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Abstract 1 Introduction 

Complex financial products and trading applications are 
difficult to model and implement in conventional com- 
mercial databases due to temporal, object, rule and other 
data support requirements. Extensible database systems 
provide a better solution because of the ability to de- 
fine complex data types, manipulate data of type proce- 
dure, define rules, operators and access methods to op- 
timize these operators. The paper discusses the design 
issues in modeling financial trading systems in extensi- 
ble DBMS. The complexity of financial products is ana- 
lyzed and strategies for modeling these products are pro 
posed. Operators relevant to financial trading are dis- 
cussed alongwith access methods to optimize these oper- 
ators. The paper describes an implementation of a finan- 
cial trading system in POSTGRES. 

Keywords: Temporal Databases, Complex Objects, 
Rule Processing, Extensible Databases. 

Since 1971, after the breakdown of the Bretton 
WoodswANK system of fixed exchange rates, finan- 
cial markets have seen a sharp increase in the fluctuation 
of interest rates and exchange rates. The past 20 years 
have also seen rapid advances in information technology 
that make it possible to collect and process large amounts 
of data. These events, when coupled with the sophisti- 
cation of financial theory, have created a marketplace of 
a vast array of financial products that cater to different 
investment needs. Financial Trading Applications, which 
are meant to facilitate trading in these products, have 
also become very complex because : 

There are a variety of complex financial products 
available and the dynamic nature of the market, cou- 
pled with a decrease in regulation, has created a sit- 
uation in which new products are introduced often 
and old ones discontinued. 

Trading strategies are baaed on numerically intensive 
procedures and complex mathematical relationships 
between financial products. 

The decrease in the cost of telecommunications and 
the increased reliability of networks make profitable 
trading opportunities available only for short periods 
of time. 
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The proliferation of financial products, increase in in- 
formation and rapid advances in technology keep trad- 
ing houses and investment firms under constant pressure 
to develop new ad-hoc applications for financial trading 
support. These applications tend to be expensive, in- 
volve the duplication of effort to a large extent and are 
for the most part, product specific. The investment is 
often wasted if the product is discontinued. In addition, 
the non-uniformitv of annlications makes it very difficult Dublin, Ireland, 1983. 
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for the firm to get a clear picture of its overall risk at any 
point in time. 

Commercial databasea are unable to handle the com- 
plexity of financial products and trading applications 
because they are specialized for the creation, manipu- 
lation and processing of fixed-format snapshot records 
rather than temporal data. Extensible database systems 
[CARE871 provide an appropriate environment for the 
development of high-performance financial trading appli- 
cations. The primary goal of this paper is to describe 
the complexity of financial data and focus attention on 
strategies for designing trading applications using exten- 
sible databases. While current extensible database sys- 
tern prototypes support many features required for the 
implementation of such applications, this paper identi- 
fies requirements that are essential but lacking in current 
systems. 

1.1 Relevant Research 

Rapid advances in technology have changed the way in- 
vestment firms do business. This has been well docu- 
mented in [BAUE92] and [SPEC88]. [BAUE92] discuss 
the impact that computers have had on the ability of 
investment firms and trading houses to quickly analyze 
numerous trading strategies. [SPEC88] discuss the role 
computers and trading systems had in the Oct. 19, 1987 
crash. The presence of databases in trading systems 
was discussed in [ABBOSB], [PEIN88] and [SAMM87]. 
[ABBOSS] point to the rezponse time requirements of 
a database that facilitates stock-trading. [PEIN88] and 
[SAMM87] present real-life experiences gained from a 
study of a large, high volume stock trading system that 
used a standard relational DBMS. 

The main focus of this paper is to demonstrate how 
extensible databases can be used to build reliable, high- 
performance financial trading applications. There are 
many prototype extensible systems including POST- 
GRES [STON9Oa], Exodus[CARE88], Starburst[LIND87] 
aud Ode[AGRA90]. A more complete discussion of the 
capabilities required by trading systems and the support 
ing features available in these prototypes is presented in 
Section 3 and Section 4. 

[SEGE87] provided a convenient way to look at tem- 
poral data through the concepts of Time Sequence and 
Time Sequence Collection. Temporal data models are 
designed to capture the complexities of many time- 
dependent phenomena. Temporal data modeling and 
representation have been extensively studied in the lit- 
erature in [CLIFS’I], [GADI88], [SEGE88a], [SNOD87], 
[WUU92]. A glossary of temporal concepts can be found 
in [JENS92]. This paper models temporal objects found 
in the financial domain and discuszea the implementation 
of the model in an extensible database. 

The rest of the paper is organized as follows. Section 2 
presents two examples of financial data and related trad- 
ing applications. This section highlights the complexity 
of the data and the difficulty of designing trading ap 
plications using traditional databazes. It also describes 
the functionality necensary to support a trading appli- 
cation. Based on the examples presented in Section 2, 

Section 3 gives an outline of the design of a financial 
trading application using an extensible DBMS. This sec- 
tion also discusses the functionality available in existing 
object-oriented and extensible databasea with reference 
to the functionality required for this application. Sec- 
tion 4 shows how a trading application can be designed 
and implemented in POSTGRES Section 5 summarizes 
the contributions of the paper and discusses issues for 
further research. 

2 Trading Applications and Fi- 

nancial Data 

This section introduces finance concepts and terminology 
necessary to understand the functionality of a financial 
trading application. It highlights the complexity of finan- 
cial data and the related application. The functionality 
required of a database that can support financial trading 
is also discussed. It should be noted that for this paper, 
the terms financial product and financial instrument 
are synonymous. 

Term Structure 

A debt instrument is a promissary note that evidences a 
debtor/creditor relationship. In such a relationship, one 
party borrows funds from another party and the borrow- 
ing party promises to pay the funds, together with in- 
terest. An example of a debt instrument is a US Govt 
‘l%easury Bond (T-Bond). The length of time till the 
debt instrument matures is called its term-temalurity 
or term. Since there is a chance that the borrower will 
fail to make timely payments of interest and/or principal 
on the debt, the associated risk is quantified and called 
the default risk. 

Each bond of a given term is priced by the market and 
this price can be converted by valuation arithmetic into a 
yield. The relationship between yield and term is called 
the term-structure of interest rates. When graphed, it is 
known as a yield curve. The yield curve/term-structure 
varies over time due to the fluctuation of interest rates. 
Traders, financial product designers and economists are 
interested in the shape of the yield curve at a particu- 
lar point in time (c&-sectional data) and also in the 
changes in the yield curve over a period of time (time- 
se&a data). 
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If the term-structure were to be modeled in a database, 
the following database features are required : 

l Capability of creating data types of arbitrary com- 
plexity using base data types and other complex data 
types. An example of a complex data type is the 
data type time-series which is a 2 dimensional ar- 
ray of float and time. The term-structure at time 
t, is a data structure of type time-series. The term- 
structure over a period of time is a complex data 
type and is a 2 dimensional array of time-series and 
time. This feature allows the creation of hierar- 
chical structures that specify relationships between 
different data objects. This includes the capability 
to specify different kinds of term-structures as in- 
stances of the object term-structure, e.g., USGovt- 
Treasury term-structure, Corporate term-structure. 

l Capability of defining procedures that can take ob- 
jects of type time-series as arguments, e.g., draw- 
yield-curve(term-structure). 

l Capability of defining rules that specify relationships 
between objects. 

In addition to the database features mentioned above, 
other features needed to model complex financial objects 
are : 

l Capability of defining rules that act as constraints 
on the values of attributes of an object. 

l A rule syntax that allows the expression of events 
based on the state of objects in the database, ex- 
ternal events, time-based events, triggering of other 
rules and the execution of procedures. 

l Capability of expressing temporal conditions in rules. 

l Capability of supporting data of type procedure. 

l Active rules that check for conditions rather than 
only being event driven. 

l Capability of specifying the sequence of rule execu- 
tion. 

An example of a financial contract is now discussed to 
illustrate the requirements mentioned above. 

Option Contract 

A call option on an underlying asset, say a stock, grants 
its purchaser the option to purchase a specified number 
of shares of the stock from the seller of the option. If 
the option is classified as a European Option, this right 
is good till the expiration date. For simplicity, this is the 
only case discussed. The life of an option is the time 

Attribute 
Asset 

Sire 
Expiration 

Months 

Exercise 
Price 

Exercise 
Period 

Lust 
Trading 

Day 

Expiration 
Day 
Settlement 
Day 

STOCK OPTION CONTRACT 

RuleIJ 

Stock Symbol, e.E., BMW 
SO sh& of the &derlying stock 
Next Three Months u well u clorert 2 
quarterly expiration months. The quarterly 
expiration months are March, June, 
September, December. 

For each expiration month, there 
must be at least 3 Call Options at least 

one exercise price in-the-money, at least 

one exercise price at-the-money and at 
leaut one out-of-the money. 
Exercise pricer separated by DM 5 intervals. 

Last ‘Ikading Day of the option 

The third Friday of the expiration month 
if that day in an exchange trading day, 

otherwise the exchange day preceding 

this Friday 
The exchange trading day following the 
last trading day 

Two exchange days after the exercise 

Figure 1: Part of an Option contract 

between the date of purchase and the expiration date. 
The price at which the purchaser can buy the stock is 
called the ezercise price and will be denoted as K. To buy 
this right, the purchaser must pay an option premium. 
The stock price at any point in time will be denoted as S, 
and if S > K, then the option is said to be in-the-money. 
If S = K, the option is at-the-money and if S < K, the 
option is out-of-the-money. 

Figure 1 shows the attributes of an option contract that 
is traded on the Frankfurt Stock Exchange and the rules 
governing the instantiation of these attributes. These at- 
tributes include the underlying et& and the size which 
are easily modeled in a database as text and integer re- 
spectively. The last trading day is an attribute that rep 
resents the last day on which the option can be bought or 
sold on the exchange. This is derived from the expiration 
month based on the following rule “the third Friday of the 
expiration month if that is an exchange trading day, oth- 
erwise the exchange trading day immediately preceding 
this Friday”. In this rule, exchange trading days refer to 
the days on which trading occurs on the Frankfurt Stock 
Exchange. The rule clearly demonstrates the need for a 
concise language to express temporal conditions and the 
capability of the database to understand these rules and 
manipulate temporal objects. The database must also 
give the user the capability of defining collections of time 
points, e.g., syntax to define the set of time points that 
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constitute the exchange trading days, 
An implicit part of the contract is its cash flow pat- 

tern. At the boundary points, the cash flow calculation 
is simple and is given by the following rule : 

On date the contract is bought 
canh flos - - (preniuu + transaction costs) 

On wpiration data 
ii (Stock price of underlying asset (S) > 

axerci8e price (K)) then 
cash tlou - S-K 

elre 
cash flos - 0 

Cash flow patterns can be very complex and are usu- 
ally expressed in a high level programming language. A 

risk-profile is a two-dimensional array that records the 

change in cash flow with changes in the price of the 

stock. It is generated from the cash flow pattern and the 
database should be able to either maintain the risk-profile 

which entails supporting objects of the type 2 dimensional 
float array or maintain the logic to derive the risk-profile. 

Maintaining the logic to compute the risk-profile and cash 

flow pattern can be accomplished by supporting data of 

type procedure and rules that trigger these procedures 
bwed on certain conditions. 

The correct procedure to value an option contract is 

determined by the cash flow pattern during the life of the 

option. This procedure is catled the valuation scheme. 

Valuation schemes are essentially modules of code writ- 

ten in high-level programming languages. Since the val- 
uation scheme is dependent on the cash flow pattern, the 

database must be able to store the valuation scheme asso- 

ciated with the option and execute this procedure when 
necessary. An additional requirement is that the database 

rule schema must ensure that all parameters necessary 

for the valuation scheme, e.g., stock price volatility and 

risk-free interest rate, are estimated before the valuation 

scheme is triggered. 

In addition to the rules described above and in Figure 

1, the database must also store rules that define relation- 

ships between financial contracts. If there is a mathemat- 
ical relationship between the value of two or more finan- 
cial contracts, it can be defined as a rule in the database. 

A violation of this rule opens up a potentially profitable 
arbitrage opportunity. (Arbitrage is defined as the si- 

multaneous buying and selling of equivalent portfolios to 

obtain a riskless profit.) Since such opportunities aren’t 

available for very long, the rule should have a constraint 
associated with it. This constraint will either recheck the 

arbitrage condition before committing the transaction of 

buying and selling the two portfolios or have a maximum 
bound on the time that the transaction can take. 

In this section, we discussed the complexity of financial 
objects and the related trading application. The next sec- 
tion discusses the design of a financial trading application 

using an extensible database. 

3 XYading Applications using Ex- 

tensible Databases 

The discussion in the previous section makes it clear that 
the design of a trading application requires a database 

that provides data management, object management and 
knowledge management capability. Object management 
entails efficiently storing and manipulating complex data 
types. Knowledge management refers to the capability 
of storing and enforcing rules to reflect the semantics of 
the application [STONSOb]. Extensible DBMSs have this 

capability because : 

They provide the capability of adding complex data 
types to the base types of float, int and char. This 
allows complex financial products to be modeled in 

the database, thus creating a uniform and central 

store for financial products and financial data. 

They provide the facility to declare new operators on 
base and complex data types. This allows the defi- 

nition of procedures that can take financial products 
as arguments. An example is an operator to com- 
pute the term-structure from the database of bonds. 

Section 4 discusses two such important operators. 

They provide facilities for implementing new access 

methods designed to optimize user-defined operators. 

This feature allows the creation of indexes that can 

facilitate operators on financial products. One such 
index is discussed in Section 4. 

Rules can be defined and their execution sequence 
controlled. This allows knowledge of the financial 

application to be built into the system. If rules are 

processed efficiently applications can avoid the ex- 

pense and performance problems due to inefficient 
application programs. Relationships between finan- 
cial products can be expressed and active rules cre- 

ated to facilitate arbitrage trading. Rules also make 
it possible to construct alerters that can be used to 
call the attention of traders to unusual activity or an 

important news item. 

Extensible DBMSs also provide a natural environ- 

ment for building trading applications because a build- 

ing blocks approach to application development can be 

adopted. This approach preserves investment in software 

by encouraging the modular design of applications, pro- 

moting generality in the design of modules, allowing reuse 
of existing modules and enforcing a standard interface for 
modules. The following discussion focuses on important 
elements of trading applications and database modeling 

issues. 
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Elements of a Trading Application 

The important elements of a trading application that 
are to be modeled in a database are : (a) temporal ob- 

jects, e.g., time-series such as the price of a stock over 
time, (b) cross-sectional objects, e.g., objects whose time- 

varying characteristics are not recorded by the database, 
(c) rules, e.g., expression of the fact that the value of an 
option must be recomputed when the stock price changes 

by some pm-specified amount, (d) methods or procedures, 
which are essentially modules of code developed in high- 

level programming languages such as C++. Examples of 
methods are valuation schemes for options and procedures 
for computing the term-structure. Both rules and meth- 

ods add domain knowledge to the database and reduce 
the amount of application code required. The other ele- 

ments are (e) calendars that describe sets of time points 
like a particular date/time or time intervals like years and 
(f) external objects which are convenient abstractions for 
objects that are not defined in the application. An ex- 

ternal object could be an externally updated information 

source such as a stock ticker or data feed coming from 

other locations not running the same application. 

It should be noted that the above classification is not 

a disjoint partition of the elements of a trading applica- 

tion. For example, a rule could change over time. This 
makes the rule a temporal object as well. A class is a 
collection of these objects. For example, the option con- 

tract described in Section 2 could be modeled as a class 
consisting of temporal objects, rules, methods and cross- 
sectional objects. 

The following discussion provides a detailed specifica- 

tion of features that must be built into an extensible 

DBMS. The most important of these features are calen- 

dars, temporal objects and rules. 

Calendars 

The discussion of option contracts in Section 2 highlighted 

the need for a powerful language and algebra to express 
natural language time-based expressions. Financial trad- 

ing applications must also be able to trade on a global 
basis. Trading around the world requires knowledge of 

the different trading days and trading hours on different 

exchanges. 

A system of calendars and relational operators is used 

to achieve this functionality. [SOO92] first introduced 

extensible calendric systems. Calendric systems are col- 

lections of calendars and operators. They also discuss a 

toolkit that allows the definition of new calendars and 
calendric systems. Our modeling of calendars uses the 

simple set based algebra defined in [LEBA86]. Operators 

for these calendars include interval based relational oper- 
ators like overlaps, meets, precedes and operators that 

facilitate deriving calendars from other calendars. Cal- 

endars and the related operators are useful for (a) defin- 
ing the time points at which temporal objects have val- 

ues, (b) defining the temporal logic for rules that have 

triggers based on time, e.g., rules that alert traders that 
certain options are to expire at time T or in the interval 
[T,, Tel, (c) describing sets of time points or time intervals, 

e.g., AMERICAN-BUSINESS-DAYS z DAYS-IN-YEAH 

- WEEKENDS - HOLIDAYS, (d) defining constraints, 
e.g., suppose no new option contracts can. be introduced 
if any current options are to expire in 10 exchange trading 
days. To express this rule, calendars are used with ap- 
propriate operators to express the set of days, ezchangt 

trading days. Then relational operators will operate on 

the derived calendar to express the logic of the rule. Ex- 

amples are presented in Section 4, (e) representing natural 
language time-based expressions, e.g., the 3’d Friday of 
the month, (f) allowing different semantics for date arith- 
metic, e.g. the yields on some bonds are computed based 

on the actual number of days between two dates but with 
the assumption that the year always has 360 days and 

(g) maintaining valid time in databases. 

This system of calendars allow a concise representa- 

tion of time points and intervals and make it unnecessary 

to physically store time points associated with temporal 

objects. Thus, it is imperative for data manipulation op- 
erators, that have temporal objects as arguments, to work 
in close association with the calendar system. 

In Section 4 we discuss the implementation details of 
calendars, relational operators and a data manipulation 
operator, The discussion also presents the time algebra 
used to denote time-based natural language expressions. 

Temporal Objects 

Temporal objects track the environment over time. It 
should be emphasized that a temporal object is a generic 

term for both a simple time-series and complex temporal 
objects. A time-series can be considered to be a “sequence 

of values in the time domain for a single entity instance” 
[SEGE87], e.g., stock prices. A collection of n-ary vectors 

grouped together to represent a semantic unit is also a 
temporal object but will be referred to as a complex tem- 
poral object. An example of a complex temporal object 

is a Company Balance Sheet. The individual items like 

Gross Sales, Cost of Goods Sold and Operating Expenses 

are time-series that are recorded at the same time points 

and are reported together. Rules and procedures that 

have been changed over time are also considered to be 

temporal objects. These general semantics of temporal 
objects allow us to consider versions as a special case of 
temporal objects. 

Since it is possible to construct complex temporal ob- 
jects from sets of simple time-series, the discussion will 
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focus on time-series. Time-Series modeling and represen- 
tation arc an integral part of modeling complex financial 
objach rrncl will b(* cliscuHnc:d in dclail below. Part of 
the following functionality cau be supported by (ROSE911 

and [WUU92]. 
Each time-series is essentially an n-ary vector and is 

associated with a set of user-defined information. This 

information (M) is classified into (a) information that 

must be present with every time-series (M,) (if not sup- 

plied by the user, appropriate defaults are used) and (b) 

information optionally supplied by the user (M,). it4, 

consists of : 

1. 

2. 

3. 

4. 

Name : The identifier of the time series to be used 
in data retrieval and data manipulation routines. 

Calendar/Granularity : a set of pre-defined time 
points. This item specifies the calendar with which 
the time-series is associated. For example, the 
time-series IBM-DAILY-CLOSING would be asso- 
ciated with the calendar AMERICAN-BUSINESS- 
DAYS. This means that on every day in the calen- 

dar AMERICAN-BUSINESS-DAYS, the time-series 
should have a value. Granularity is a specification of 

the points in time in the defined calendar that can 

potentially have data values [SEGE87]. The defined 

calendar will thus determine the granularity of the 
time-series. The advantage of associating a time- 

series with a calendar is that there is no need to 

physically store the individual time points with the 

values of the time-series. When the timeseries is 

retrieved due to a query, the individual time points 
can be generated using the specification of the calen- 
dar. This is especially advantageous for time-series 
with large lifespans. Since the individual time points 

are not saved on disk, there are large savings in disk 

space utilization. Thus, all time points of the time- 
series are physically stored only when the calendar 

cannot be pm-defined. This is possible in the case of 
randomly updated time-series like tick-by-tick stock 

prices. 

Exception-Set : is a set of time points (within the 

calendar) on which values of the time-series are not 
recorded. For example, even though IBM-DAILY- 
CLOSING should be recorded on every day in the 

calendar AMERICAN-BUSINESS-DAYS, there may 
be an important announcement on a particular day 

that stops trading in the stock. Thus the value of 
the time-series is not recorded on that day. The 

exception-set will include such time points. Thus, 
the actual calendar for a time-series is the set differ- 
ence of Calendar and Exception-Set. 

Lifespan : This indicates the start time and end time 

be 00. The lifespan is used in conjunction with the 
calendar and exception-set to generate the set oftime 
points for which the tirnc-series has values. 

5. Update Mode : This indicates whether the time- 
series is derived from another time-series(s) or is base 
data. If the series is derived, the rule for update 

is specified here. Time-series are allowed to have 
a hybrid update mode. For example, a time-series 
recording the value of an option will change when- 
ever the price of the underlying stock changes (price 
is derived) and also when the option is traded on 

the market. In the latter case, the price is not de- 

rived and is determined by the value at which the 

option was exchanged on the trading floor. A more 
detailed treatment of the Update Mode is provided 

in [ETZI92]. 

6. Frequency : This specifies the frequency with which 
the time-series is updated. The time of update refers 
to the valid time. Valid time is defined in [JENS92] 

as “the time when the fact is true in modeled real- 
ity”. Frequency is always specified with respect to 
the calendar with which the time-series is associated 
and may be a non-trivial function on the set of time 

points in this calendar. For example, suppose EMP, 

a time-series which records the level of employment 

in the country, has the Calendar/Granularity : “the 

last day of the month unless the day is a holiday in 
which case it is the preceding business day”. The fre- 

quency of EMP would be monthly. If a time-series is 
derived from other time-series, the frequency would 

be the frequency of the base data or some function of 
it. For example, consider the time-series DJIA and 
DJIAHILO. DJIA, the Dow Jones Industrial Aver- 

age, is a weighted average of the price of a given 

set of stocks. It is computed every time the price 
of a component stock changes. Thus, it is a derived 

time-series with the same frequency of update as the 
base data. On the other hand, DJIAHILO, which 
is a time-series that contains the daily high and low 

values of the DJIA, has a daily frequency which is 

different from the frequency of its base data. 

It is important to stress the difference between fre- 
quency and granularity. A time-series is said to be 

“regular” [SEGE87], if it contains a value for each 

time point in the time-series lifespan. In a regular 
time-series, the granularity is the same as the fre- 

quency. In this case, the exception-set is a null set. 

7. Type [SEGE87] : The type of a time-series deter- 

mines how to derive values of the time-series at time 
points where the value isn’t explicitly specified. 

An example of a one-dimensional time-series vector 

of the time-series. The end time can be specified to with the associated user-defined information is the ob- 
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servations of a country’s Gross National Product (GNP). 
The calendar associated with GNP is a function of the 

AMERICAN-BUSINESS-DAYS calendar. There is no 

exception-set defined for this time-series. GNP is not de- 

rived from any other time-series and thus its update mode 
is “Base Data”. The frequency of update is quarterly and 
reflects the dollar value of the sum total of economic ac- 

tivity in the quarter. The type of the time-series GNP is 
user-defined. This means that user-defined functions will 

be used to determine the value of GNP at time points 

where it has not been explicitly recorded. For example, 
the GNP on April 30rh (valid time) is not recorded in the 
time-series. This could be derived by a function which 

uses the previous values of GNP or through a function 
which uses other economic indicators. Rules (discussed 

below) can be used to define the type of a time-series and 

build in the desired level of complexity. A detailed treat- 
ment of time-series modeling in databases can be found 

in [SEGE92]. 

Rules 

Rules are useful for testing integrity constraints, main- 
taining consistency, versioning, materialized views, up- 

dating derived data [STONSOb] and monitoring the 

database for specific events [DAYASS]. In the framework 
of the trading application, the functionality demands that 

a rule be a 6-tuple 

< Rule - List, Calendar, Event - 
Condition, Action, Transaction 

Coupling, Constraint >. Each component of the 6-tuple 
is explained below : 

l Rule-List : This is a collection of rule ids and is used 

to group rules that must be executed in sequence. 

The position of a rule within the rule list determines 

the order of execution. 

l Calendar : The calendar associated with a rule de- 
fines the time points/intervals when the rule is active. 

As noted in the discussion on calendars, this gives 

the uSer unlimited flexibility in specifying time-based 

rules. For example a rule can be fired at a specific 

point in time, e.g., on Wednesday at 10 a.m., at cer- 

tain intervals of time, e.g., every 5 hours, at specific 

points in time, e.g., Mon, Wed, Friday, and always, 
in which case they become active rules. The default 
value for the calendar is null which means that unless 
specified, rules will be event-driven. 

l An Event’s scope is defined as the set of objects 
that determine the occurrence of the event. Thus, 
the scope can be a set of rules (for rule-triggered 

events), methods (for events based on the execution 

of procedures) and calendars (for time-based events). 

The condition can be based on the current state of 
database objects or historical states. The cvcnt- 

condition that triggers a rule is specified by using 
elements of the events’ scope, a condition and logical 

connectives like and, or, exclusive-or. For example, 

a trigger can be based on the state of an object and 
time. 

Actions are either rules or methods. Thus, actions 
can trigger other rules, execute methods, update 

database objects and perform any database func- 
tions that can be done through a method. Ac- 
tions are also allowed to update rules. The utility 

of this functionality in trading applications is illus- 
trated by the following example. In times of great 

uncertainty, it would make sense to compute the 

term-structure often. Thus the rule for computing 

the term structure would have the syntax “Every T 
minutes do compute-term-structure”, where T would 
have a small value. But in times of lower volatility, 
an active database would update the value of 7’, so 
that the term-structure is computed less often. This 
frees up system resources for use in other tasks. 

Transaction Coupling : This defines the coupling bc- 

tween the event and action in the rule. A transac- 

tion is an ordered set of methods and rules bounded 

by a begin transaction and commit/abort. Based on 
this definition of a transaction, four types of coupling 

can be defined [GEIiA92] (a) immediate : action is 

executed immediately after the event is recognized 
in the same transaction. This is the default value. 

(b) deferred : The action is executed just prior to the 
commit of the transaction that recognizes the event, 

(c) dependent : The action is executed as a separate 

transaction but only after the transaction that recog- 
nizes the event has committed, and (d) independent : 

The action is executed as a separate transaction with 
no dependency on the transaction that recognizes the 
event. The latter transaction could abort or commit 

without affecting the action. 

Constraint : This is a simple Rule (see below) or cal- 

endar and is used to enforce timing constraints on the 

execution of rules. If the constraint is a calendar and 
if the transaction-coupling is either immediate, de- 
ferred or dependent, it indicates the maximum time 
that can elapse between the beginning of the event 
transaction and the commit of the action transac- 

tion. If the time constraint is not met, the action 

is aborted, A simple rule will reexecute the event 
transaction and check the result of the event with 
the value that was previously obtained. The default 

value of the constraint is null, which means that no 

constraint is applicable to the rule unless specified. 

308 



In this section, we have provided a detailed specifica- 
tion of the important elements of a trading application, 
The following section discusses the choice of POSTGRES 
as the extensible database to implement our ideas and 
describes important aspects of the implementation. 

4 Implementat ion 

Although recent work in temporal databases [ROSEOl], 
[ROSE93], [SU91],[WUU92], describe very useful func- 
tionality not available in existing prototypes, they are not 
fully implemented and integrated with other features such 
as abstract data types and extensible access methods. 
Consequently, we limited the implementation alternatives 
to those discussed below. We employed five criteria in 
choosing an extensible system. These were (a) support 
for rules, (b) preference for a model that was an extension 
of the relational paradigm, (c) presence of a fast path ca- 
pability that allowed the creation of indexes to optimize 
any operators that we defined, (d) persistent program- 
ming language access and (e) availability. Our four alter- 
natives were Ode, Starburst, Exodus and POSTGRES. 
We soon realized that the general rule capability required 
for the trading application w&s not available in any data 
model and that only POSTGRES would allowed us to 
modify the source code to implement this capability. Ode 
provides persistent programming language access though 
Ott but the non-availability of the source code and the 
fact that it is based on the C+t object paradigm made it 
an unattractive alternative. Starburst[HAASSO] is an ex- 
tensible relational DBMS that provides the capability to 
create complex objects, new storage methods, optimiza- 
tion of new operators, specification of the storage method 
for tables and a general rule capability [WID092]. We 
found the fast path capability more difficult to use com- 
pared to POSTGRES. Exodus[CARE88] includes two ba- 
sic components - The storage object manager which pro- 
vides concurrent and recoverable access to object of ar- 

bitrary size and the type manager that has a set of base 
types which can be extended by users. Exodus also pro- 
vides libraries of database system components for access 
methods and version management. It provided the E im- 
plementation language and a generator that produces a 
query optimizer and compiler from the description of the 
available operations and methods. Between POSTGRES 
and Exodus, we chose the former because of the availabil- 
ity and the fact that we had worked with this model be- 
fore and understood the design and implementation well. 
Also Exodus provided no basic rule capability. 

Overview 

POSTGRES is a next generation extensible relational 
DBMS with general mechanisms that can be used for 8e- 

mantic data modeling. These mechanisms include (a) ab- 
stract data types which are used to support complex 
objects (b) data which can be of type procedure and 
(c) rules. 

The primary goal was to implement calendars, tem- 
poral objects and rules. The implementation of tem- 
poral objects is done by using the POSTGRES feature 
of declaring complex data types. Calendars are imp]& 
mented by using stored procedures and user-defined op- 
erators. The POSTGRES Rule System is not adequate 
for the demands of the trading application. It must be 
extended to include (a) event specification that includes 
time-based events, triggering of rules and/or execution 
of procedures, (b) decoupling the action part of the rule 
from the event if specified, (c) ordering the sequence of ex- 
ecution of a set of rules and (d) imposing time constraints 
and rechecking the event condition before committing the 
action transaction. POSTGRES allows user-defined op 
erators and access methods. Operators relevant to this 
application were defined and appropriate access methods 
designed to optimize these operators. For brevity only 
calendars and access methods are discussed in this sec- 
tion. 

4.1 Calendars 

The implementation of calendars involved creating the 
data type interval and set of intervals, which are called 
Calendars. The algebra on which the implementation is 
based was formally introduced in [LEBA86]. 

A Calendar is formally defined as a structured set of 
intervals and the Order of a calendar is defined as a mea- 
sure of the depth of the structured set. Thus, the set 
S = {(/I, ul), (12, uz), . . ., (I,,, u,)} is a calendar with or- 
der 1 while R = {&, . - -, S,,,} where Si = {(Ij, uj)) is a 
calendar of order 2. A calendar of order 0 is simply a set 
of numbers. 

A set of basic calendars, e.g., YEARS, HOURS, were 
created as system defined calendars and the relation- 
ships between them were expressed in a table which 
had the format, {Calendarl, Calendars, list}. Here 
Calendari is a text variable and the list is an order 0 
calendar. For example, to express the relationship be- 
tween YEARS and MONTHS, the entry in this table 
would be {YEARS, MONTHS, 12}, which means that 12 
MONTHS 3 YEARS. The relationship between YEARS 
and DAYS is more complicated because of a leap year 
every 4 years. Consequently, the entry in the table is : 
{ YEARS,DAYS,(365,365,366,365)}, which means that in 
the first year there are 365 days, the second year has 365 
days and so on as the list specifies for four years, after 
which the same pattetn is repeated. The relationships 
between the system defined calendars are based on a start 
date which was taken as Jan 1, 1970 (the start date on 
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Figure 2: Result of strict and relaxed division 

Generically, a relational operator (Op) takes two itr- 
tervals to generate a third interval. POSTGRES is easily 

extended to support relational operators like intersection 

cover, overlaps, during, meets, contains, < and < op- 

erators since the semantics of these operators are well 

defined. Two new operators, the division operator and 
selection operator, were introduced to facilitate manipu- 

lation of calendars. The division operator takes a calen- 
dar of order 1 as its left argument, an interval aa its right 

argument and generates a calendar of order 1 as the re- 

sult. If the right argument is a calendar, then it operates 
on every interval in the calendar. 

For each relational operator, there are two interpreta- 

the UNIX system). 
tions of the division operator. Formally the strict division 

To create a new calendar two different operators were 
(:) operator is defined as : 

defined. The first operator is called generate and takes 

the arguments start time, end time and a list of numbers. C : Op :< t,, ts >Z {cn < t,, tc > I(c E C)A(C op < t,,t, >)I 

The operator generate creates the following calendar : 
The relaxed division (.) operator is defined as : 

gencrate(T,,T,; i&l;.-.;int,)= 
cop. < t,, 1, >i {cI(c E C) A (c op < t,, t, >} 

{(T.,T,+intl),(T,+intl,T,+intl+intz),..., 

(T, + Ci<ninti,T, + C;l,,inti + intcrual~), ..-} 
where the interval (--00, 00) is excluded from the resulting 

where T, is the start time and T, is the end time. In 
sets. If weeks in the year 1993 are : 

generate the list of numbers is considered a circular list 
and the operation is carried out till the end time is ex- 
ceeded. The operator, generate, is illustrated with the 
following example. 

YRS-SINCE-1987 = generate(Jon-l-87; Jan-3-92; 

365,366,365,365) = { (1,365), (366,731), 

(732,1096), (1097,1461), (1462,1826), (1827,1829)} 

where the second element in the calendar, {(366,731)}, 
denotes that the second year, 1988, began 366 days from 

Jan 1, 1987 and ended 731 days from Jan 1, 1987. It 

should be noted that January, 1, 1987 is taken as 1. 
The second operator to create a new calendar is based 

on the same logic as the system table that stores re- 

{WEEKSn {(-4,2),(3,9),...) 

and {Jan - 1993 = {(1,31)}}, the elements in 
the calendars WEEKS : during : Jan-1993 and 

WEEKS.during.Jan-1993 are illustrated in Figure 2. 

The operator selection, denoted by [z]/C, selects the 

zth interval from the calendar C. The operator recursiue- 

selection, denoted by [z],/C, selects the xth interval from 
the calendar C recursively, till the result is an order 0 list. 
Specifically if C is an order 2 calendar, the tth interval 

is chosen from each element. If C is an order 1 calendar, 

the zth element of each interval is chosen. 

4.2 Operators and Access Methods 
lationships between system defined calendars. This 

operator is called caloperate and it takes the argu- 
POSTGRES provides the capability of defining opera- 

ments calendar and a list of intervals. The operator, 
tors, written in high-level programming languages, to the 

caloperate(C, T,; xl; x2; . . . ; x,), where C is the calendar 
database and then using them in the query language. In 

from which the new calendar is to be derived, would cre- 
this section, we describe three operators relevant to finan- 

ate a new calendar whose first interval is a union of the 
cial trading. The first operator, ComputeTS operates on 

first x1 intervals of calendar C, the second interval is the 
the database of bonds to create the term-structure. The 

union of the second 22 intervals of C and so on. The 
Transformation operator converts a time-series from its 

list is applied as a circular list. caloperate is illustrated 
current frequency to another frequency. POSTGRES also 

by the following example. If YEARS is the system de- 
allows a fast path capability to access its internals for cre- 

fined calendar f (L365), then caloperate(YEAW *; 7), 
ating new indexes and access paths to optimize the user- 

would give the calendar of weeks in the year since : 
defined operators 

. The access method used to optimize 
the ComputeTS is described in detail. An algorithm for 

(YEARS,*;7)~{(1,7),(8,14),(15,21),...,} the Transformation operator is also discussed. 

In ComputeTS(B,Range,Default,Category), B indi- 

Here * indicates an arbitrary end time. cates the set of bonds that are to be used to compute 
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Figure 3: Adding records to Main-Memory Index 

the term-structure. Range is the range of time between 

which the term-structure is to be computed. Default 

indicates the default risk for which the term-structure is 
computed and is determined by the investment grade rat- 

ing assigned to it by credit rating agencies. Category in- 

dicates the type of bonds to be used in the computation, 

e.g., Corporate, Government, Mortgage. 

The computation involves the steps of selecting the set 

of bonds that have a given default risk and category type 

from among the space of bonds, B. If B is unspecified, 

the entire database of bonds is used and for each bond 

in the previous set, computing the yield, i, by using the 

price of the bond, the vector of cash flows, CF, and the 

expiration date of the bond. To compute the yield of a 
bond, the remaining term, the cash flows and the current 
bond price are required. This operator returns a two- 

dimensional array of yield and term. 

From the formulas described above, it is clear that the 

computation of the term-structure is a numerically inten- 
sive procedure. It is further complicated by the fact that 

the fluctuation of bond prices on a minute-to-minute ba- 

sis requires recomputation of the term-structure very of- 

ten. Thus, the data structure that is used to optimize 

the computation of a term-structure must allow (i) par- 
allel computation of parts of the term-structure, (ii) the 

choice of the degree of accuracy required in term-structure 
construction such that as the accuracy desired decreases, 

the response time improves and (iii) computation of only 

a small portion of the term-structure with an improve- 
ment in response time. The main memory data structure 

shown in Figure 3 is proposed to optimize the computa- 
tion of the term-structure. 

The hash-table contains all possible combinations of 

bond-rating and bond category. A hash-function, /I(), is 

appropriately chosen to avoid any collisions between these 

combinations. Each element in the hash-table points to 

a list of buckets. Each bucket is characterized by a re- 

maining term range (RTM). A bucket with RTM l-5 

would contain bonds of a specific category and bond rat- 

ing with remaining term between 1 and 5 years. Each 
bucket record contains information on a particular bond 
including its remaining term, date of expiration and cash 

flow if the cash flow is simple. It also contains a pointer 
to the disk block where the bond details are physically 
stored. Information on the number of elements in the 

bucket is also maintained dynamically so that the buck- 
ets can be reorganized when necessary. The advantage 
of this data structure is that it allows term-structures of 

different ranges to be computed by different processors. 
For example, if the term-structure for bonds of AAA rat- 

ing and the category corporate, is to be determined for 
the range l-30 years and two processors are available, the 
job could be divided among the two by sending a snap- 
shot of the data structure for 1-15 years to one processor 

and the snapshot for 16-30 years to the other. Partial 
term-structures will be computed by each processor and 

the result is concatenated. In addition, this data struc- 
ture allows the construction of a term to a user-specified 

degree of accuracy. 

The data structure must be updated whenever (a) a 

new bond is issued and (b) a bond expires/defaults or 

is called (forcibly expired by the issuer) and (c) periodi- 
cally to correctly reflect the RTM. Buckets are allowed to 
grow a maximum of N, after which they are split and the 

records distributed equally over the new buckets. Fig- 

ure 3 shows the case when a new bond record is added 

and the number of records in the appropriate bucket is 
12. Since N ~13, it causes the creation of a new entry 
in the bucket list and an equal redistribution of records 
between the two buckets. Buckets with the same RTM 
are recombined only when the number of records in each 

bucket is less than [N/ml. When the number of records 
in contiguous buckets with different RTM have less than 

[N/ml each, and neither bucket has an adjacent bucket 

with the same RTM, the buckets are coalesced and the 

RTM of the resulting bucket is expanded. The values of 

N and m are dependent on the frequency of insertions 

and deletions in the index. 

The operator, Transformation(TS,F), is used to con- 
vert time-series from the existing frequency to another. 
TS is a time-series and F is the frequency to which TS 
is to be converted. Conversions from a lower frequency 
to a higher frequency are allowed only if the semantics 
of the transformation are clear. Since the time points 
of a time-series are not explicitly recorded, the transfor- 
mation operator uses the calendar, exception-set, life* 
pan and frequency of %a time-series to convert it into a 
time-series with another frequency. To express the trans- 
formation operator algebraically the following definitions 
are introduced : 
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The set of system defined calendars is CO. 

domain(C0) 

rel(Cl , Cz) indicates the relation between calen- 

dars 6, Cz, e.g., rel(MONTHS, DAYS) = 

(DAYS,*;31,28,...) 

rank(c) is used to assign an ordering to the system de- 

fined calendars, 

e.g., tank(SECONDS) = 1 and rank(HOCJRS) = 3. 

hcc(cl, cz), the highest common calendar, is formally de- 

fined as ~CC(CI,C~) = {cil rank(ci) 2 rank(cj), 

VCi, Cj, (rel(cl, Ci) A (rel(cs, Ci) A (rel(cl, Cj)h 

(rel(c2,cj)) A (i # ill- 
For example, hcc(DECADE, YEARS) = YEARS. 

cal(frequcncy): maps every frequency to a system de- 

fined calendar. 

Formally, {cal(frequency) I+ clc E CO}. 

Given these definitions, we are now in a position to for- 

mally define the trans f ormalion operator. 

Transformation(TS, Fl) = {TS(i), Vi E ([n],/COLL)} 

where, 

{COLL = ((TS.C) .ouerlaps. 

rel(cal(Fl), hcc(cal(TS.F), cal(F1))))) 

where TS.C and TS.F are the calendar and frequency of 

the Time-series that is being transformed. TS(i) is short 

form for the value of the time-series at the time point 

i and [n& is short form for the selection operator that 

selects the last item from the calendar. Note that this 

selection operator is applied recursively till the calendar 
is an order 0 calendar. 

This is illustrated with the following example : 
A time-series with weekly frequency and the calen- 
dar AMERICAN-BUSINESS-WEEKS is to be trans- 
formed into a time-series with a monthly frequency. 
Since there is no simple relation between the calen- 
dars WEEKS and MONTHS, the algorithm for the 
Transformation operator is used. Using the definition 
of transformation and the system-defined functions, we 
have cal(monthly) = MONTHS, cal(weeklg) = WEEKS, 

and 

hcc(MONTHS, WEEKS) = DAYS. 

rel(MONTHS, DAYS) = (DAYS, *; 31,28,31,30,. . .) 

and (TS.C) =AMERICAN-BUSINESS-WEEKS, which is a 

calendar of weeks in the year. 

l&5), (8,12), (35,18), (22,28), (2% 33), (37,401, 

(43,47), (50,54), (57,81), - + *a 1 

Then {(TS.C) .overlaps.(DAYS, *; 31,28,31,30, e. e)) results 
in a calendar of order 2 : 

t{(l, 5), (8,12), (15,18), (2292% (2% 31)) 

{(32,33), (37,40), (43,47), (50,54), (57, w), . . . ,I 

From this calendar, the last interval is selected and re- 

sults in an order 1 calendar : {(29,31), (57,69), . . ., }. 

Since the selection operator will be applied recursively 
till the calendar is of order 0, the last element is sc- 

lected from each interval, resulting in an order 0 calendar : 
{31,59, *. * , }. The transformed time-series would then be 
the value of TS at each time point in this calendar. 

5 Conclusions and Further Re- 

search 

Fluctuations in interest and exchange rates, rapid ad- 
vances in information technology and financial theory, 
have created a marketplace of a vast array of complex 
financial products. Financial trading applications, which 
are meant to facilitate trading in these products have also 
become very complex. Because of the constant pressure 
to keep up with the market, investment firms and trad- 
ing houses are forced to create product specific trading 
systems that are discarded as soon as the product is dis- 
continued. To preserve the investment, a building blocks 
approach to application development should be adopted. 
Extensible database systems provide an environment for 
developing fast high-performance applications. The main 
objective of this research is to focus attention on stratc 
giea for designing trading applications using extensible 
databases. 

The contributions of this paper include (a) analysis of 
the complexity of financial products and design of strate- 
gies for modeling them in extensible databases. This in- 
cludes a complete specification of temporal objects, rules 
and calendars, (b) introduction of operators relevant to 
financial trading, (c) design of access methods to optimize 
these operators and (d) implementation of the design in 
POSTGRES. 

We are looking at the following areas for further re- 
search: 

l Introduction and optimization of financial trading 
operators. The paper described two important oper- 
ators relevant for financial trading and access meth- 
ods to optimize these operators. A detailed study 
of financial trading should suggest the basic opera- 
tions that can be used as building blocks for more 
complicated operations. We are compiling this list 
of operators, so that appropriate access methods for 
the optimization of these operators can be developed. 

l Storage methods for temporal objects encountered 
in trading applications is an open problem. There 
have been several proposals in the literature for ef- 

ficient storage and retrieval of temporal and multi- 
dimensional data but it is not clear which proposal is 
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the best or whether a completely new approach is re- 16. 

quired. We are currently doing a performance analy- 
sis of storage structures based on typical queries that 

are encoutered in financial analysis. 17. 
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