
Managing Temporal Financial Data in an Extensible Database *

Rakesh Chandra and Arie Segev

Walter A. Haas School of Business

University of California at Berkeley
and

Information and Computing Sciences Division
Lawrence Berkeley Laboratory

Berkeley, CA 94720
email: crakeshQcsr.lbl.gov, segevOcsr.lbl.gov

Abstract 1 Introduction

Complex financial products and trading applications are
difficult to model and implement in conventional com-
mercial databases due to temporal, object, rule and other
data support requirements. Extensible database systems
provide a better solution because of the ability to de-
fine complex data types, manipulate data of type proce-
dure, define rules, operators and access methods to op-
timize these operators. The paper discusses the design
issues in modeling financial trading systems in extensi-
ble DBMS. The complexity of financial products is ana-
lyzed and strategies for modeling these products are pro
posed. Operators relevant to financial trading are dis-
cussed alongwith access methods to optimize these oper-
ators. The paper describes an implementation of a finan-
cial trading system in POSTGRES.

Keywords: Temporal Databases, Complex Objects,
Rule Processing, Extensible Databases.

Since 1971, after the breakdown of the Bretton
WoodswANK system of fixed exchange rates, finan-
cial markets have seen a sharp increase in the fluctuation
of interest rates and exchange rates. The past 20 years
have also seen rapid advances in information technology
that make it possible to collect and process large amounts
of data. These events, when coupled with the sophisti-
cation of financial theory, have created a marketplace of
a vast array of financial products that cater to different
investment needs. Financial Trading Applications, which
are meant to facilitate trading in these products, have
also become very complex because :

There are a variety of complex financial products
available and the dynamic nature of the market, cou-
pled with a decrease in regulation, has created a sit-
uation in which new products are introduced often
and old ones discontinued.

Trading strategies are baaed on numerically intensive
procedures and complex mathematical relationships
between financial products.

The decrease in the cost of telecommunications and
the increased reliability of networks make profitable
trading opportunities available only for short periods
of time.

‘Tbia work wa rupported by an NSF Gmnt IRI-9116770 aud by

the Applied MJhematicd Scienceo Rcseaxzh Progrun of the Office
of Energy Research, U.S. Department of Energy under Contract
DEACO3-76SFWOQS. Pennirrion to copy witliout fee all or part
of tlir material ir granted provided tlat tAc copier are not made or
distributed for direct commercial advantage, tAc VLDB copyriglt

notice and tAe title of the publitaiion and iir date appear; and no-
tice in given tAat copying ir by pemaierion of tAe Ver) Large Data

Base Endowmeni. To copy oiAetwire, or to republirl, reqmiree e
fee and/or rpecial permiraion from tAc Endowment.

Proceedings of the 19th VLDB Conference

The proliferation of financial products, increase in in-
formation and rapid advances in technology keep trad-
ing houses and investment firms under constant pressure
to develop new ad-hoc applications for financial trading
support. These applications tend to be expensive, in-
volve the duplication of effort to a large extent and are
for the most part, product specific. The investment is
often wasted if the product is discontinued. In addition,
the non-uniformitv of annlications makes it very difficult Dublin, Ireland, 1983.

.

302

for the firm to get a clear picture of its overall risk at any
point in time.

Commercial databasea are unable to handle the com-
plexity of financial products and trading applications
because they are specialized for the creation, manipu-
lation and processing of fixed-format snapshot records
rather than temporal data. Extensible database systems
[CARE871 provide an appropriate environment for the
development of high-performance financial trading appli-
cations. The primary goal of this paper is to describe
the complexity of financial data and focus attention on
strategies for designing trading applications using exten-
sible databases. While current extensible database sys-
tern prototypes support many features required for the
implementation of such applications, this paper identi-
fies requirements that are essential but lacking in current
systems.

1.1 Relevant Research

Rapid advances in technology have changed the way in-
vestment firms do business. This has been well docu-
mented in [BAUE92] and [SPEC88]. [BAUE92] discuss
the impact that computers have had on the ability of
investment firms and trading houses to quickly analyze
numerous trading strategies. [SPEC88] discuss the role
computers and trading systems had in the Oct. 19, 1987
crash. The presence of databases in trading systems
was discussed in [ABBOSB], [PEIN88] and [SAMM87].
[ABBOSS] point to the rezponse time requirements of
a database that facilitates stock-trading. [PEIN88] and
[SAMM87] present real-life experiences gained from a
study of a large, high volume stock trading system that
used a standard relational DBMS.

The main focus of this paper is to demonstrate how
extensible databases can be used to build reliable, high-
performance financial trading applications. There are
many prototype extensible systems including POST-
GRES [STON9Oa], Exodus[CARE88], Starburst[LIND87]
aud Ode[AGRA90]. A more complete discussion of the
capabilities required by trading systems and the support
ing features available in these prototypes is presented in
Section 3 and Section 4.

[SEGE87] provided a convenient way to look at tem-
poral data through the concepts of Time Sequence and
Time Sequence Collection. Temporal data models are
designed to capture the complexities of many time-
dependent phenomena. Temporal data modeling and
representation have been extensively studied in the lit-
erature in [CLIFS’I], [GADI88], [SEGE88a], [SNOD87],
[WUU92]. A glossary of temporal concepts can be found
in [JENS92]. This paper models temporal objects found
in the financial domain and discuszea the implementation
of the model in an extensible database.

The rest of the paper is organized as follows. Section 2
presents two examples of financial data and related trad-
ing applications. This section highlights the complexity
of the data and the difficulty of designing trading ap
plications using traditional databazes. It also describes
the functionality necensary to support a trading appli-
cation. Based on the examples presented in Section 2,

Section 3 gives an outline of the design of a financial
trading application using an extensible DBMS. This sec-
tion also discusses the functionality available in existing
object-oriented and extensible databasea with reference
to the functionality required for this application. Sec-
tion 4 shows how a trading application can be designed
and implemented in POSTGRES Section 5 summarizes
the contributions of the paper and discusses issues for
further research.

2 Trading Applications and Fi-

nancial Data

This section introduces finance concepts and terminology
necessary to understand the functionality of a financial
trading application. It highlights the complexity of finan-
cial data and the related application. The functionality
required of a database that can support financial trading
is also discussed. It should be noted that for this paper,
the terms financial product and financial instrument
are synonymous.

Term Structure

A debt instrument is a promissary note that evidences a
debtor/creditor relationship. In such a relationship, one
party borrows funds from another party and the borrow-
ing party promises to pay the funds, together with in-
terest. An example of a debt instrument is a US Govt
‘l%easury Bond (T-Bond). The length of time till the
debt instrument matures is called its term-temalurity
or term. Since there is a chance that the borrower will
fail to make timely payments of interest and/or principal
on the debt, the associated risk is quantified and called
the default risk.

Each bond of a given term is priced by the market and
this price can be converted by valuation arithmetic into a
yield. The relationship between yield and term is called
the term-structure of interest rates. When graphed, it is
known as a yield curve. The yield curve/term-structure
varies over time due to the fluctuation of interest rates.
Traders, financial product designers and economists are
interested in the shape of the yield curve at a particu-
lar point in time (c&-sectional data) and also in the
changes in the yield curve over a period of time (time-
se&a data).

303

If the term-structure were to be modeled in a database,
the following database features are required :

l Capability of creating data types of arbitrary com-
plexity using base data types and other complex data
types. An example of a complex data type is the
data type time-series which is a 2 dimensional ar-
ray of float and time. The term-structure at time
t, is a data structure of type time-series. The term-
structure over a period of time is a complex data
type and is a 2 dimensional array of time-series and
time. This feature allows the creation of hierar-
chical structures that specify relationships between
different data objects. This includes the capability
to specify different kinds of term-structures as in-
stances of the object term-structure, e.g., USGovt-
Treasury term-structure, Corporate term-structure.

l Capability of defining procedures that can take ob-
jects of type time-series as arguments, e.g., draw-
yield-curve(term-structure).

l Capability of defining rules that specify relationships
between objects.

In addition to the database features mentioned above,
other features needed to model complex financial objects
are :

l Capability of defining rules that act as constraints
on the values of attributes of an object.

l A rule syntax that allows the expression of events
based on the state of objects in the database, ex-
ternal events, time-based events, triggering of other
rules and the execution of procedures.

l Capability of expressing temporal conditions in rules.

l Capability of supporting data of type procedure.

l Active rules that check for conditions rather than
only being event driven.

l Capability of specifying the sequence of rule execu-
tion.

An example of a financial contract is now discussed to
illustrate the requirements mentioned above.

Option Contract

A call option on an underlying asset, say a stock, grants
its purchaser the option to purchase a specified number
of shares of the stock from the seller of the option. If
the option is classified as a European Option, this right
is good till the expiration date. For simplicity, this is the
only case discussed. The life of an option is the time

Attribute
Asset

Sire
Expiration

Months

Exercise
Price

Exercise
Period

Lust
Trading

Day

Expiration
Day
Settlement
Day

STOCK OPTION CONTRACT

RuleIJ

Stock Symbol, e.E., BMW
SO sh& of the &derlying stock
Next Three Months u well u clorert 2
quarterly expiration months. The quarterly
expiration months are March, June,
September, December.

For each expiration month, there
must be at least 3 Call Options at least

one exercise price in-the-money, at least

one exercise price at-the-money and at
leaut one out-of-the money.
Exercise pricer separated by DM 5 intervals.

Last ‘Ikading Day of the option

The third Friday of the expiration month
if that day in an exchange trading day,

otherwise the exchange day preceding

this Friday
The exchange trading day following the
last trading day

Two exchange days after the exercise

Figure 1: Part of an Option contract

between the date of purchase and the expiration date.
The price at which the purchaser can buy the stock is
called the ezercise price and will be denoted as K. To buy
this right, the purchaser must pay an option premium.
The stock price at any point in time will be denoted as S,
and if S > K, then the option is said to be in-the-money.
If S = K, the option is at-the-money and if S < K, the
option is out-of-the-money.

Figure 1 shows the attributes of an option contract that
is traded on the Frankfurt Stock Exchange and the rules
governing the instantiation of these attributes. These at-
tributes include the underlying et& and the size which
are easily modeled in a database as text and integer re-
spectively. The last trading day is an attribute that rep
resents the last day on which the option can be bought or
sold on the exchange. This is derived from the expiration
month based on the following rule “the third Friday of the
expiration month if that is an exchange trading day, oth-
erwise the exchange trading day immediately preceding
this Friday”. In this rule, exchange trading days refer to
the days on which trading occurs on the Frankfurt Stock
Exchange. The rule clearly demonstrates the need for a
concise language to express temporal conditions and the
capability of the database to understand these rules and
manipulate temporal objects. The database must also
give the user the capability of defining collections of time
points, e.g., syntax to define the set of time points that

304

constitute the exchange trading days,
An implicit part of the contract is its cash flow pat-

tern. At the boundary points, the cash flow calculation
is simple and is given by the following rule :

On date the contract is bought
canh flos - - (preniuu + transaction costs)

On wpiration data
ii (Stock price of underlying asset (S) >

axerci8e price (K)) then
cash tlou - S-K

elre
cash flos - 0

Cash flow patterns can be very complex and are usu-
ally expressed in a high level programming language. A

risk-profile is a two-dimensional array that records the

change in cash flow with changes in the price of the

stock. It is generated from the cash flow pattern and the
database should be able to either maintain the risk-profile

which entails supporting objects of the type 2 dimensional
float array or maintain the logic to derive the risk-profile.

Maintaining the logic to compute the risk-profile and cash

flow pattern can be accomplished by supporting data of

type procedure and rules that trigger these procedures
bwed on certain conditions.

The correct procedure to value an option contract is

determined by the cash flow pattern during the life of the

option. This procedure is catled the valuation scheme.

Valuation schemes are essentially modules of code writ-

ten in high-level programming languages. Since the val-
uation scheme is dependent on the cash flow pattern, the

database must be able to store the valuation scheme asso-

ciated with the option and execute this procedure when
necessary. An additional requirement is that the database

rule schema must ensure that all parameters necessary

for the valuation scheme, e.g., stock price volatility and

risk-free interest rate, are estimated before the valuation

scheme is triggered.

In addition to the rules described above and in Figure

1, the database must also store rules that define relation-

ships between financial contracts. If there is a mathemat-
ical relationship between the value of two or more finan-
cial contracts, it can be defined as a rule in the database.

A violation of this rule opens up a potentially profitable
arbitrage opportunity. (Arbitrage is defined as the si-

multaneous buying and selling of equivalent portfolios to

obtain a riskless profit.) Since such opportunities aren’t

available for very long, the rule should have a constraint
associated with it. This constraint will either recheck the

arbitrage condition before committing the transaction of

buying and selling the two portfolios or have a maximum
bound on the time that the transaction can take.

In this section, we discussed the complexity of financial
objects and the related trading application. The next sec-
tion discusses the design of a financial trading application

using an extensible database.

3 XYading Applications using Ex-

tensible Databases

The discussion in the previous section makes it clear that
the design of a trading application requires a database

that provides data management, object management and
knowledge management capability. Object management
entails efficiently storing and manipulating complex data
types. Knowledge management refers to the capability
of storing and enforcing rules to reflect the semantics of
the application [STONSOb]. Extensible DBMSs have this

capability because :

They provide the capability of adding complex data
types to the base types of float, int and char. This
allows complex financial products to be modeled in

the database, thus creating a uniform and central

store for financial products and financial data.

They provide the facility to declare new operators on
base and complex data types. This allows the defi-

nition of procedures that can take financial products
as arguments. An example is an operator to com-
pute the term-structure from the database of bonds.

Section 4 discusses two such important operators.

They provide facilities for implementing new access

methods designed to optimize user-defined operators.

This feature allows the creation of indexes that can

facilitate operators on financial products. One such
index is discussed in Section 4.

Rules can be defined and their execution sequence
controlled. This allows knowledge of the financial

application to be built into the system. If rules are

processed efficiently applications can avoid the ex-

pense and performance problems due to inefficient
application programs. Relationships between finan-
cial products can be expressed and active rules cre-

ated to facilitate arbitrage trading. Rules also make
it possible to construct alerters that can be used to
call the attention of traders to unusual activity or an

important news item.

Extensible DBMSs also provide a natural environ-

ment for building trading applications because a build-

ing blocks approach to application development can be

adopted. This approach preserves investment in software

by encouraging the modular design of applications, pro-

moting generality in the design of modules, allowing reuse
of existing modules and enforcing a standard interface for
modules. The following discussion focuses on important
elements of trading applications and database modeling

issues.

305

Elements of a Trading Application

The important elements of a trading application that
are to be modeled in a database are : (a) temporal ob-

jects, e.g., time-series such as the price of a stock over
time, (b) cross-sectional objects, e.g., objects whose time-

varying characteristics are not recorded by the database,
(c) rules, e.g., expression of the fact that the value of an
option must be recomputed when the stock price changes

by some pm-specified amount, (d) methods or procedures,
which are essentially modules of code developed in high-

level programming languages such as C++. Examples of
methods are valuation schemes for options and procedures
for computing the term-structure. Both rules and meth-

ods add domain knowledge to the database and reduce
the amount of application code required. The other ele-

ments are (e) calendars that describe sets of time points
like a particular date/time or time intervals like years and
(f) external objects which are convenient abstractions for
objects that are not defined in the application. An ex-

ternal object could be an externally updated information

source such as a stock ticker or data feed coming from

other locations not running the same application.

It should be noted that the above classification is not

a disjoint partition of the elements of a trading applica-

tion. For example, a rule could change over time. This
makes the rule a temporal object as well. A class is a
collection of these objects. For example, the option con-

tract described in Section 2 could be modeled as a class
consisting of temporal objects, rules, methods and cross-
sectional objects.

The following discussion provides a detailed specifica-

tion of features that must be built into an extensible

DBMS. The most important of these features are calen-

dars, temporal objects and rules.

Calendars

The discussion of option contracts in Section 2 highlighted

the need for a powerful language and algebra to express
natural language time-based expressions. Financial trad-

ing applications must also be able to trade on a global
basis. Trading around the world requires knowledge of

the different trading days and trading hours on different

exchanges.

A system of calendars and relational operators is used

to achieve this functionality. [SOO92] first introduced

extensible calendric systems. Calendric systems are col-

lections of calendars and operators. They also discuss a

toolkit that allows the definition of new calendars and
calendric systems. Our modeling of calendars uses the

simple set based algebra defined in [LEBA86]. Operators

for these calendars include interval based relational oper-
ators like overlaps, meets, precedes and operators that

facilitate deriving calendars from other calendars. Cal-

endars and the related operators are useful for (a) defin-
ing the time points at which temporal objects have val-

ues, (b) defining the temporal logic for rules that have

triggers based on time, e.g., rules that alert traders that
certain options are to expire at time T or in the interval
[T,, Tel, (c) describing sets of time points or time intervals,

e.g., AMERICAN-BUSINESS-DAYS z DAYS-IN-YEAH

- WEEKENDS - HOLIDAYS, (d) defining constraints,
e.g., suppose no new option contracts can. be introduced
if any current options are to expire in 10 exchange trading
days. To express this rule, calendars are used with ap-
propriate operators to express the set of days, ezchangt

trading days. Then relational operators will operate on

the derived calendar to express the logic of the rule. Ex-

amples are presented in Section 4, (e) representing natural
language time-based expressions, e.g., the 3’d Friday of
the month, (f) allowing different semantics for date arith-
metic, e.g. the yields on some bonds are computed based

on the actual number of days between two dates but with
the assumption that the year always has 360 days and

(g) maintaining valid time in databases.

This system of calendars allow a concise representa-

tion of time points and intervals and make it unnecessary

to physically store time points associated with temporal

objects. Thus, it is imperative for data manipulation op-
erators, that have temporal objects as arguments, to work
in close association with the calendar system.

In Section 4 we discuss the implementation details of
calendars, relational operators and a data manipulation
operator, The discussion also presents the time algebra
used to denote time-based natural language expressions.

Temporal Objects

Temporal objects track the environment over time. It
should be emphasized that a temporal object is a generic

term for both a simple time-series and complex temporal
objects. A time-series can be considered to be a “sequence

of values in the time domain for a single entity instance”
[SEGE87], e.g., stock prices. A collection of n-ary vectors

grouped together to represent a semantic unit is also a
temporal object but will be referred to as a complex tem-
poral object. An example of a complex temporal object

is a Company Balance Sheet. The individual items like

Gross Sales, Cost of Goods Sold and Operating Expenses

are time-series that are recorded at the same time points

and are reported together. Rules and procedures that

have been changed over time are also considered to be

temporal objects. These general semantics of temporal
objects allow us to consider versions as a special case of
temporal objects.

Since it is possible to construct complex temporal ob-
jects from sets of simple time-series, the discussion will

306

focus on time-series. Time-Series modeling and represen-
tation arc an integral part of modeling complex financial
objach rrncl will b(* cliscuHnc:d in dclail below. Part of
the following functionality cau be supported by (ROSE911

and [WUU92].
Each time-series is essentially an n-ary vector and is

associated with a set of user-defined information. This

information (M) is classified into (a) information that

must be present with every time-series (M,) (if not sup-

plied by the user, appropriate defaults are used) and (b)

information optionally supplied by the user (M,). it4,

consists of :

1.

2.

3.

4.

Name : The identifier of the time series to be used
in data retrieval and data manipulation routines.

Calendar/Granularity : a set of pre-defined time
points. This item specifies the calendar with which
the time-series is associated. For example, the
time-series IBM-DAILY-CLOSING would be asso-
ciated with the calendar AMERICAN-BUSINESS-
DAYS. This means that on every day in the calen-

dar AMERICAN-BUSINESS-DAYS, the time-series
should have a value. Granularity is a specification of

the points in time in the defined calendar that can

potentially have data values [SEGE87]. The defined

calendar will thus determine the granularity of the
time-series. The advantage of associating a time-

series with a calendar is that there is no need to

physically store the individual time points with the

values of the time-series. When the timeseries is

retrieved due to a query, the individual time points
can be generated using the specification of the calen-
dar. This is especially advantageous for time-series
with large lifespans. Since the individual time points

are not saved on disk, there are large savings in disk

space utilization. Thus, all time points of the time-
series are physically stored only when the calendar

cannot be pm-defined. This is possible in the case of
randomly updated time-series like tick-by-tick stock

prices.

Exception-Set : is a set of time points (within the

calendar) on which values of the time-series are not
recorded. For example, even though IBM-DAILY-
CLOSING should be recorded on every day in the

calendar AMERICAN-BUSINESS-DAYS, there may
be an important announcement on a particular day

that stops trading in the stock. Thus the value of
the time-series is not recorded on that day. The

exception-set will include such time points. Thus,
the actual calendar for a time-series is the set differ-
ence of Calendar and Exception-Set.

Lifespan : This indicates the start time and end time

be 00. The lifespan is used in conjunction with the
calendar and exception-set to generate the set oftime
points for which the tirnc-series has values.

5. Update Mode : This indicates whether the time-
series is derived from another time-series(s) or is base
data. If the series is derived, the rule for update

is specified here. Time-series are allowed to have
a hybrid update mode. For example, a time-series
recording the value of an option will change when-
ever the price of the underlying stock changes (price
is derived) and also when the option is traded on

the market. In the latter case, the price is not de-

rived and is determined by the value at which the

option was exchanged on the trading floor. A more
detailed treatment of the Update Mode is provided

in [ETZI92].

6. Frequency : This specifies the frequency with which
the time-series is updated. The time of update refers
to the valid time. Valid time is defined in [JENS92]

as “the time when the fact is true in modeled real-
ity”. Frequency is always specified with respect to
the calendar with which the time-series is associated
and may be a non-trivial function on the set of time

points in this calendar. For example, suppose EMP,

a time-series which records the level of employment

in the country, has the Calendar/Granularity : “the

last day of the month unless the day is a holiday in
which case it is the preceding business day”. The fre-

quency of EMP would be monthly. If a time-series is
derived from other time-series, the frequency would

be the frequency of the base data or some function of
it. For example, consider the time-series DJIA and
DJIAHILO. DJIA, the Dow Jones Industrial Aver-

age, is a weighted average of the price of a given

set of stocks. It is computed every time the price
of a component stock changes. Thus, it is a derived

time-series with the same frequency of update as the
base data. On the other hand, DJIAHILO, which
is a time-series that contains the daily high and low

values of the DJIA, has a daily frequency which is

different from the frequency of its base data.

It is important to stress the difference between fre-
quency and granularity. A time-series is said to be

“regular” [SEGE87], if it contains a value for each

time point in the time-series lifespan. In a regular
time-series, the granularity is the same as the fre-

quency. In this case, the exception-set is a null set.

7. Type [SEGE87] : The type of a time-series deter-

mines how to derive values of the time-series at time
points where the value isn’t explicitly specified.

An example of a one-dimensional time-series vector

of the time-series. The end time can be specified to with the associated user-defined information is the ob-

307

servations of a country’s Gross National Product (GNP).
The calendar associated with GNP is a function of the

AMERICAN-BUSINESS-DAYS calendar. There is no

exception-set defined for this time-series. GNP is not de-

rived from any other time-series and thus its update mode
is “Base Data”. The frequency of update is quarterly and
reflects the dollar value of the sum total of economic ac-

tivity in the quarter. The type of the time-series GNP is
user-defined. This means that user-defined functions will

be used to determine the value of GNP at time points

where it has not been explicitly recorded. For example,
the GNP on April 30rh (valid time) is not recorded in the
time-series. This could be derived by a function which

uses the previous values of GNP or through a function
which uses other economic indicators. Rules (discussed

below) can be used to define the type of a time-series and

build in the desired level of complexity. A detailed treat-
ment of time-series modeling in databases can be found

in [SEGE92].

Rules

Rules are useful for testing integrity constraints, main-
taining consistency, versioning, materialized views, up-

dating derived data [STONSOb] and monitoring the

database for specific events [DAYASS]. In the framework
of the trading application, the functionality demands that

a rule be a 6-tuple

< Rule - List, Calendar, Event -
Condition, Action, Transaction

Coupling, Constraint >. Each component of the 6-tuple
is explained below :

l Rule-List : This is a collection of rule ids and is used

to group rules that must be executed in sequence.

The position of a rule within the rule list determines

the order of execution.

l Calendar : The calendar associated with a rule de-
fines the time points/intervals when the rule is active.

As noted in the discussion on calendars, this gives

the uSer unlimited flexibility in specifying time-based

rules. For example a rule can be fired at a specific

point in time, e.g., on Wednesday at 10 a.m., at cer-

tain intervals of time, e.g., every 5 hours, at specific

points in time, e.g., Mon, Wed, Friday, and always,
in which case they become active rules. The default
value for the calendar is null which means that unless
specified, rules will be event-driven.

l An Event’s scope is defined as the set of objects
that determine the occurrence of the event. Thus,
the scope can be a set of rules (for rule-triggered

events), methods (for events based on the execution

of procedures) and calendars (for time-based events).

The condition can be based on the current state of
database objects or historical states. The cvcnt-

condition that triggers a rule is specified by using
elements of the events’ scope, a condition and logical

connectives like and, or, exclusive-or. For example,

a trigger can be based on the state of an object and
time.

Actions are either rules or methods. Thus, actions
can trigger other rules, execute methods, update

database objects and perform any database func-
tions that can be done through a method. Ac-
tions are also allowed to update rules. The utility

of this functionality in trading applications is illus-
trated by the following example. In times of great

uncertainty, it would make sense to compute the

term-structure often. Thus the rule for computing

the term structure would have the syntax “Every T
minutes do compute-term-structure”, where T would
have a small value. But in times of lower volatility,
an active database would update the value of 7’, so
that the term-structure is computed less often. This
frees up system resources for use in other tasks.

Transaction Coupling : This defines the coupling bc-

tween the event and action in the rule. A transac-

tion is an ordered set of methods and rules bounded

by a begin transaction and commit/abort. Based on
this definition of a transaction, four types of coupling

can be defined [GEIiA92] (a) immediate : action is

executed immediately after the event is recognized
in the same transaction. This is the default value.

(b) deferred : The action is executed just prior to the
commit of the transaction that recognizes the event,

(c) dependent : The action is executed as a separate

transaction but only after the transaction that recog-
nizes the event has committed, and (d) independent :

The action is executed as a separate transaction with
no dependency on the transaction that recognizes the
event. The latter transaction could abort or commit

without affecting the action.

Constraint : This is a simple Rule (see below) or cal-

endar and is used to enforce timing constraints on the

execution of rules. If the constraint is a calendar and
if the transaction-coupling is either immediate, de-
ferred or dependent, it indicates the maximum time
that can elapse between the beginning of the event
transaction and the commit of the action transac-

tion. If the time constraint is not met, the action

is aborted, A simple rule will reexecute the event
transaction and check the result of the event with
the value that was previously obtained. The default

value of the constraint is null, which means that no

constraint is applicable to the rule unless specified.

308

In this section, we have provided a detailed specifica-
tion of the important elements of a trading application,
The following section discusses the choice of POSTGRES
as the extensible database to implement our ideas and
describes important aspects of the implementation.

4 Implementat ion

Although recent work in temporal databases [ROSEOl],
[ROSE93], [SU91],[WUU92], describe very useful func-
tionality not available in existing prototypes, they are not
fully implemented and integrated with other features such
as abstract data types and extensible access methods.
Consequently, we limited the implementation alternatives
to those discussed below. We employed five criteria in
choosing an extensible system. These were (a) support
for rules, (b) preference for a model that was an extension
of the relational paradigm, (c) presence of a fast path ca-
pability that allowed the creation of indexes to optimize
any operators that we defined, (d) persistent program-
ming language access and (e) availability. Our four alter-
natives were Ode, Starburst, Exodus and POSTGRES.
We soon realized that the general rule capability required
for the trading application w&s not available in any data
model and that only POSTGRES would allowed us to
modify the source code to implement this capability. Ode
provides persistent programming language access though
Ott but the non-availability of the source code and the
fact that it is based on the C+t object paradigm made it
an unattractive alternative. Starburst[HAASSO] is an ex-
tensible relational DBMS that provides the capability to
create complex objects, new storage methods, optimiza-
tion of new operators, specification of the storage method
for tables and a general rule capability [WID092]. We
found the fast path capability more difficult to use com-
pared to POSTGRES. Exodus[CARE88] includes two ba-
sic components - The storage object manager which pro-
vides concurrent and recoverable access to object of ar-

bitrary size and the type manager that has a set of base
types which can be extended by users. Exodus also pro-
vides libraries of database system components for access
methods and version management. It provided the E im-
plementation language and a generator that produces a
query optimizer and compiler from the description of the
available operations and methods. Between POSTGRES
and Exodus, we chose the former because of the availabil-
ity and the fact that we had worked with this model be-
fore and understood the design and implementation well.
Also Exodus provided no basic rule capability.

Overview

POSTGRES is a next generation extensible relational
DBMS with general mechanisms that can be used for 8e-

mantic data modeling. These mechanisms include (a) ab-
stract data types which are used to support complex
objects (b) data which can be of type procedure and
(c) rules.

The primary goal was to implement calendars, tem-
poral objects and rules. The implementation of tem-
poral objects is done by using the POSTGRES feature
of declaring complex data types. Calendars are imp]&
mented by using stored procedures and user-defined op-
erators. The POSTGRES Rule System is not adequate
for the demands of the trading application. It must be
extended to include (a) event specification that includes
time-based events, triggering of rules and/or execution
of procedures, (b) decoupling the action part of the rule
from the event if specified, (c) ordering the sequence of ex-
ecution of a set of rules and (d) imposing time constraints
and rechecking the event condition before committing the
action transaction. POSTGRES allows user-defined op
erators and access methods. Operators relevant to this
application were defined and appropriate access methods
designed to optimize these operators. For brevity only
calendars and access methods are discussed in this sec-
tion.

4.1 Calendars

The implementation of calendars involved creating the
data type interval and set of intervals, which are called
Calendars. The algebra on which the implementation is
based was formally introduced in [LEBA86].

A Calendar is formally defined as a structured set of
intervals and the Order of a calendar is defined as a mea-
sure of the depth of the structured set. Thus, the set
S = {(/I, ul), (12, uz), . . ., (I,,, u,)} is a calendar with or-
der 1 while R = {&, . - -, S,,,} where Si = {(Ij, uj)) is a
calendar of order 2. A calendar of order 0 is simply a set
of numbers.

A set of basic calendars, e.g., YEARS, HOURS, were
created as system defined calendars and the relation-
ships between them were expressed in a table which
had the format, {Calendarl, Calendars, list}. Here
Calendari is a text variable and the list is an order 0
calendar. For example, to express the relationship be-
tween YEARS and MONTHS, the entry in this table
would be {YEARS, MONTHS, 12}, which means that 12
MONTHS 3 YEARS. The relationship between YEARS
and DAYS is more complicated because of a leap year
every 4 years. Consequently, the entry in the table is :
{ YEARS,DAYS,(365,365,366,365)}, which means that in
the first year there are 365 days, the second year has 365
days and so on as the list specifies for four years, after
which the same pattetn is repeated. The relationships
between the system defined calendars are based on a start
date which was taken as Jan 1, 1970 (the start date on

309

.Ianuuy low .bUlW 1083

s M Tu w m F &

atiDt&bn

s hi TU w m
1 2

pq

&=--
Rdax.d Dwbn

Figure 2: Result of strict and relaxed division

Generically, a relational operator (Op) takes two itr-
tervals to generate a third interval. POSTGRES is easily

extended to support relational operators like intersection

cover, overlaps, during, meets, contains, < and < op-

erators since the semantics of these operators are well

defined. Two new operators, the division operator and
selection operator, were introduced to facilitate manipu-

lation of calendars. The division operator takes a calen-
dar of order 1 as its left argument, an interval aa its right

argument and generates a calendar of order 1 as the re-

sult. If the right argument is a calendar, then it operates
on every interval in the calendar.

For each relational operator, there are two interpreta-

the UNIX system).
tions of the division operator. Formally the strict division

To create a new calendar two different operators were
(:) operator is defined as :

defined. The first operator is called generate and takes

the arguments start time, end time and a list of numbers. C : Op :< t,, ts >Z {cn < t,, tc > I(c E C)A(C op < t,,t, >)I

The operator generate creates the following calendar :
The relaxed division (.) operator is defined as :

gencrate(T,,T,; i&l;.-.;int,)=
cop. < t,, 1, >i {cI(c E C) A (c op < t,, t, >}

{(T.,T,+intl),(T,+intl,T,+intl+intz),...,

(T, + Ci<ninti,T, + C;l,,inti + intcrual~), ..-}
where the interval (--00, 00) is excluded from the resulting

where T, is the start time and T, is the end time. In
sets. If weeks in the year 1993 are :

generate the list of numbers is considered a circular list
and the operation is carried out till the end time is ex-
ceeded. The operator, generate, is illustrated with the
following example.

YRS-SINCE-1987 = generate(Jon-l-87; Jan-3-92;

365,366,365,365) = { (1,365), (366,731),

(732,1096), (1097,1461), (1462,1826), (1827,1829)}

where the second element in the calendar, {(366,731)},
denotes that the second year, 1988, began 366 days from

Jan 1, 1987 and ended 731 days from Jan 1, 1987. It

should be noted that January, 1, 1987 is taken as 1.
The second operator to create a new calendar is based

on the same logic as the system table that stores re-

{WEEKSn {(-4,2),(3,9),...)

and {Jan - 1993 = {(1,31)}}, the elements in
the calendars WEEKS : during : Jan-1993 and

WEEKS.during.Jan-1993 are illustrated in Figure 2.

The operator selection, denoted by [z]/C, selects the

zth interval from the calendar C. The operator recursiue-

selection, denoted by [z],/C, selects the xth interval from
the calendar C recursively, till the result is an order 0 list.
Specifically if C is an order 2 calendar, the tth interval

is chosen from each element. If C is an order 1 calendar,

the zth element of each interval is chosen.

4.2 Operators and Access Methods
lationships between system defined calendars. This

operator is called caloperate and it takes the argu-
POSTGRES provides the capability of defining opera-

ments calendar and a list of intervals. The operator,
tors, written in high-level programming languages, to the

caloperate(C, T,; xl; x2; . . . ; x,), where C is the calendar
database and then using them in the query language. In

from which the new calendar is to be derived, would cre-
this section, we describe three operators relevant to finan-

ate a new calendar whose first interval is a union of the
cial trading. The first operator, ComputeTS operates on

first x1 intervals of calendar C, the second interval is the
the database of bonds to create the term-structure. The

union of the second 22 intervals of C and so on. The
Transformation operator converts a time-series from its

list is applied as a circular list. caloperate is illustrated
current frequency to another frequency. POSTGRES also

by the following example. If YEARS is the system de-
allows a fast path capability to access its internals for cre-

fined calendar f (L365), then caloperate(YEAW *; 7),
ating new indexes and access paths to optimize the user-

would give the calendar of weeks in the year since :
defined operators

. The access method used to optimize
the ComputeTS is described in detail. An algorithm for

(YEARS,*;7)~{(1,7),(8,14),(15,21),...,} the Transformation operator is also discussed.

In ComputeTS(B,Range,Default,Category), B indi-

Here * indicates an arbitrary end time. cates the set of bonds that are to be used to compute

310

Figure 3: Adding records to Main-Memory Index

the term-structure. Range is the range of time between

which the term-structure is to be computed. Default

indicates the default risk for which the term-structure is
computed and is determined by the investment grade rat-

ing assigned to it by credit rating agencies. Category in-

dicates the type of bonds to be used in the computation,

e.g., Corporate, Government, Mortgage.

The computation involves the steps of selecting the set

of bonds that have a given default risk and category type

from among the space of bonds, B. If B is unspecified,

the entire database of bonds is used and for each bond

in the previous set, computing the yield, i, by using the

price of the bond, the vector of cash flows, CF, and the

expiration date of the bond. To compute the yield of a
bond, the remaining term, the cash flows and the current
bond price are required. This operator returns a two-

dimensional array of yield and term.

From the formulas described above, it is clear that the

computation of the term-structure is a numerically inten-
sive procedure. It is further complicated by the fact that

the fluctuation of bond prices on a minute-to-minute ba-

sis requires recomputation of the term-structure very of-

ten. Thus, the data structure that is used to optimize

the computation of a term-structure must allow (i) par-
allel computation of parts of the term-structure, (ii) the

choice of the degree of accuracy required in term-structure
construction such that as the accuracy desired decreases,

the response time improves and (iii) computation of only

a small portion of the term-structure with an improve-
ment in response time. The main memory data structure

shown in Figure 3 is proposed to optimize the computa-
tion of the term-structure.

The hash-table contains all possible combinations of

bond-rating and bond category. A hash-function, /I(), is

appropriately chosen to avoid any collisions between these

combinations. Each element in the hash-table points to

a list of buckets. Each bucket is characterized by a re-

maining term range (RTM). A bucket with RTM l-5

would contain bonds of a specific category and bond rat-

ing with remaining term between 1 and 5 years. Each
bucket record contains information on a particular bond
including its remaining term, date of expiration and cash

flow if the cash flow is simple. It also contains a pointer
to the disk block where the bond details are physically
stored. Information on the number of elements in the

bucket is also maintained dynamically so that the buck-
ets can be reorganized when necessary. The advantage
of this data structure is that it allows term-structures of

different ranges to be computed by different processors.
For example, if the term-structure for bonds of AAA rat-

ing and the category corporate, is to be determined for
the range l-30 years and two processors are available, the
job could be divided among the two by sending a snap-
shot of the data structure for 1-15 years to one processor

and the snapshot for 16-30 years to the other. Partial
term-structures will be computed by each processor and

the result is concatenated. In addition, this data struc-
ture allows the construction of a term to a user-specified

degree of accuracy.

The data structure must be updated whenever (a) a

new bond is issued and (b) a bond expires/defaults or

is called (forcibly expired by the issuer) and (c) periodi-
cally to correctly reflect the RTM. Buckets are allowed to
grow a maximum of N, after which they are split and the

records distributed equally over the new buckets. Fig-

ure 3 shows the case when a new bond record is added

and the number of records in the appropriate bucket is
12. Since N ~13, it causes the creation of a new entry
in the bucket list and an equal redistribution of records
between the two buckets. Buckets with the same RTM
are recombined only when the number of records in each

bucket is less than [N/ml. When the number of records
in contiguous buckets with different RTM have less than

[N/ml each, and neither bucket has an adjacent bucket

with the same RTM, the buckets are coalesced and the

RTM of the resulting bucket is expanded. The values of

N and m are dependent on the frequency of insertions

and deletions in the index.

The operator, Transformation(TS,F), is used to con-
vert time-series from the existing frequency to another.
TS is a time-series and F is the frequency to which TS
is to be converted. Conversions from a lower frequency
to a higher frequency are allowed only if the semantics
of the transformation are clear. Since the time points
of a time-series are not explicitly recorded, the transfor-
mation operator uses the calendar, exception-set, life*
pan and frequency of %a time-series to convert it into a
time-series with another frequency. To express the trans-
formation operator algebraically the following definitions
are introduced :

311

The set of system defined calendars is CO.

domain(C0)

rel(Cl , Cz) indicates the relation between calen-

dars 6, Cz, e.g., rel(MONTHS, DAYS) =

(DAYS,*;31,28,...)

rank(c) is used to assign an ordering to the system de-

fined calendars,

e.g., tank(SECONDS) = 1 and rank(HOCJRS) = 3.

hcc(cl, cz), the highest common calendar, is formally de-

fined as ~CC(CI,C~) = {cil rank(ci) 2 rank(cj),

VCi, Cj, (rel(cl, Ci) A (rel(cs, Ci) A (rel(cl, Cj)h

(rel(c2,cj)) A (i # ill-
For example, hcc(DECADE, YEARS) = YEARS.

cal(frequcncy): maps every frequency to a system de-

fined calendar.

Formally, {cal(frequency) I+ clc E CO}.

Given these definitions, we are now in a position to for-

mally define the trans f ormalion operator.

Transformation(TS, Fl) = {TS(i), Vi E ([n],/COLL)}

where,

{COLL = ((TS.C) .ouerlaps.

rel(cal(Fl), hcc(cal(TS.F), cal(F1)))))

where TS.C and TS.F are the calendar and frequency of

the Time-series that is being transformed. TS(i) is short

form for the value of the time-series at the time point

i and [n& is short form for the selection operator that

selects the last item from the calendar. Note that this

selection operator is applied recursively till the calendar
is an order 0 calendar.

This is illustrated with the following example :
A time-series with weekly frequency and the calen-
dar AMERICAN-BUSINESS-WEEKS is to be trans-
formed into a time-series with a monthly frequency.
Since there is no simple relation between the calen-
dars WEEKS and MONTHS, the algorithm for the
Transformation operator is used. Using the definition
of transformation and the system-defined functions, we
have cal(monthly) = MONTHS, cal(weeklg) = WEEKS,

and

hcc(MONTHS, WEEKS) = DAYS.

rel(MONTHS, DAYS) = (DAYS, *; 31,28,31,30,. . .)

and (TS.C) =AMERICAN-BUSINESS-WEEKS, which is a

calendar of weeks in the year.

l&5), (8,12), (35,18), (22,28), (2% 33), (37,401,

(43,47), (50,54), (57,81), - + *a 1

Then {(TS.C) .overlaps.(DAYS, *; 31,28,31,30, e. e)) results
in a calendar of order 2 :

t{(l, 5), (8,12), (15,18), (2292% (2% 31))

{(32,33), (37,40), (43,47), (50,54), (57, w), . . . ,I

From this calendar, the last interval is selected and re-

sults in an order 1 calendar : {(29,31), (57,69), . . ., }.

Since the selection operator will be applied recursively
till the calendar is of order 0, the last element is sc-

lected from each interval, resulting in an order 0 calendar :
{31,59, *. * , }. The transformed time-series would then be
the value of TS at each time point in this calendar.

5 Conclusions and Further Re-

search

Fluctuations in interest and exchange rates, rapid ad-
vances in information technology and financial theory,
have created a marketplace of a vast array of complex
financial products. Financial trading applications, which
are meant to facilitate trading in these products have also
become very complex. Because of the constant pressure
to keep up with the market, investment firms and trad-
ing houses are forced to create product specific trading
systems that are discarded as soon as the product is dis-
continued. To preserve the investment, a building blocks
approach to application development should be adopted.
Extensible database systems provide an environment for
developing fast high-performance applications. The main
objective of this research is to focus attention on stratc
giea for designing trading applications using extensible
databases.

The contributions of this paper include (a) analysis of
the complexity of financial products and design of strate-
gies for modeling them in extensible databases. This in-
cludes a complete specification of temporal objects, rules
and calendars, (b) introduction of operators relevant to
financial trading, (c) design of access methods to optimize
these operators and (d) implementation of the design in
POSTGRES.

We are looking at the following areas for further re-
search:

l Introduction and optimization of financial trading
operators. The paper described two important oper-
ators relevant for financial trading and access meth-
ods to optimize these operators. A detailed study
of financial trading should suggest the basic opera-
tions that can be used as building blocks for more
complicated operations. We are compiling this list
of operators, so that appropriate access methods for
the optimization of these operators can be developed.

l Storage methods for temporal objects encountered
in trading applications is an open problem. There
have been several proposals in the literature for ef-

ficient storage and retrieval of temporal and multi-
dimensional data but it is not clear which proposal is

312

the best or whether a completely new approach is re- 16.

quired. We are currently doing a performance analy-
sis of storage structures based on typical queries that

are encoutered in financial analysis. 17.

References

1. [ABB088] Abbott, R. and Garcia-Molina, Hector, 18.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

“Scheduling Real-time Transactions,” Sigmod Record,

Vol. 17, No. I, March 1988, pp.71-81.

[AGRASO] Agrawal, R. and Gehani, N. H., “ODE (Ob

ject Database and Environment): The Language and

Data Model,” Proc. ACM SIGMOD 1989, Portland Ore-

gon, 1989, ~~-36-45.

[BAUE92] Bauer, R. J. and Liepins, G.E.,“Genetic Al-

gorithms and Computerized Trading Strategies,” in “Ex-

pert Systems in Finance”, O’Leary, D.E., and Watkins,

P.R. ed., EIsevier Publishers, 1992, pp.89-100.

[CARE871 Carey, M (ed.), “SpeciaI Issue on Extensible

Database Systems,” Database Engineering, June 1987.

[CARE881 Carey, M., et.al. “The Architecture of the

EXODUS Extensible DBMS,” in Readings in Database

Systems, Stonebraker M. 1990, Morgan Kaufman.

[CLIF87] Clifford, J. aud Croker, A. “The historical rela-

tional data model HRDM and an algebra based on Iifes-

pans*, in Proc. Third International Conference on Data

Engineering, pp. 528-537, Los Angeles, February 1987.

[DAYA88] Dayal, U., et. al., “The HiPAC Project: Com-

bining Active Databases and Timing Constraints,” Proc.

ACM SIGMOD Record Vol. 17, No. 1, March 1988.

[ETZI92] Etzion, O., Gal, A., Segev, A., “Temporal Sup

port in Active Databases,” Proc. of the Zud Int. Conj.

on Information Technology and Syrtemr,

[GAD1881 Gadia, S.K., “The Role of Temporal Elements

in Temporal Databases,” Data Engineering Bulletin 7,

pp. 197-203, 1988.

[GEHA92] Gehani, N., Jagadish, H. V., ShmueIi,
O., “Event Specification in an Active Object-Oriented

Database”, Proc. of ACM SIGMOD 1992, pp. 81-90.

[HAASSO] Haq L., et. al., ‘Starburst Mid-Flight: As

the Dust Clears,” IEEE Transactions on Knowledge and

Data Engineering, Vol. 2, No. 1, Mar. 1990.

[JENS92] Jenson, C.S., Clifford, J., Gadia, SK., Segev,

A., Snodgrass, R.T. , “A Glossary of Temporal Database

Concepts,” ACM SIGMOD Record , Vol 21, No. 3.

[LEBA86] Leban, B., McDonald, D., and Forster, D., “A

Representation for Collections of Temporal Inter&s,” in

Proc. of the AAAI-1986, Sth Int. Conf. on Artificial

Intelhgence, pp. 367-371, 1986.

[LlND87] Lindsay, B., “A Data Management Extension

Architecture,” Proc. ACM SIGMOD 1987, San Ran-

&co, CA, 1987.

[MANK92] Mankiw, G., “Macroeconomics,” Worth Pub-

lishers, New York 1992.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

[PElN88] Peinl, P., and Sammer, H., “High Contention
in a Stock Trading Database: A Case Study,“, in Pm.

ACM SIGMOD 1988, May 1988, pp. 260-268.

[ROSESI] Rose, E., and Segev, A., “TOODM - A Tem-

poral, Object-Oriented Data Model with Temporal Con-
straints,” Proc. of the 10 th Int. Conj. on the Entiry-
Relationship Approach, San Mateo, CA, 1991.

[ROSE931 Rose, E., and Segev, A. UA Temporal Object-

Oriented Algebra and Data Model,” Forthcoming in

ECOOP93.

[SAMM87] Sammer, H., “Online Stock Trading Systems:

Study of an application,” in Proceedings of Spring COM-
PCON 87, San Francisco, pp. 161-163.

[SEGE87] Segev, A., and Shoshani, A. , “A Logical Mod-
eling of Temporal Databases,” in Proc. ACM SIGMOD

Conference 1987.

[SEGESSa] Segev, A., and Shoshani, A., “The Repro-

sentation of a Temporal Data Model in the Relational
Environment,” Lecture Note; in Computer Science, Vol

339, M. RafaneRi, J.C. Klensin, and P. Svensson (eds.),

Springer-Verlag, pp. 39-61, 1988.

[SEGE92] Segev, A. and Chandra, R., “A Data Model for

Time-Series Analysis,” in Proc. of Workshop on Current
Issues in Databases and Applications, Rutgers University,

Sept. 1992.

[SNOD87] Snodgrass, R. , “The Temporal Query Lan-

guage TQuel,” ACM TODS, Vol 12, No. 2.

[SOOSl] Soo, M., Snodgrass, R., Dyreson, C., Jensen,

C.S., and Kline, N., “ArchitecturaI Extensions to Sup

port Multiple Calendars”, TempIS Technical Report 32,
Computer Science Department, University of Arizona.

Revised May 1992.

[SPEC88] Voelcker, J., et. al., “How computers helped

stampede the stock market,” in SPECTRUM, Ott, 1988.

[STON99a] Stonebraker, M., “The Implementation of

POSTGRES,” IEEE Transactions on Knowledge and

Data Engineering, March 1990.

[STONSOb] Stonebraker, M., Jhingran, A., Goh, J.,

Potamianos, S., “On Rules, Procedures, Caching and

Views in Data Base Systems,” Proc 1990 ACM SIGMOD

Conj. on Management of Data, June 1990.

[SU91] Su, Y.H.S., Chen, H. M., “A TemporaI Knowl-

edge Representation Model OSAM’/T and its Query

Language OQL/T”, Proc. of 17’h Int. Conj. on Verg

Large Databaases, pp. 431-442, September, 1991.

[WID092] Widom, J., “The Starburst Rule System: Lan-

guage Design, Implementation, and Applications,” in

Data Engineering, Vo1.15, No.l-4, Dec. 1992.

[WUU92] Wuu, G.T.J, and Dayal, U. “A Uniform Model
for Temporal Object-Oriented Databases,” 8’h Int. Conj.

on Data Engineering, pp. 584-593.

313

