
Managing the Evolution of Service
Specifications�

Vasilios Andrikopoulos1, Salima Benbernou2, and Mike P. Papazoglou1

1 INFOLAB, Dept. of Information Systems and Management, Tilburg University,
The Netherlands

2 LIRIS, Université de Lyon 1, France
{v.andrikopoulos,mikep}@uvt.nl, sbenbern@liris.univ-lyon1.fr

Abstract. The ability to cope with multiple competing stakeholders,
fluid requirements, emergent behavior, and susceptibility to external
pressures that can cause changes across an entire organization, coupled
with the ability to support service diversification, is a key to an enter-
prise’s competitiveness. Web services equip enterprises with the potential
to react to change by addressing two interrelated sets of requirements:
the ability to accommodate service changes that demand rapid response
and to support service variation according to customers’ needs and re-
quirements. In this paper we introduce the concept of service evolution
management, which provides an understanding of change impact, service
changes control, tracking and auditing of service versions, and status ac-
counting. To achieve this, we develop a formal model and theory for ser-
vice evolution that allows multiple active service versions to be created
consistently and co-exist, while executing schema changes effectively.

Keywords: Web services, service versioning, service differentiation, ser-
vice contracts.

1 Introduction

XML-(or Web)-based services are key technologies providing a foundation for a
net-centric services environment, which reacts to change by addressing two in-
terrelated sets of requirements: the ability to accommodate service changes that
demand rapid response, and the ability to support service variation according
to the needs and requirements of customers. These two inter-related sets of re-
quirements place emphasis on the ability of services to co-exist in multiple active
versions and to execute changes effectively and efficiently. They therefore epito-
mize the common need for constant change that challenges service applications
development. Service changes may, for instance, originate from the introduction
of new functionality, the modification of existing functionality to improve per-
formance, or the inclusion of new regulatory constraints that require that the
� The research leading to these results has received funding from the European Com-

munity’s Seventh Framework Programme under the Network of Excellence S-Cube
- Grant Agreement n◦ 215483.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 359–374, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



360 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

behavior services is altered. Such changes should not be disruptive by requiring
radical modifications in the very fabric of services or the way that business is
conducted.

Service evolution is a precursor to successful service adaptation. Service adap-
tation refers to the a posteriori ability of a service to modify itself in order to
interact with other services by detecting potential functional or non-functional
mismatches with its peer services by semi-automated means ([1], [2]). Current
service adaptation approaches assume that services can evolve independently
and do not constrain their mutual inter-dependencies. In contrast to this, ser-
vice evolution attempts to a priori validate and constrain service changes and
ensuing service versions, so that they are consistent and well-behaved.

Routine change increases the propensity for error. To control service develop-
ment one needs to know why a change was made, what are its implications and
whether the change is complete. In a Web services environment, changes only af-
fect the Web service provider’s system. Typically Web service consumers do not
immediately perceive the upgraded process, particularly the detailed changes of
Web services. Hence, Web service based applications may fail on the Web service
client side due to changes carried out during the provider service upgrade. In or-
der to manage changes as a whole, the Web service consumers have to be taken
into consideration as well, otherwise changes that are introduced at the service
producer side can create severe disruption. Eliminating spurious results and in-
consistencies that may occur due to uncontrolled changes is therefore a necessary
condition for the ability of services to evolve gracefully, ensure service stability,
and handle variability in their behavior. Thus, any service evolution management
system has to be able to handle consistently and unambiguously the propagation,
validation, and conformance of any kind of modifications applicable to a service.

Service evolution management requires an understanding of all the points
of change impact, controlling service changes, tracking and auditing all service
versions, and providing status accounting. In summary, service evolution man-
agement exhibits the following characteristics:

– identification of all kinds of permissible changes to services and classifi-
cation of these changes,

– propagation analysis mechanisms that record the status of services,
analyze changes, and gather information about their effects on clients of a
service version,

– validation and conformance mechanisms that maintain the consistency
of a service by ensuring that the service is a well-behaved collection of ser-
vice changes and versions, and ensure conformance with respect to service
updates and version contracts,

– version control mechanisms that control the release of a service and the
changes applied to it throughout its lifecycle, and

– instance migration mechanisms for associating instances of running ser-
vices with new service versions.

In this paper we shall consider all above items except for the topic of instance
migration. This issue is examined by the workflow community (see section 2).



Managing the Evolution of Service Specifications 361

The paper is organized as follows: section 2 discusses related work from a
number of different fields. In section 3 we present a service specification model
that acts as a reference point in the discussion about service evolution. Service
evolution management characteristics are covered in section 4. Finally, we wrap
up the paper with some conclusions and future work (section 5).

2 Related Work

As services grow more complex to compensate for increasing business needs,
valuable lessons and techniques can be drawn from Software Configuration Man-
agement (SCM), the discipline of software engineering that deals with controlling
the evolution of complex software systems [3]. More specifically, the usage of ver-
sions as a representation of incrementally changed software objects (in that case,
services) can be especially useful. The graph models that support the various
versioning schemes [4] provide an intuitive way to manage the history of different
versions.

Current Web services technologies do not directly address the versioning is-
sue, usually requiring developers to solve the problem through the application
of patterns and best practices [5]. Nevertheless, elements of these techniques
can be used for service evolution management, see, for example, [6], [7], [8], and
[9]. The common denominator of all these approaches is that they discuss how
to put a versioning mechanism in place using an existing set of technologies,
without concerning themselves with what constitutes the version of a service.
An application of versioning in XML Schema technology is investigated in [10],
where a number of use cases are presented that describe the desirable behaviors
for XML Schema versioning. This approach provides guidelines for the behavior
of schema processors in face of different versions, but it deliberately avoids dis-
cussing implementation (which is the critical component of that approach) and
does not guarantee change consistency.

Lessons can also be drawn from the work on heterogeneous databases in general,
and in specific from schema mappings between disparate data sources. Changes
to the schemas of the data sources have to be reflected to the mappings between
them. In that case the mappings have to be adapted to compensate for the evo-
lution of the original source material [11], [12]. The evolution of requirements in
information systems, as examined in the requirements engineering domain, is also
a source of useful ideas and techniques. In [13] for example, a similar to ours ap-
proach is presented that combines abstraction from specific models with a generic
typology for gaps (and similarities) in order to express evolution requirements.

Finally, we can also draw on the work of evolution in the field of workflows for
methodologies and ideas. The problem of workflowevolution has two facets: static,
referring to the issue of modifying the workflow description, and dynamic, refer-
ring to the problem of managing running instances of a workflowwhose description
has been modified (instance migration). The work in this field, at least in its con-
ception, draws heavily from the literature on o-o databases evolution for its static
aspects e.g. [14], but focuses mainly on the dynamic aspect [15], [16], [17].



362 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

3 Service Specification Reference Model

To be able to identify and study the changes happening to a service during its life-
time we can either choose a specific set of technologies for service description,
like for example WSDL and BPEL, or use a technology-agnostic model that
could easily be translated to the current standards. To abstract away from the
idiosyncracies and syntactic nuances of these standards we chose the second
approach. In particular, we introduce a Service Specification Reference Model
that exhibits the main characteristics of different service description models and
technologies.

More specifically, we define the following three levels for services specification:

Abstract Service Definition Model (ASD): an abstract model containing
generic concepts and their relationships that are common to all service
schemas.

Service Schema Definition (SSD): the schema of a specific service, or in
other words, the service specification. This consists of the elements of the
service and their relationships that are generated by corresponding concepts
and relationships found in the ASD.

Instance of Service Schema Definition (ISD): that is produced from the
instantiation of the SSD during the execution of the service.

Example 1 (Running Example). Consider the case of an (aggregate) service im-
plementing a composite Order-to-Cash (OtC) process. OtC takes care of the
revenue collection after a successful sale and shipping of a product. It involves a
number of sub-processes/steps like purchase order processing, advanced shipping
and delivery notification, invoicing, etc. These sub-processes are themselves ex-
posed as services, offering their functionality to a number of services apart from
the OtC. In that case, the specifications of all of the above services, expressed
for example in WSDL, BPEL, etc., are considered the SSDs of each service. Irre-
spective of which set of standards is used for their description, all these services
share a common reference framework that allows them to interoperate. All of
them for example, allow clients to invoke them - or they are able to invoke back
clients. These fundamental assumptions about how the services work constitute
the ASD. Furthermore, when these services are implemented, deployed and in-
voked by their clients, then a number of instances of them are created based on
their specification (their ISDs).

The following sections discuss only the ASD and SSD, starting with the gen-
eral relationships that connect the building blocks of each level.

3.1 Universal Relationships

In order to show relationships between concepts in the ASD and therefore also be-
tween corresponding elements in the SSD we need to define the formal semantics
of conventional relationships such as composition, aggregation, and association
found in object-oriented languages and in the AI semantic nets. These will be
described using the UML class diagram notation [18]:



Managing the Evolution of Service Specifications 363

Composition (fig. 1(a)) ∀y, ∃!x :
c−→xy: y can belong in exactly one composition

relationship with x. Additionally, deleting x deletes also y (cascading delete).

Aggregation (fig. 1(b)) ∀y, ∃x :
a−→xy: y may participate in more than one aggre-

gation relationships with x. Deletion of x deletes also y, but only if there are no
other relationships of this type in which y participates.

Association (fig. 1(c)) ∃y, ∃x :
s−→xy: No further restrictions on the participation

and the existence of y. We use the notation
r−→xy, r ∈ {c, a, s} to show that ele-

ments x and y have a relationship of type r.

X Y

(a) Composition

X Y

(b) Aggregation

X Y

(c) Association

Fig. 1. Types of Relationships

Furthermore, relationships in UML have multiplicities, denoting the possible
cardinalities of the instances of each class, that is, how many instances of it may
exist at the same time, in each relationship. Putting a 1..* on the y side of the

arrow for the relationship
s−→xy for example means that instance x must always

have one or more associations with instances of y. The notation we introduced
above to show the semantics of the relationships has therefore to be expanded
to accommodate cardinalities with: |cardinalityx||cardinalityy|−1, cardinality
∈ {0| ≥ 0| ≤ 1| ≥ 1} (≥ 0 for * in UML, ≤ 1 for 0..1, and ≥ 1 for 1..*

respectively). For example,
a−→xy |1|| ≥ 1|−1 means there may be more than one in-

stances of y that participate in this aggregation with x. If not specified explicitly,
cardinality values are considered to be equal to 1.

3.2 Abstract Service Definition Model

The Abstract Service Definition Model (ASD) is a collection of concepts com-
mon across service schemas that have a set of parameters and relationships.
Parameters can either be property-domains or attributes. An attribute, e.g. a
string denoting the currency that will be used in the scope of a specific message,
will be assigned a value during the instantiation of the service schema, i.e. the
creation of a running instance of the service from its schema. Property-domain
pdi has a set of values called properties (denoted by pi) that, as we will see in
section 3.3, may restrict some of the relationships of the element generated by
the concept. A specific value pi will be selected from the domain when the SSD
is generated by the ASD.



364 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

The ASD spans three layers: Structural, Behavioral, and Regulatory, which
lean on each other in ascending order to fulfill their functionality, and two sec-
tions: Public and Private (denoted by a visibility attribute of the concept defi-
nition). Figure 2 illustrates the ASD using UML class diagram notation.

ASD Notation. The concepts depicted in the figure and their relationships
are partly based on the models discussed in [19] and [20], which describe meta-
models for services. Attributes are not contained in the figure for reasons of
brevity.

Based on the above, the concepts in Figure 2 can be described using the fol-
lowing notation: Concept(property − domain∗, attribute∗, relation∗, visibility).

Example 2. The Message concept as shown in this figure, has two property-
domains: messageRole, and type (that is inherited from concept Role1), and
an one-to-many aggregation relationship with the Information Type concept.

Consequently, it can be written in this notation as: Message(messageRole,

type, attributes∗,
a−−−−−−−−−−−−−−−−−−−−−→

Message InformationType |1|| ≥ 1|−1, public).

Definition 1. ASD Layers The ASD concepts can be perceived horizontally as
in the three distinct layers, viz. structural, behavioral and regulatory (see Figure
2). Each layer Li, i = 1, 2, 3 is defined as Li = {∃!Px ∈ ASD/∀x ∈ Px →
x ∈ Li}, where Px is a partitioning of all concepts into exactly one of the three
layers. Now we can define the notion of horizontal and vertical relationships
based on this partitioning:

Horizontal: [[
rh

−→xy]]hk : x, y ∈ Lk, i.e., all concepts belong to the same layer.

Vertical: [[
rv

−→xy]]vk : x ∈ Lk, y ∈ Lm, m �= k, i.e. concepts are in different layers.

For example, the Policy Profile concept has a horizontal relationship with
Policy Alternative and Service Policy since they belong to the same layer
(the regulatory), and a vertical relationship with the Operation Sequence and
Operation concepts in the behavioral and structural layers respectively (see
Figure 2).

Definition 2. The ASD. The ASD = {(cj
i , Li), i ≤ 3, j ≥ 1 and ∀cn

l |
r−−→

cj
i c

n
l ,

(i = l ∧ r = rh) ∨ (i �= l ∧ r = rv)} where cj
i is a concept cj in the layer Li, i.e.

ASD is the set of all concepts and the layers they belong to.

For this paper we have mainly concentrated on the structural and behavioral
layers of the ASD.

ASD concepts. In the following we briefly present the layers and the concepts
of the ASD:

1 We assume that the inheritance relationship maintains its UML semantics, i.e., all
attributes and parameters (but not relationships) are copied to the inherited concept.



Managing the Evolution of Service Specifications 365

Int
er

fac
e S

pe
cif

ica
tio

n

Op
er

ati
on

Inf
or

ma
tio

n T
yp

e

Ve
rs

ion
ed

 S
pe

cif
ica

tio
n

Se
rv

ice
 (n

oti
on

al)

Me
ss

ag
e

Pu
bli

c

Pr
oto

co
l S

pe
cif

ica
tio

n

Op
er

ati
on

 Se
qu

en
ce

Op
er

ati
on

 C
on

dit
ion

s

Co
ns

tra
int

Po
lic

y S
pe

cif
ica

tio
n

Po
lic

y A
lte

rn
ati

ve

Po
lic

y A
ss

er
tio

n

Po
lic

y P
ro

file

Pr
iva

te

Re
gu
lat
ory

Be
ha
vio
ral

St
ruc
tur
al

Se
rv

ice
 P

oli
cy

Pr
oc

es
s

Ev
en

t

St
ate

St
ate

 Tr
an

sit
ion

Ac
tiv

ity

Se
rv

ice
 S

pe
cif

ica
tio

n

En
dp

oin
t

Co
mm

un
ica

tio
n P

ro
toc

ol

Co
ns

tra
int

 S
et

Bu
sin

es
s R

ule
se

t
Bu

sin
es

s R
ule

Ro
le

F
ig

.2
.
L
ay

er
s

of
th

e
A

SD



366 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

Structural layer is responsible for the structural description of the concepts that
constitute a service. In that sense it contains: an Interface Specification,
that acts as the access point for the structural signature of the service, ag-
gregating a number of Operations, i.e. specific functions that the service is
performing, defined in an abstract format, and Messages that are exchanged
as part of the operations. A Message is defining the informational content con-
sumed and/or produced by the service in the form of hierarchically organized
Information Types. Furthermore, Endpoints, define specific URIs that the ser-
vice can be reached from. Each endpoint is bound to a number of Communication
Protocols that can be used to access it.

Behavioral layer manages the control and execution aspects of the service busi-
ness logic. It contains for this purpose: a Protocol Specification that ag-
gregates the necessary constructs for specifying business protocol information,
i.e. Operation Sequences (specific sequences that have to be performed in or-
der to achieve a part of the business logic). They aggregate sets of Operation
Conditions that either have to be fulfilled in order for the particular se-
quence to be executed, or are produced by it during its execution, in terms of
pre- and post-executional Constraints (e.g., temporal, spatial, financial, etc.).
Constraints are organized around Constraint Sets that may contain over-
lapping constraints. Constraint Sets and Constraints are for this layer what
Messages and Information Types are for the Structural: a method to express
the signature of services - but this time on protocol level. In order to model the
workflow aspect of the service description, the concept of States of the Process
for which the service is the implementation is used. State Transitions govern
the switch from one state to the other. The switch can either occur as the out-
come of the successful execution of an Activity and/or triggered by an Event.

Regulatory layer contains the necessary elements for describing and managing
both the business decision rules and policies that govern the business logic of
the process, and key performance indicators, e.g., QoS factors, and requirements
set by the service clients and providers. It contains: a Policy Specification
that collects the various policies defined as part of the service operation. Policy
Profiles define the business rules and/or the functional and non-functional
requirements of complete Operation Sequences or atomic Operations through
Policy Alternatives that are expressed as a number of Policy Assertions.
They implement a Business Ruleset, which is defined as a set of Business
Rules specified by the owner of the service. These rules constitute an abstract
Service Policy that all versions of the service have to respect.

Auxiliary concepts Figure 2 also contains a number of auxiliary concepts that do
not belong to a specific layer but are used throughout the ASD. The Role concept
inherits a very important as we will see in later sections property-domain to a
number of concepts. Service (notional) acts as the main reference point for
all versions of the service, expressed as Versioned Specifications - Service
Specifications that aggregate the specifications from each layer, enriched with
versioning information.



Managing the Evolution of Service Specifications 367

Public and Private sections. A vertical distinction of concepts is necessary
in order to distinguish between service elements exposed to the clients of the
service (public specifications) and the private specifications that are solely used
for internal service purposes. The former are the access points for service clients
that want to interact with the specified service. The latter are used for example
to define the workflow of the process implemented by the service, and the service
policies that are common among all versions of the service. Each service uses a
combination of public and private concepts to specify itself; it exposes to its
context only the public ones, but at the same time it incorporates the public
concepts of the services it uses in turn. This implies that a uniform representation
model is used across the network of interrelated services.

3.3 Service Schema Definition

The Service Schema Definition (SSD) consists of a number of elements and their
relationships. In the following we discuss the structure and the properties of the
SSD.

Definition of service schema. The SSD (for a particular service) is generated
from the ASD by evaluating the concepts in it, i.e., by assigning a uniquely
identified name to them, deciding on a specific property pi for each properties-
domain pdi, and instantiating their relationships by replacing concepts with
elements and assigning a value to their cardinality. The SSD is defined as a set
of elements E = {ei}, i = 1, . . . , n and each element e is described by a tuple as
follows in BNF-format:

e := < name, attribute∗, (property?, relation?)∗, visibility >

name := string property := string attribute := string

relation := RTe|c||c|−1

RTe :=
c−→eei |

a−→eei |
s−→eei where i ≥ 1

c := integer visibility := public|private

’*’ means 0-n occurrences and ’?’ means 0-1 occurrences

Example 3. Consider on ASD level the Operation concept defined as2:

Operation(messagePattern, Att∗,
c−−−−−−−−−−−−−−−→

Operation Message |1|| ≥ 1|−1, public).
On SSD level, the evaluation of the concept for the creation of the SSD for

the purchase order processing process from example 1 would e.g. generate:

e1 = < val(Operation), val(messagePattern), Att∗,

val(
c−−−−−−−−−−−−−−−→

Operation Message |1|| ≥ 1|−1), public >

= < processOrder, request − response, Att∗,
c−−→e1e2 |1||1|−1,

c−−→e1e3 |1||1|−1, public >

e2 = < purchaseOrder, Att∗, input, . . . , public >

e3 = < orderAcknowledge, Att∗, output, . . . , public >

2 Note: we are omitting some of the relationships of the concept for brevity.



368 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

where val(messagePattern) = request − response means that request −
response is a property in the property domain messagePattern.

Note: since e1 was generated by Operation, it is said to be an Operation ele-
ment. In the same manner e2 and e3 are Message elements. For the remainder of
this paper we shall use this convention to identify elements by the concepts they
are generated from. In the same spirit, the distinction of concepts into layers
(definition 1) also applies to elements. Therefore e1, e2, e3 are said to belong to
the Structural layer.

Constraining the service schema elements. The properties defined previ-
ously may restrict (a) the cardinality of the relationship(s) of the element, and
(b) some of the properties of the related element(s).

Some properties of an element therefore define a number of constraints.
Let’s assume Px the set of the properties assigned to an element x, then

∃p ∈ Px, the relation
r−→xy must satisfy the following:

⎧
⎨

⎩

| |−1 = k
and zero or more of:
pdy = pyx

where the values of the property domain pdy are restricted by the properties pyx

(a subset of the original properties domain py defined by the property x).

Example 4. Consider the relation between Operation and Message elements in
the structural layer. Operation has a property domain pd1 = messagePattern
that takes the following values/properties {one − way,
notification, request−response, solicit−response}, and Message has two prop-
erty domains pd2 = message−role and pd3 = type; the latter takes the property
{required, provided} and the former takes the properties {input, output, fault}.
The property one-way defines the constraints:

| |−1 = 1, and messageRole = input, type = required, i.e. there can only
be one Message element related to the Operation element, and it has to have
the properties input and required. In a similar way, property request-response
defines the constraints:

| |−1 = 2, and
{

Msg1.messageRole = input, Msg1.type = required
Msg2.messageRole = output, Msg2.type = provided

or

| |−1 = 3, and
{

(as above),
Msg3.messageRole = fault, Msg3.type = provided

where Msg1, Msg2, and Msg3 are occurrences of the Message element.

4 Service Schema Evolution

The evolution of the service is taking place through a series of discrete modifica-
tions to elements in its schema that constitute evolutionary acts in the sense that
they are the carriers of change. These acts are expressed as sets of operations
that may have consequences both inside and across the service.



Managing the Evolution of Service Specifications 369

4.1 Operations on the Service Schema

The following list is a minimal classification of operations and their semantics
that we have identified, in the form of primitive changes on the elements of the
SSD and/or their relationships.

1. Insertion of Relationship between Elements [[ADD(ei, ej, r)]] : Rei → Rei ∪
{

r−−→eiej}, where Rei is the set of relationships of element ei.
2. Removal of Relationship between Elements [[DEL(ei, ej , r)]] : Rei → Rei −

{
r−−→eiej}. Bilateral relationships are deleted by performing this operation once

for each direction.
3. Insertion of Element [[ADD(e)]]: E → E ∪ {e} and/or not, ADD(ej , e, r)

Insertion of an element e may be accompanied by the insertion of a relation-
ship between another (preexisting) element ej and e.

4. Removal of Element [[DEL(e)]]: E → E −{e} and if ∃
rj−→eje ∀rj ∈ R, ∀j then

DEL(ej , e, rj),

where R = {
r−−→eiej ∀i, ∀j, ∀r}the set of all relationships for all elements in E .

Removal of element e must always be preceded by the removal of all the
relationships that e is participating in.

5. Replacement of Property [[REP(e,pi, pj)]]:Pe → Pe ∪ {pj} − {pi} A prop-
erty can either be replaced (pi, pj ∈ pdk), added (for pi = �), or deleted
by replacing it with an empty property (pj = �). In case that the proper-
ties constrain the cardinality of (some) relationships, then the appropriate
operations on the relationships of e must be performed too.

This set of operations is complete; it can be easily shown that every SSD can
be constructed from another SSD by a finite sequential application of additions,
deletions, and replacements to it. In that sense, richer typologies of operations
like the ones in [13], [17], and elsewhere, would be more convenient but not
necessary for our approach.

4.2 Service Schema Versioning

The definition of SSD as a set of elements uniquely identified by their name
which is subjected to a number of modifications allows us to draw on versioning
techniques from Software Configuration Management. Based on the terminology
used in [4], we define the spaces of a service:

Definition 3. Service spaces

1. The elements belonging to the SSD are the product space of the service,
denoted by ps, which contains the specifications of the various versions of
the service.

2. The temporal relationships between all the versions of the elements that con-
stitute a service is called version space and is denoted by vs.



370 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

3. A version ve represents the state of the evolving element e and it is charac-
terized by the pair ve = (pse, vse), where pse denotes its state in the product
space (i.e. the specification of the element), and vse its position in the ver-
sion space (denoted by a version identifier). A version vs of a service s is
therefore defined as the set of the versions of its elements vs = {ve, ∀e ∈ E}
at a given time (-point in the version space).

Service versioning comprises service specifications as observed at discrete points
in time. These are identifiable by a version identification number; each version is
agnostic of the others and managed individually. Each of the service versions is
created by applying a number of changes to a previous service version, which can
be thought of as the baseline for that version. Information regarding the baseline
of each version, and how a service version differs from its baseline constitutes the
version history of a given service. There might be, for instance, three versions of
the SSD (signified by the version ids ’2.1’, ’2.1.1’, and ’2.1.2’). Each version is a
full-fledged service schema specification and corresponds to different (possible)
active versions of the service. By examining the version space of the service, the
designer is able to infer that versions ’2.1.1’ and ’2.1.2’ use ’2.1’ as a baseline
and additionally what changes where applied to ’2.1’ in order to produce these
two versions. In that respect, the extensional versioning scheme is used to record
version history and is defined as follows:

Definition 4. Extensional versioning

1. Let’s assume a sequence of elementary change operations op1 . . . opm which,
when applied to one version of an element ve, ve

i , yields another version ve
j ,

denoted as ve
i � ve

j .
2. The extensional versioning of an element is the set V e of all versions of e and

is defined by V e = {ve
1, v

e
1 � ve

2, v
e
2 � ve

3 . . . , ve
m � ve

n}, m < n. We therefore keep
track of all versions with the corresponding operation changes. By extension
then, the set of all versions of a service, is defined as V s = {vs

1, . . . , v
s
n}.

3. An evolutionary act can therefore be defined as the set of operations that
transform version vs

i of the service into version vs
j and is denoted by vs

i �
vs

j , i < j.

4.3 Consistency of Service Schema Evolution

The operations and the versioning approach presented in the previous section
are generic enough to cover all possible modifications to service elements; but
they do not make any effort to ensure that these modifications are meaningful -
that is, they are not destructive for the SSD. For example, the DEL(e) operation
removes an element completely from the current version of a service; but is this a
valid operation for all elements of the SSD? In order to preserve the consistency
of an SSD it is necessary to define a set of Invariants, such as those defined in
[21]. These invariants (must) hold at every state of the SSD and ensure that the
SSD is never left in an inconsistent state (i.e. a state that violates any invariant):



Managing the Evolution of Service Specifications 371

INV1: Validity of the SSD. ASD |= SSD: the SSD must always be valid
with respect to the ASD, i.e., every element and relationship in the SSD must
be able to be generated from the respective ASD concepts and relationships.
This also includes the preservation of the semantics of the relationships, as
defined in section 3.1.

INV2: Reachability of Elements. ∀e ∈ E , then ∃ej ∈ E , ∃r ∈ R,
r−→eej: All

elements must participate in at least one (directed) relationship with another
element. If there are elements without any relationships in the schema then
they are automatically deleted.

INV3: Cardinality Constraint Preservation. ∃p ∈ Pe, ∃
r−→eej with |j|−1 =

k then
r−→eej �

r−−→eej′, |j′|−1 = k: If there is a property of the element that
constraints the cardinality of some relationship of the element, then this
constraint must be respected by all versions of the element.

INV4: Existence Constraint on Composition. ∀e ∈ E if
c−→eej

and DEL(e) then DEL(ej), ∀j: If an element with composition relation-
ships is deleted, then all its related elements through composition must be
deleted too. (Note: The case of aggregation is covered by INV1.)

Now we can define the notions of consistency and consistent evolutionary acts :

Definition 5. A version of the SSD is called Consistent iff it respects the set of
obligatory invariants INVo = {INVi, 1 ≤ i ≤ 4}. Consistent evolutionary acts
are therefore the series of operations that preserve the consistency of the SSD.

For example, reducing the payload of a Message element by deleting one of
the Information Type elements that it is related to is considered consistent.
Deleting all of the Information Types though is inconsistent, since it violates
INV1; as shown in Figure 2, this relationship must have cardinality at least 1.
The former then is a consistent evolutionary act, the latter isn’t.

4.4 Conformance of Service Schema Versions

In summary, consistency ensures that the evolutionary acts are valid transforma-
tions of one version of the service SSD into another version. Taking into account
the fact that services work in a network environment, using each other to achieve
their stated objectives, creates the added necessity for the preservation of the
service execution result. This ensures the seamless substitution of an SSD by a
new version of it, without requiring any modifications by the clients of the ser-
vice (its context); in other words, the conformance of the two versions in terms
of expected results of service execution and not (only) in terms of specification:

Definition 6. Given two consistent versions vs
i and vs

j of a service, they are
called Conformant iff vs

i , v
s
j can be interchangeable without requiring changes in

their context.

Example 5. Consider the case of the owner of the invoicing service wanting to
expand its operations to international marketplaces. For that purpose, a new



372 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

version of the service is created. Among other changes, information is added to
the invoice data schema about the currency that the payments are to be made
in, the tax regulations that apply to the specific invoice, etc. As long as the
existing clients of the service can still use the same service specification by simply
ignoring this additional information, the two service versions are considered to
be conformant with respect to this change.

We have identified the following invariants that could ensure conformance:

INV5: Co-Variance of Required Elements. All elements that have the
property required can only be restricted. This implies a restriction in the
data type and the number of arguments (represented as relationships be-
tween elements). It can be stated as follows:

– in the number of relationships: ∃p ∈ Pe = required and if∃
r−→eej then

r−→eej

�
r−−→eej′, |j′|−1 ≤ |j|−1, i.e. the element must have the same number or less

relationships after any change to it,
– in the value domain of its properties: if the property is defined as a range

of values, then this range can only be restricted.
This also holds for all elements in Re, the set of all relationships of e.

INV6: Contra-Variance of Provided Elements. All elements that have
the property provided can only be extended. This implies an extension in
the data type and the number of arguments. It can be stated as follows:

– in the number of relationships: ∃p ∈ Pe = provided and if∃
r−→eej then

r−→eej

�
r−−→eej′, |j′|−1 ≥ |j|−1, i.e. the element must have the same number or more

relationships after any change to it,
– in the value domain of its properties: if the property is defined as a range

of values, then this range can only be expanded.
This also holds for all elements in Re.

INV7: Finality of Cardinality-Constraining Properties. The properties
that constraint the cardinality of (some) relationship of a given service ele-
ment are final, i.e. no such property of any element is allowed to be modified.
Properties with no constraints on relationships can be subjects of change as
long they respect the previous invariants.

For example, increasing the number of Constraints in a Constraint Set (see
Figure 2) is only allowed if it is related to an Operation Conditions element
that has the property provided, but not if it has the property required. The
same applies also to the property valueRange in Information Type: the prop-
erty can only be replaced by a ’smaller’ range in the former case, and by a
’wider’ one in the latter. Modifying the MessagePattern property in any way
is forbidden since it constraints the cardinality of the Operation element with
element(s) Message. Therefore:

Definition 7. Conformance preservation is the property of an evolutionary act
to respect the set INVc = {INVi, 5 ≤ i ≤ 7}. Conformance-preserving evolu-
tionary acts therefore create conformant versions of the service.



Managing the Evolution of Service Specifications 373

Example 6. Assume that the OtC service described in example 1 is used by
a Purchase-to-Pay (PtP) process of another enterprise. PtP takes care of the
procurement of goods process and at a certain step uses the invoice produced by
the OtC to arrange for payments. In that case, the same invoice document (more
accurately, the Information Type element that corresponds to the invoice) is
a provided element for OtC and according to INV6 it can be extended in the
manner described above. However, since PtP uses the same element as an input
(and therefore it is required for it), then INV5 forbids this modification. In
that case, the PtP service can not use the new version of OtC and has to rely
on the previous one to do business (ensuring in that way that there are no
misunderstandings in the currency that the transactions take place).

What is illustrated by the previous example is the fact that INVc is a set of nec-
essary but not sufficient conditions for conformance. That is a by-product of the
loosely-coupled nature of the service-oriented architecture: it is not desirable to be
able to reason explicitly about the effect of a service change at provider side to its
client services. This is due to the fact that client services should be oblivious to the
changes that happen to a provider service. This enforces a modus operandi based
on the separation of concerns: each party will decide from their own perspective
whether a new version and the evolutionary act that created it is conformance-
preserving with respect to their own services. In that sense, two services using each
other have an implicit contract between them, enforced partially by each side us-
ing their interpretation of INVc. Every new version that is issued by a service
proposes the alteration of this contract between them; it is up to the other party
to decide whether the proposed changes are acceptable or not.

5 Conclusions and Future Work

In this paper we have introduced service evolution management facilities that
identify and classify all kinds of permissible changes to services, analyze the propa-
gation effects of changes, introduce version control mechanisms, validate the com-
pleteness of a change, and maintain consistency by ensuring that a service is a
well-behaved collection of service changes and versions. The service evolution
management facilities rely on a service specification reference model that abstracts
away from the idiosyncracies and syntactic nuances of current standards and pro-
vides a theoretical approach to service evolution. The service specification refer-
ence model contains an abstract service definition model (ASD) that comprises
generic concepts and inter-relationships that are common to all service schemas
in three layers. Thus far, we have concentrated on representing and analyzing the
behavior of multiple active service versions that are mutually conformant with re-
spect to a contract from both the perspective of the service provider and the ser-
vice client. In the future, we expect to concentrate on developing formalisms and
proofs for the service regulatory layer and connect them with current work, so as to
be able to prove the completeness and soundness of the overall approach. Another
extension of this work is to focus on relaxed co- and contra-variance mechanisms
for more flexible service evolution purposes, e.g., exception handling.



374 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

References

1. Ponnekanti, S., Fox, A.: Interoperability among independently evolving web ser-
vices. In: Middleware, pp. 331–351 (2004)

2. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing
adapters for web services integration. In: CAiSE, pp. 415–429 (2005)

3. Tichy, W.F.: Tools for software configuration management. In: SCM, pp. 1–20 (1988)
4. Conradi, R., Westfechtel, B.: Version models for software configuration manage-

ment. ACM Comput. Surv. 30(2), 232–282 (1998)
5. Brown, K., Ellis, M.: Best practices for Web services versioning. IBM developer-

Works White Paper (2005)
6. Russell, M.: Manage message contract changes with versioning. IBM developer-

Works White Paper (2005)
7. Butek, R.: Make minor backward-compatible changes to your Web services. IBM

developerWorks White Paper (2004)
8. Poulin, M.: Service Versioning For SOA. SOAWorld Magazine 6(7) (2006)
9. Kaminski, P., Litoiu, M., Müller, H.A.: A design technique for evolving web ser-

vices. In: CASCON, pp. 303–317 (2006)
10. Hoylen, S.(ed.): XML Schema Versioning Use Cases. W3C XML Schema Working

Group Draft (2006)
11. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping adaptation under evolving schemas.

In: VLDB 2003: Proceedings of the 29th international conference on Very large data
bases, VLDB Endowment, pp. 584–595 (2003)

12. Yu, C., Popa, L.: Semantic adaptation of schema mappings when schemas evolve.
In: VLDB 2005: Proceedings of the 31st international conference on Very large
data bases, VLDB Endowment, pp. 1006–1017 (2005)

13. Salinesi, C., Etien, A., Zoukar, I.: A Systematic Approach to Express IS Evolu-
tion Requirements Using Gap Modelling and Similarity Modelling Techniques. In:
Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 338–352. Springer,
Heidelberg (2004)

14. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. In: Thalheim, B.
(ed.) ER 1996. LNCS, vol. 1157, pp. 438–455. Springer, London (1996)

15. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)

16. Joeris, G., Herzog, O.: Managing evolving workflow specifications with schema
versioning and migration rules (1999)

17. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

18. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Man-
ual, 2nd edn. Addison-Wesley Object Technology Series. Addison-Wesley Profes-
sional, Reading (2004)

19. Everware-CBDI Inc.: CBDI-SAETM Meta Model for SOA Version 2.0. (2007),
http://www.cbdiforum.com/public/meta model v2.php

20. Dubray, J.J.: WSPER An abstract SOA framework (2007),
http://www.wsper.org/primer.html

21. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. In: SIGMOD 1987: Proceedings of
the 1987 ACM SIGMOD international conference on Management of data, pp.
311–322. ACM Press, New York (1987)

http://www.cbdiforum.com/public/meta_model_v2.php
http://www.wsper.org/primer.html

	Managing the Evolution of Service Specifications
	Introduction
	Related Work
	Service Specification Reference Model
	Universal Relationships
	Abstract Service Definition Model
	Service Schema Definition

	Service Schema Evolution
	Operations on the Service Schema
	Service Schema Versioning
	Consistency of Service Schema Evolution
	Conformance of Service Schema Versions

	Conclusions and Future Work


