document>)
Update (< a t t r i b u t e >)

The Open event is issued if the user is about to open a

can be seen as temporal extensions of a logical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND
operator. A logical AND cannot be applied for the composi-
tion of events because in both our model and in FLEA’s
triggers only one event can be detected at a specific point in
time. THEN-EXCLUDING and TOO-LATE are temporal
versions of the logical NOT operator. THEN-EXCLUDING
combines three events and it is raised if the third event is
not raised between the first and the second event. TOO-
LATE raises the composite event if the second of the two
events specified does not occur within a period of time
starting from the occurrence of the first event. As an
example of a temporal event composition consider: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(Update(spmp.org.model.delivery.mode)

THENOpen(urd),UR04, WARNING, STAT)
document. The document is identified by a constant in the
Same way as it was identified for The Close
event is issued if the is about to close a document,
Finally, the Update event is issued if the user is about to
modify the value of a component’s attribute. Attributes are
identified by path expressions.

the policy:

It determines that the user should be provided with a
statistical analysis of noncompliant requirements if the
delivery mode attribute has been edited and the user is
about to open the URD.

We can now outline the semantics of policies. Each

mode, the user is advised to execute the check. If the user
declines to execute the check then the practice will be in
state unsafe. For policies with warning and error mode, the
check is executed transparently to the user. If the check

Let us revisit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ~ 0 4 and look at Some Consider policy references a practice. If the policy is in guideline

(Update(spmp.org.model.delivery.mode),

UR04, WARNING,STAT)

This policy might result in warning users about non-
compliance of the user requirements document after the
delivery mode attribute of a project plan was edited and
shows as a diagnostic the percentage of noncompliant
requirements. Another example is:

(Open(ddd), UR04, ERROR, TRAV) .
It determines that users cannot work on the detailed

design document (identified by constant add) if in an
incremental delivery, the priority has not been specified.
The given diagnostic is a traversal that enables the user to
visit all noncompliant requirements.

While the atomic events given above are necessary for
the specification of policies they are not sufficient for every
policy that users might find appropriate. It is necessary to
compose events, for example to subsume different events
that all trigger the same check.

Event composition is a feature of FLEA, a formal
language for expressing assumptions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8] . FLEA includes
triggers with operators for temporal and logical event
composition. We use FLEA’s logical OR operator to express
that a check will be triggered when either of the combined
events is raised. An example is the following policy:

(Open(add) OR Open(ddd), UR04, ERROR, LIST)

It determines in just one policy that users can work on
neither the architecture definition document (add) nor the
detailed design document (ddd) if the project is non-
compliant to UR04. As a diagnostic it provides the list of
noncompliant requirements.

The temporal event composition operators of FLEA are
THEN, THEN-EXCLUDING, IN-TIME, and TOO-LATE. THEN
composes two events. The combined event is raised if the
two events are executed after each other. IN-TIME raises
the composite event if the second of the two events occurs
within a specified period of time starting from the
occurrence of the first event. Both, THEN and IN-TIME

passes, the practice will be in state compliant. If a check of a
policy in error mode fails the diagnostics associated with
the policy will be given and the action that triggered the
event is aborted. In warning mode, the diagnostic is given
to the user and the user can abort the action. If the user does
not abort, the practice will be in state noncompliant. The
state of all composite practices in which the checked
practice is included will be recomputed when the state of
the practice has changed.

Policies reference exactly one practice. If different
practices have to be checked when an event occurs,
different policies have to reference that event. They will
then all be triggered when the event occurs. It is not
possible to define more than one policy for a practice. If we
had a policy in warning mode and another in guideline
mode for the same practice, users would be confused when
they are first given a guideline and then a warning. Hence,
the static semantics of our policy definition language
excludes these situations.

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMETHOD FOR DEFINING COMPLIANCE

Defining standards compliance is a complex activity. In this
section, we outline a method that supports the systematic
definition of standards compliance using the notation that
we introduced in the previous section.

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 shows a high-level Petri net that indicates the
activities that constitute our method for defining standards
compliance. The activities use information provided by
standards, namely document templates, properties and
practices, and policy statements, and produce a validated
compliance definition. We now discuss each of these
activities.

The first activity of our method is the definition of the
UML class diagram. The class diagram is derived from
templates for documents that are included in most

EMMERICH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAET AL.: MANAGING STANDARDS COMPLIANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA843 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
/.Standard ' ,~

!, Properties)
", & Practices

Standard , POilCY I
Statements

~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc
Define Formalize , 1st order ' ~ ,
Document b (~ :!krzp > w Properties 8 b (logic

Practices , . formulae
~~

Types
1

~~

Define Formalize , 1st order ' ~ ,
Document b (~ :!krzp > w Properties 8 b (logic

Practices , . formulae
~~

Types
1

t
If

, Formulae
Failed

A

Fig. 4. Method for defining standard compliance.

standards. The appendix of ESA's PSS-05 includes 11 such
templates. The IEEE standards 730,828,829,830, 1012,1016,
1058.1, and 1063 are further examples of standardized
document templates. The templates provide suggestions for
the chapters, sections, and subsection contents of docu-
ments. It is very straightforward to translate these into a set
of classes that are interconnected through composition
relationships. These composition relationships should be
given expressive names that will be later used in path
expressions.

The templates are translated into a considerable number
of classes. To cope with the complexity involved, we
suggest using the UML concept of packages for structuring
the overall class diagram. We believe a template should be
mapped into a single package. If necessary, nested packages
should be used.

Based on the UML class diagram, path expression can be
defined. In addition, attributes are needed. These shquld be
added to the UML class diagram as appropriate. Develop-
ing the UML class diagram and the formalization of
practices are an incremental and intertwined activity. In
Fig. 4, this is suggested by the feedback cycle that leads to
the document type definition activity.

If all properties of a (potentially composite) practice are
formalized the practice can be tested. This should be
supported by an environment in such a way that a check
derived from a practice can be triggered manually. The
environment should enable the instantiation of the classes
identified in the document schema in documents. The

t I

I
Formulae \ Formalize
Passed l Policies

I

Policies 1- Policies ,'",

no 1 OK? &Events

formulae should then be interpreted by the environment in
order to execute checks. By executing the check,on different
document test cases, the formulae that formalize practices
and properties can be validated.

Standards include practices that lead to the adoption of
policies. PSS-05 for example, includes a practice that
dictates how compliance to practices should be checked.
In PSS-05, compliance to practices of the phase should be
established when the document produced in that phase is
reviewed and noncompliance should be brought to the
attention of management. Such policy statements will then
be formalized by determining a policy mode, a practice
identifier, a canned diagnostic and an event.

The support environment should support the incremen-
tal introduction of policies. The impact of introducing a new
policy can then be tested incrementally. Moreover, this
supports introductions of policies-on-the fly. The introduc-
tion of new policies, however, should be confined to
authorized users.

5 SUPPORT ENVIRONMENT
In a project with many documents, evolving over a
significant period of time and hence with a very large
number of checks to be carried out, a support environment
is needed that checks compliance, presents diagnostics and
provides a means of obtaining an overall view of the current
state of compliance. In this section, we describe the
architecture of our support environment and the current
status of our implementation.

844 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Incremental
Document
Updates

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 6, NOVEMBERIDECEMBER 1999

Incremental
Practices &
Policy Updates

Front-en1

notifie

document
manager

User

Document " Compliance
View View

.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~~-JL_.-. . . ~~ ~ ~ . . ~ ~ ~ ~

i i
- ~~

compliance
manager

Back-end

i 1 4
D p m e n t

State I _ _ ~ ~ ,

check
engine

triggers
check

Key
b control flow - - _ _

dataflow

' 1 module
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 5. Logical architecture of the support environment.

5.1 Architecture
The logical structure of our support environment is shown
in Fig. 5. It consists of four main modules: a document
manager and a compliance manager, comprising the front-
end of the environment; and policy and check engines,
comprising the back-end. These are integrated by way of a
shared document base.

5.1.1 Document Manager
This module is a generic document management system
with all the associated features such as navigation, folding
and unfolding and so on.

The managed documents are hierarchically composed.
Components are used to store information for sections,
subsections, down to individual paragraphs (components).
Every component in a document has attributes. Users can
attach attributes to objects by defining a name and a type
during editing sessions and from then create and/or
display values of these attributes. The document manager
also supports the concepts of links that can be used to relate
one object to another. Links are used, for instance, in order
to capture requirements ti-aceability information.

Fig. 6 shows the document manager displaying a PSS-05
Systems Requirements Document. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.1.2 Compliance Manager
A standard is itself treated as a hierarchical document. PSS-
05, which is a well organized standard, is divided into

practices associated with process management and prac-
tices associated with products.

The compliance manager is based on a view of a
hierarchical document as shown in Fig. 7. The practices
with their associated rationale can be written within the
compliance manager using the same editing facilities
available for other structured documents. They can be
viewed at any stage. The compliance manager provides a
simple facility for manually triggering the checks associated
with a particular practice. A separate document is provided
to write the policies.

The practice states (Compliant, Not Required, Unde-
fined, Unsafe, Noncompliant) described above are asso-
ciated with a color. The color coding allows the manager or
developer to understand the compliance of the project at a
glance. Our scheme for providing a high level view of
compliance, that is propagating the "worst state" up the
tree, clearly fits with this approach. The overall state of
compliance of a project with respect to a standard can be
readily viewed at any level, with the tree folded, and more
detail can be obtained by unfolding where there are obvious
problems. Nodes can be opened in order to view the
diagnostics for a noncompliant practice and for an unsafe
practice information about the guideline.

Fig. 8 shows the practices from PSS-05 viewed as a
textual document. In this figure, you can only see the
natural language formulation, though the formalized
properties can be viewed in an identical manner, as below

EMMERICH ET AL.: MANAGING STANDARDS COMPLIANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA845 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m e car mi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe able to m a w i m d
Standard i lal ioads with wlndb of 0 xliomeisrsperiiour, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWiln 180 BMP

SRlOOS 1.7.1.1.2 Moveba6kwerds

Fig. 6. PSS-05 systems requirements document.

in Fig. 9. The shading in Figs. 7 and 8 denote the current
practice state. The color key is given in the lower left corner
of Fig. 7.

Fig. 9 shows a view of the properties that can be obtained
from the compliance manager. Fig. 10 shows the crude
diagnostics currently given by the compliance manager.
The displayed diagnostic is the result of the policy
discussed in Section 4, which demanded a statistical
diagnostic. It identifies the policy through the composite
event that triggered the check and the policy mode. It also
indicates the practice that has been checked and the
percentage of noncompliant components. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.1.3 Policy and Check Engines
The document manager notifies the policy engine about the
occurrence of events on documents and components. The
policy engine monitors events and triggers the check
engine. The check engine performs the check by evaluating
the constituent properties and returns the results to the
policy engine, which in turn updates the document holding
the practice states, so that the compliance manager can
show them to the user.

The section which follows explains how the front-end
and back-end are implemented and communicate in the
prototype.

5.2 Implementation
Rather than implementing an environment from scratch we
are using and extending an existing system. We have
chosen the Dynamic Object Oriented Requirements System
(DOORS) [25]. It is widely used in industry to manage
requirements and management documents that are pro-
duced during system engineering processes. DOORS has no
process or work-flow engine. DOORS has a large user base
with an expressed interest in problems of compliance.

Fig. 11 shows the physical architecture of the prototype
support environment. The major elements are DOORS,
FLEA, and AP5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3] . They communicate through a set of files
which are discussed in Section 5.2.4.

As shown in Fig. 11, we are exploiting FLEA not only for
policy specification, but also in our implementation. We
take advantage of AP5, the infrastructure on which FLEA is
built, as a basis for implementing our check engine. The
subsections which follow highlight the important facets of
the three major implementation modules and their integra-
tion.

5.2.1 DOORS
From an implementation standpoint DOORS has powerful
extension facilities that allow us to build relatively complex
application layers and provides powerful and rapid data
access. DOORS has a Dynamic extension Language (DXL)
that can be used to automate tasks. DXL is an interpreted
language. It includes imperative and rule-based language
concepts. DXL functions can be attached to user interface
primitives, such as pull-down menus. Functions are
currently used to create template documents, whose
structure and attributes correspond to those prescribed by
certain standards. DXL provides control flow primitives,
such as iterations, and simple means of attribute accesses
and traversal across links.

DXL also provides the concept of triggers. Triggers are
associations between events and actions. Triggers can be
used to react to the occurrence of the event (posttriggers), or
to guard the event which can then, if necessary be aborted
(pretriggers). We have used pretriggei-s and associated
aborts extensively as they allow us to prevent the developer
performing actions forbidden by current policies.

846 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25, NO 6, NOVEMBERIDECEMBER 1999 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 7. PSS-05 in the compliance manager-hierarchical view.

Fig. 8. Fig. 8. PSS-05 in the compliance manager-standard view zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAP.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Al’5 is an extension of Common Lisp that ”allows users to
program at a more ’specificational’ level.” “AP5 represents
state (that is data) as a set of relationships among a set of
objects, as in a model of first order logic. The language for
accessing this data includes the language of first order
logic” [3]. A relation between objects is represented by a
tuple, containing the name of the relation and the list of

objects related to each other: (relation-name objl obj2 ...). A
tuple can be used in a well formed formula (WFF) as a
predicate. Relation sets can be updated inserting tuples
manually, or can be derived from the information already
present in the database, using a WFF. The new relation will
be updated as soon as the relations involved in its definition
change. AP5 WFF are built from primitive relations, logical
connectives (NOT, AND, OR, IMPLIES, EQUIV, XOR),

: J
, , . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 9. Property descriptions in the compliance manager.

existential and universal quantifiers, and variables. AP5
also provides triggers. Every time a tuple is added to thr
database, i t checks whether thc conditions associated to all
the defined triggers are satisfied. If they are, a lisp function,
associated to each trigger, is executed.

The combination of AP5 (in thc form of a library of LISP
functions) and Common Lisp (in the form of the interpreter
and compiler) provides a n cxcellent vehicle for defining
and experimenting with notations.

5.2.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFLEA
The Formal Language for Expressing Assumptions (FLEA)
is a monitoring system, which gathers the events occurring
in a n application and gives notification of certain combina-
tions of these events. PLEA provides a small temporal logic-
like language (discussed above) particularly suited tu the

Fig. 10. Diagnostic in the compliance manager.

expression of event combinations. It is a Common Lisp
application, which uses the AP5 database. When a relevant
evcnt occurs in the monilored system the system itself
notifies it by adding a tuple to the database (external event). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A time tag will be automatically associated to each tuple.
The description of an event combination is compiled into a
query, which is exccutcd cvery time the database is
updated. If thc query is successful, this is an event as well
(definition event), and is added to the database. A definition
evcnt can be part of an event combination. The monitored
system can also add information other than events to the
database (relation), if it is uscful to the specification of event
combinations. Thc FLEA notation is an extension of the AP5
notation; once in the database, events are in fact primitive
relations. There are a variety of approaches to implcmenl-
ing event monitoring and particularly temporal composi-
tion. For our prototype wc have found thc way in which
FLEA makes the time/space tradeoffs entirely satisfactory.

5.2.4 lnfegration
Currently wc have a w r y loose integration of DOORS with
AP5 in which we create a mirror representation of the
structure of a DOORS document in AP5. Properties and
policies are written within the compliance manager. Tlicy

848 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 6, NOVEMBEWOECEMBER 1999 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
on a trial basis there are a number of significant changes that
will be required before it can be more widely used.

Our current implementation has poor performance and
the integration of DOORS and AP5 is clearly only suitable
for our preliminary evaluation-it presents problems of
synchronization and scale. We intend to develop a direct
translator between our document and property notations
and DXL. We intend to continue to use FLEA which
provides a very flexible event monitoring service. However,
notification of events from DOORS to FLEA is unsatisfac-
tory and we plan to use a more effective communication
mechanism than a shared file, probably sockets. The use of
the notification file to update the compliance manager is the
subject of current work.

In practice, we have found some need for the developer to
be able to force the execution of particular checks outside the
framework of the policies. We have prototyped a mechanism
to do this but it is poorly integrated with our Compliance

Fig. 11. Physical architecture of the prototype

are exported to property description and policy description
files, which are compiled by AP5 and FLEA, respectively.

DOORS generates events for significant activities such as
opening a document or updating an attribute. We have
made some minor modifications to the DOORS kernel to
increase the range of actions that generate events. When an
event occurs, DOORS writes a notification to the event bus
file. FLEA reads this file periodically and updates its
database, if necessary.

Al'5 provides output in the form of messages to the user
and writes to a notification file. DOORS monitors the
notification file and the information is made available to the
compliance manager so that the practice states are set
appropriately. The occurrence of all checks and their results
are written to the notification file. For policies in guideline
mode the policy itself is written on the notification file.
DOORS reads the file and sets the state of practice to unsafe
until it is notified that the check specified in the policy has
been performed. For policies in warning mode the check is
triggered directly by the policy and the policy itself and the
result (compliance or diagnostic) are written on the
notification file. DOORS reads the file and updates the
practices appropriately. For policies in error mode, that
invoke a check which fails, the policy itself and the failure
are written to the notification file. DOORS reads the file and
generates a veto, a DOORS kernel facility that we use to
implement aborts.

The work that was required to achieve this level of
integration is not very substantial and leads us to believe
that our overall architecture is sound. Much of the work
was as a result of the prototype status of FLEA commu-
nication mechanisms. Modifications to DOORS were not
strictly necessary but gave us a little more flexibility in
writing policies.

5.3 Status
The current implementation is a prototype which has been
assembled as a vehicle for experimentation and as a proof of
concept. Thoughweintend to field aversion of this prototype

. , ~

manager interface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As we gain more experience we are developing a better

understanding of how to write policies and use of the
different modes.

DOORS provides some support for multiple users; we
have not considered in detail how this impacts our support
environment. This is a relatively serious drawback and
though we are moderately confident that our scheme is
applicable in a multiuser setting, this issue requires
attention. Our aim clearly is to validate the overall approach
prior to dealing with multiple user support.

6 RELATED WORK
Our work draws on a number of intertwined strands of
research. The problem of compliance, as we have treated it,
is closely related to inconsistency management in specifica-
tion. Key contributions in this area are [9], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6] , [Ill.

Our work concentrates on inconsistency detection and
identification and leaves handling of inconsistency to the
users of the tool. For some indication on how handling
might be tackled see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1131.

The use of process modeling techniques to control the
application of consistency checks has been explored in 191 and
in [ZZ]. The approachdescribed in thelatter paper issimilar to
the one presented here and differs from that generally taken
in the process modeling literature. There is no explicit
representation of a global process, but rather a set of
distributed local models, that may be inconsistent. Consis-
tency checks are triggered on recognizing events by means of
pattern-matching using regular expressions.

A similar approach to process support is taken in the non
intrusive process centered software engineering environ-
ment Provence [ZO] which deploys the event-action speci-
fication tool Yeast [Zl]. An interesting feature of this work is
the use of event contexts [l] to constrain event matching.
We can reproduce this in FLEA.

The problem of process deviation has been analyzed in
141, who introduce the LATIN process modeling language
and the SENTINEL support environment. A process model
is defined in LATIN and enacted within SENTINEL.
Deviations may occur since, for example, the user may
force the execution of an action such as checking-out a

EMMERICH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAET AL.: MANAGING STANDARDS COMPLIANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA849 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
module even if the current state of the process does not
fullfill the conditions that the model requires for the
execution of the action. LATIN defines the requirements
for compliant performances, by the means of process
constraints. The idea is that if a deviation does not result
in a breach of the constraints, enactment may proceed. If on
the other hand a deviation will breach the constraint a
process of pollution analysis and repair is invoked based on
reasoning over the performance traces.

Process constraints in LATIN are similar to properties in
our approach. The requirement that deviations do not
breach the constraints means that LATIN leads to fully
compliant projects, while our approach is looser. We do not
have a full process model to enact: we only have the
product model, and a set of properties the product must
satisfy if the performance is to be compliant. Actions are
modeled very crudely; we are only really interested in them
if they affect properties.

Cugola et al. [5] take a broader approach to the problem of
process deviation, and present a formal framework for
characterizing interactions between a “human-centered
system” and automated support for that system. The
approach encompasses process centered software engineer-
ing environments and work flow management systems. To
formally capture the notions of inconsistency and deviation,
the framework uses state machines (not necessarily finite) to
model both the human-centered system and the associated
support system. The machine modeling the human-centered
system explicitly distinguishes between inconsistent and
consistent states, and between expected and unexpected
transitions, that is deviations. Linking the two machines by a
pair of relations, between states and transitions, respectively,
the framework formalizes the concepts of inconsistencies and
deviations between the two systems and gives us a way of
talking ahout the ability of the support system to provide
effective support for the human-centered system.

The application of the framework to some process
centered software engineering environments leads the
authors to conclude that in order to minimize the problems
associated with inconsistency and deviation it is necessary
to enrich the semantics of the process modeling language, to
facilitate the representation of a larger number of states and
transitions; and, to enrich the architecture of the process
support system with mechanisms that will distinguish all
the events occurring in the human-centered systems, and
map them onto the process model under enactment.

It is rather difficult to characterize our work in terms of
this framework. Our minimalist and tolerant approach
means we have no need to model deviations explicitly. Our
treatment of events assumes the use of a support environ-
ment (DOORS) that provides an adequate set of events. We
limit ourselves to those domains where a significant body of
empirical knowledge about the human-centered system is
available, in the rigorous form of standards. These
standards also identify a set of significant events which
we can use.

Methods for process validation, defined as the assess-
ment of the discrepancies between the process actually
followed and the normative processes defined in process
models are discussed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]. The methods are based on

string difference metrics. Characters in these strings
represent process events. Strings which are captured from
the performance of the actual process are compared with
strings generated from the process model and a distance
measure is derived using standard algorithms. Our ap-
proach differs in that we do not have an explicit process
model but we use our product focus to provide more
specific guidance about how to move from noncompliance
to compliance. If we introduced an explicit process model
we would be able to use this approach as we maintain an
event trace.

7 SUMMARY AND FURTHER WORK
In this paper, we haveintroduced standardscomplianceas an
issue of importance in software engineering and have
developed a model which identifies the main elements of
standards and of the support required to manage compliance.
We have presented an environment which implements the
model and described the structure of this environment.

The principal contributions of our work are:

the identification of the issue of standards compli-
ance,
the development of a model of standards and
support for compliance management,
the development of a formal model of product state
with associated notation; a powerful policy scheme
that triggers checks,
a flexible and scalable compliance management
view.

Our environment is based on an industrial strength
document management system. Our claim to scalability is
justified both in our use of the services of this system and by
our experiments with a real industrial standard. Our
approach is lightweight, in the sense that it requires
relatively simple augmentation of tools that are required
in any case. The notations we have provided are simple to
use and based on well-established and widely understood
concepts. We have realized a “tolerant” approach which,
we believe, fits well with the way in which complex
software systems are built.

We hope that the details of our prototype do not distract
from these contributions. We believe that much of what we
have accomplished could be simply and cheaply engi-
neered into similar document management systems.

We are building a second prototype that overcomes
some of the difficulties that we experienced with the
prototype described in this paper but uses the logical
architecture set out above. This prototype will be geared
towards industrial use. As such it will remove the
dependency on FLEA, AP5, and CLISP and it will have a,
probably simpler, event monitor built using DXL. This will
make it simpler to install the prototype and allows it to
execute on all hardware platforms DOORS operates on. We
also have strong reasons to believe that this second
prototype will execute more efficiently as the need for
file-based communication between the event monitor and
the document manager disappears.

We have scheduled a program of industrial evaluation
for this second prototype in the immediate future. Several

850 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 6, NOVEMBERIOECEMBER 1999 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
existing DOORS users have agreed to use the compliance
manager to formalize their development standards and to
evaluate the support for compliance that we provide.

Our immediate research agenda is set by the discussion
in Section 5.2. However, some broader issues remain to be
tackled. In addition to practices discussed above, many
standards incorporate statements about the high-level goals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of the development process. The question of how we can
establish that the practices correctly implement these high-
level goals is one which needs an answer. Some preliminary
work on such correctness problems has been developed in

We would hope that the ideas on which our work is
based, can be fed back into the standards process itself
and might assist in the formulation of new systems
engineering standards, for example we are working on an
emerging standard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[18].

Customers who procure the development of a new
system often demand compliance to a development
standard. Now, our compliance manager displays the
degree of compliance at one point in time. Customers
may also be interested in the evolution of compliance
throughout the development process. To achieve that we
would need to measure how compliance develops over
time. Such compliance measurements could also be used
and integrated into an experience factory approach [2]. The
integration would then support process improvement
based on compliance monitoring of previous projects.

We are party to the shared research aim of building a
better formal understanding of inconsistency, a contribution
to this is [l l] . In particular, we hope that our work will yield
a better understanding of how to pull together many of the
different research strands and also perhaps provide a test-
bed for new tools and techniques.

~ 4 1 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ACKNOWLEDGMENTS
The authors are grateful to Martin Feather for kindly
providing us with FLEA and to Don Cohen for his technical
advice on using AP5. The authors are also grateful for the
comments of the anonymous referees who have allowed us
to significantly improve this paper. This work was funded
by the Teaching Company Directorate through Scheme No.
1884 and performed while Carlo Montangero was an
EPSRC Visiting Fellow funded through Grant No. GR/
L54561. Stefano Antonelli was a visiting research student at
University College London. The authors acknowledge
support from the ESPRIT Working Group 21185 Promoter.2.
A preliminary position paper discussing some of the ideas
detailed in this paper was presented at the ICSE-19
Workshop entitled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALiving with Inconsistency held at Boston,
Massachusetts in May 1997.

tional Software Experience Factory," Proc. 14th lnf'l Cqf Software
Eng., pp. 370-381, Melbourne, Australia, IEEE CS Press, 1994.

[3] D. Cohen, AP5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAManual, Oct. 1992. f p / / f t p , isi. edu/puh/ap5/
[4] G. Cugola, E. Di Nitto, C. Ghezzi, and M. Mantiane, "How To

Deal with Deviations During Proccss Model Enactment," Proc.
17th Int'l Conf Software Eng., pp. 265-273, Seattle, Washington,
ACM Press. 1995.

151 G.P. Cugola, E. Di Nitto A. Puggetta, and C. Gherzi, "A
Framework for Formalizing Inconsistencies in Human-Centred
Systems," ACM Trans. Softwnre Eng. and Methodology, vol. 5, no. 3,
1PPh

[GI S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh,
"Coordinating Distributed ViewI'oints: The Anatomy of a Con-
sistency Check," Int'l I, Concurrent Eng.: Research G. Applicofions,
vol. 2, no. 3, pp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA209-222, 1994.
J.E. Cook and A.L. Wolf, "Software Process Validation: Quantita-
tively Measuring the Correspondence of a Process to a Model,"
ACM Trans. Software Eng. &Methodology, vol. 8, no. 2, pp. 147-176,
1999.
M. Feather, "FLEA Pormal Language far Expressing Assump-
tions-Language Description," private communication, Apr. 1997.
A. Finkelstein, D. Gabbay, H. Hunter, J. Kramer, and B. Nuseibeh,
"Inconsistency Handling in Multi-Perspective Specifications,"
IEEE Trans. Software Eng., vol. 20, no. 8,,pp. 569578, 1994.

[IO] A. Finkelstein, J. Kramer, and M. Hales, "Process Modelling; A
Critical Analysis," Integrated Software Reuse: Maiiagenrcnt and
Techniques, P. Walton and N. Maidcn, eds., pp. 137-148. Chapman
& Hall and UNICOM, 1992.

[Ill A. Finkelstein, G. Spanoudakis, and D. Till, "Managing Inter-
ference," L. Vidal, A. Finkelstein, 6. Spanoudakis, and A. L. Wolf,
eds., Proc. Joint SIGSOTT'96 Workshops, pp. 172-174, ACM Press,
1996.

[l]

[8]

[Y]

~~ ~ ~

D. Harel, "On Visual Formalisms," Coinm. ACM, vol. 31, no. 5,
pp. 514-530,1988,
A. Hunter and B. Nuseibeh, "Analysing Inconsistent Specifica-
tions," Proc. Third IEEE Symp. Requirements Eng., pp. 78-86,
Annapolis, Md., IEEE CS Press, 1997.
IEEE, IEEE Standard for Developing Software Life Cycle Processes,
pp. 1,074-1,995, IEEE CS Press, 1995.
Introduction to IS0, 1997. http://www. iso. ch/infoe/intro. html
ISO/IEC "Quality Management and Quality Assurance Standard-
s-Part 3 Guidelines for the Application of IS0 9001 to the
Development, Supply and Maintenance of Software, IS0 9000-3,"
Int'l Sfandnrdisation Organisation, 1994.
ISO/IEC, "Int'l Standard, Information Technology Software Life
Cycle Process, IS0 12207," 1995.
ISO/IEC, "Draft Systems Engineering Standard, IS0 15288," 1997.
ISO/IEC, "Software Process Improvement and Capability Deter-
mination," lnt'l Standardisation Orpnisation, 1997.
B. Krishnamurthy. and N.S. Barghouti, "Provence: A Process
Visualization and Enactment Environment," I. Sommerville and
M. Paul, eds., Proc, Software Engineering-ESEC'93, pp. 451465,
Garmisch-Partenkirchen, Germany, Lecture Notes in Computer
Science 717, Springer-Verlag, 1993.
B. Krishnamurthy and D.S. Rosenblum, "Yeast: A General
Purpose Event-Action System," IEEE Trans. Software Eng., vol. 21,
no. 10, pp, 8455857,1995,
U. Leonhardt, A. Finkelstein, J. Kramer, and B. Nuseibeh,
"Decentralised Process Enactment in a Multi-Perspective Devel-
opment Environment," Proc. 17th Int'l Conf Software Eng., pp. 255-
264, IEEE CS Press, 1995.
C. Mama, J. Fairclough, B. Melton, D. De Pablo, A. Scheffer, and R.
Stevens, Softwnre Enzineering Stmdards. Prentice Hall, 1994.
C. Montangero and L. Semini, "Applying Refinement Calculi to
Software Process Modelling," Proc. Fourth Int'l Conf Software
Process, pp. 63-74, Brighton, U.K., IEEE CS Press, 1996.
Quality Systems & Software Ltd., Oxford Science Park, Oxford,
U.K., "DOORS Reference Manual (V3. 0)," 1996.
Rational Software Corp., Santa Clare, Calif., UML Semantics,
version 1. 1 alpha r6 ed., July 1997.

REFERENCES
111 N.S. Barghouti and B. Krishnamurthy, "Using Event Contexts and

Matching Constraints to Monitor Software Processes," Proc. 17th
Int. Conf Software Eng., pp. 83-92, Seattle, Washington, IEEE CS
Press, 1995.
V.R. Basili, G. Caldiera, F. McGarry, R. I'ajerski, G. Page, and S.
Waligora, "The Software Engineering Laboratory-An Opera-

[2]

http://www

EMMERICH ET AL ,.: MANAGING STANDARDS COMPLIANCE

friends and colie,

Stefano Antonelll. This paper is dedicated to
the memory of Stefano Antonelli. Stefano
completed his studies to obtain the "Laurea"
degree in Informatics Engineering at Politecnico
di Milano in 1997. He was writing his disserta-
tion on the subject of this paper while working at
University College London as a visiting research
student. Shortly after the completion of the first
draft of this paper, he died suddenly and in
tragic circumstances. He is much missed by his

agues.

Wolfgang Emmerich received a diploma de-
gree in Informatics from the University of
Dortmund, Germany (1990) and a doctor of
science degree in mathematics and informatics
from University of Paderborn (1995). He then
joined City University, London, United Kingdom
as a lecturer. In November 1997, he took his
current position as a lecturer at University
College London, United Kingdom. His research
interests are in software wrocesses. reauire-

ments, and software architectures for distributed systems: He' has
particular interests in managing distributed documents using XML and
the paradigm of distributed objects. Dr. Emmerich is a partner and
cofounder of Zuhlke Engineering GmbH, an IT consultancy that
specializes in object technology. He has published extensively in
software engineering and is currently writing a textbook on Distributed
Objects (John Wiley & Sons). Dr. Emmerich is a chartered engineer, a
member of the IEEE Computer Society, and the ACM. He is secretary of
the Requirements Engineering Specialist Group of the BCS and a
Member of'the IEE.

Anthony Flnkelstein holds a BEng degree in
systems engineering, an MSc degree in systems
analysis, and a PhD degree in design theory. He
is professor of software systems engineering at
University College London, a post held in the
Department of Computer Science. He is also a
director of the UCL Centre for Systems En-
gineering. Formerly, he was professor of com-
puter science at The City University, London and
head of the Department of Computer Science.

Prior to that, he was a member of the academic staff at Imperial College
of Science, Technology & Medicine. His research interests are in the
area of software systems engineering and, in particular, in requirements
engineering. He has contributed to software specification methods,
software development processes, tool, and environment support for
software development. Recent work has included contributions to work
on specification from multiple viewpoints and to requirements trace-
ability. He has published more than 150 papers in these areas and held
research grants totaling in excess of 6m. He is a chartered engineer, a
member of the IEE and BCS. He is a founding member of IFlP WG 2.9
Software Requirements Engineering.

member of the ACM

851

Carlo Montangero received a degree in elec-
tronic engineering from the Politecnico di Milano
in 1969 and is a professor of programming at the
Department of informatics of the University of
Pisa since 1981. His research interests have
always been in software development methods
and processes, and the related support environ-
ments. Currently, his major interest is in refine-
ment calculi to specify and develop coordination
architectures for distributed systems. He is a

, IEEE Computer Society, AiCA, and EATCS.

Stephen Armitage received a BSc degree in
computer science from the University of Hert-
fordshire, United Kingdom, in 1996. He was a
teaching company associate, working on a
collaborative research project between Univer-
sity College London and Quality Systems &
Software Limited. The project involved checking
project compliance to standards. His research zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

,,,,u,fi$::%kfimSW interests include systems engineering, require-
:::?::!?:!::::::::!!I::??::'

', ments ennineerinn. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand nrncasa rnnrlalino~ He
_I " > -

CLrreni y UOlnS for QSS Lln as an miernel diia appiicallon developer
h e s a menuer oi me Br I sn Compder Scc eiy, ACM IEEE and IEEE
Computer Society.

Richard Stevens received a BSc (honors) in
physics from the University of Wales in 1967, an
MSc degree in solid state physics from the
University of Bath in 1969, and a PhD degree
in solid state physics from the University of
Wales in 1972. Dr. Stevens is the chief technical
officer and founder of QSS Ltd. He was formerly
head of methodology, technology, and quality in
the is Division of the European Space Agency,
where he was instrumental in the development of

the PSS-05 standard. He is now leading the development of the DOORS
requirements management tool and accompanying training courses,
plus the theory and practice of Innovation. Dr Stevens is the author of
several textbooks on systems engineering and standards and has
written numerous academic papers and articles for publications such as
Byte magazine and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe Times and Guardian newspapers. In 1998, he
was awarded the iNCOSE fellowship in recognition of his work in
systems engineering.

