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Over two decades ago, investigators using NMR detection of
myoglobin (Mb) saturation in human skeletal muscle deter-

mined that the mean intracellular PO2 (PiO2
) quickly drops from

�34 Torr at rest (27) to 2–5 Torr during intense exercise (22,

28, 29). PiO2
appears to remain remarkably constant between

60 and 100% of V̇O2peak (28, 29), although some report drops
of �2 Torr in this range (22). At the same time, recent studies
have reported that the PO2 in the interstitial space, near the
muscle fiber surface, also decreases with exercise (14). This
means that the pressure drop for O2 diffusion across the muscle
fiber during exercise is not increasing at a time when the flow
of O2 increases by nearly twofold. Assuming the diffusion
coefficient for O2 remains constant, there is no suitable phys-
ical model accounting for this phenomenon. It cannot be
explained by the reductions in PO2 at the cytochrome c oxidase
(CcO) in Mb-containing fibers, because the O2 flow from Mb
to CcO can never exceed the net flow from the fiber surface to
Mb [i.e., a “waterfall effect” (31)].

However, recent discoveries in skeletal and heart muscle
biology provide insights that point to a likely mechanism
involving a leading role for Mb as both an O2 sensor and a
PO2-dependent catalytic switch for oxidation/reduction reac-

tions of NO and nitrite (NO2
�). This mechanism, which relies

on existence of the mitochondrial reticulum power grid (3, 13,
16), could increase the flow of O2 with no apparent change in
mean pressure drop across the fiber. Rather, the mechanism
depends on an effective narrowing of the diffusion distance for
O2 from the muscle fiber surface to a predominant site of
electron transport at the subsarcolemmal mitochondria.

Function of the Myoglobin Sensor in a High PO2

Environment

Cytochrome C oxidase (CcO) in complex IV is exquisitely
sensitive to reversible inhibition by nanomolar levels of NO.
The sensitivity greatly increases as PO2 is reduced (1, 5).
However, in the presence of oxymyoglobin (MbO2), any avail-

able NO reacts rapidly to produce nitrate (NO3
�) and metmyo-

globin [MetMb(Fe3�)] (Fig. 1A). The rate constant for this
reaction (8) is similar to the dissociation constant for O2 from
Mb (11). The resulting oxidation product [MetMb(Fe�3)] dis-
appears rapidly by a resident family of metmyoglobin reduc-
tases (MMR), some of which are associated with the mitochon-
drial membrane (2). Skeletal muscles from rodents (25) and

humans (23) are net producers of endogenous NO3
� at rest, with

intramuscular concentrations of 80–200 �M, nearly twice the

value in plasma. This continual supply of NO3
� suggests that

these reactions are ongoing at rest in muscle.
The NO that is scavenged can come from numerous sources,

including from local nitric oxide synthases (NOS1 and NOS3)

(17, 18), spillover from the vasculature or from local NO2
�

reactions. Clearly, there is sufficient Mb, being 500–700 �M
in human skeletal muscle (4), about twofold higher than heart
(32). Mb expression in rat gastrocnemius has been shown to be
greatest in fast oxidative, next in slow oxidative, and much
lower in fast glycolytic fibers (19). Importantly, recent work of
Yamada et al. (35) has shown that the majority of Mb in
skeletal muscle resides near or within mitochondria, through-
out the reticulum, and several investigators have reported
structural binding between myoglobin and mitochondrial cy-
tochromes (10, 35). At high PO2, the mitochondrial localization
of Mb and the rapid reaction rates between NO and MbO2

would function as a “nitric oxide shield” (Fig. 1B), ensuring
that any endogenous NO present is scavenged before it can
inhibit CcO. Thus, in regions of moderate to high PO2, e.g.,
near the subsarcolemma, high rates of CcO activity and V̇O2

are expected. This mechanism would most likely be predom-
inant in Type IIA muscle fibers, based on the observations that
they have the strongest expression of all NOS isoforms (26),
high concentrations of Mb (19), strong colocalization of Mb
with mitochondria (35), and are likely to carry the largest
metabolic load during intense aerobic exercise.

Function of the Myoglobin Sensor at Low PO2

At low PO2, deoxyMb no longer functions as a NO scaven-

ger, but rather as a NO producer. The “switch” happens as PiO2

approaches the P50 for O2 binding to Mb, or �3 Torr (30; Fig.
1C). Within this PO2 range, skeletal muscles are capable of

converting NO3
� to NO2

� by resident enzymes that belong to a
family of xanthine oxidoreductases (XOR) (Fig. 1A). The
responsible reaction pathways were pioneered in studies on

myocardium, where production of NO from NO2
� in ischemia

provides a significant source of NO (9, 12, 33). In noncontract-
ing, normoxic conditions, these reactions are slow, e.g., the

ratio of [NO2
�]/[NO3

�] is 0.005 in muscle (24). This slow
conversion is due, in part, to lack of reducing substrates and

other conditions necessary for effective NO3
� reduction. How-

ever, in working muscle, the reaction is accelerated when
xanthine and hypoxanthine become available through ATP
degradation and when pH is decreasing (21). When pH drops

from 7.5 to 6.5, NO3
� conversion to NO2

� nearly doubles (24).

Address for reprint requests and other correspondence: T. Clanton, Dept. of
Applied Physiology and Kinesiology, University of Florida, Room 100 FLG,
1864 Stadium Rd., Gainesville, FL 32611 (e-mail: tclanton@hhp.ufl.edu).

J Appl Physiol 126: 787–790, 2019.
First published October 18, 2018; doi:10.1152/japplphysiol.00614.2018.

8750-7587/19 Copyright © 2019 the American Physiological Societyhttp://www.jappl.org 787

Downloaded from journals.physiology.org/journal/jappl (106.051.226.007) on August 4, 2022.

https://orcid.org/0000-0003-0600-7150
mailto:tclanton@hhp.ufl.edu


788

J Appl Physiol • doi:10.1152/japplphysiol.00614.2018 • www.jappl.org
Downloaded from journals.physiology.org/journal/jappl (106.051.226.007) on August 4, 2022.



Evidence for these reactions being active in exercising muscle
comes from studies in rats, where substantial conversion of

muscle NO3
� to NO2

� is evident only following intense and
prolonged exercise (24). In conditions of low Mb saturation,

the NO2
� produced reacts with deoxyMb to form deoxymet-

MbNO(Fe�3) (Fig. 1A), which then dissociates to free NO and
deoxymetMb(Fe�3). When pH drops from 7.0 to 6.0 the rate of

NO production from NO2
� via Mb reactions increases by

~12-fold (21).
Because Mb is concentrated near mitochondria (35) and the

reaction of NO with CcO is rapid, this regulatory step could
happen in a microenvironment where no measurable elevations
in NO would be detected. The small elevations in NO near
CcO could easily function to inhibit respiration, and the gain of
this controller would be elevated by marked increases CcO
sensitivity to NO at low PO2 (1, 5). The overall effect is that as
PO2 approaches the P50 for Mb, NO becomes elevated, CcO

inhibited, and V̇O2 suppressed, thus preserving local PiO2
. This

process could also function to protect mitochondria from ex-

treme reductions in PiO2
at high metabolic rate that could result

in mitochondrial damage (15, 20).

Function of Myoglobin within the Mitochondrial Power Grid

Recently, Glancy et al. (13) demonstrated that the mitochon-
drial reticulum, described earlier by Bakeeva et al. (3) and later
by Brooks and colleagues (16), is contiguous between the
subsarcollemal and intermyofibrillar mitochondria in normal
muscle, forming a network. They have also confirmed that this
comprises a kind of “power grid” by which the H�-electro-
chemical gradient is rapidly shared across the reticulum. If one
region becomes depolarized, charge created and stored in other
regions will re-establish the gradient so that local ATP pro-
duction can continue via ATP synthase, despite lack of avail-
able O2.

During intense exercise, it is likely that there are regions of
the inner muscle core that experience O2 depletion. Although
gradients during exercise are difficult to confirm (6) measure-
ments from frozen muscle near V̇O2peak suggest that relatively
large gradients are common in individual fibers (7, 34). How-

ever, when PiO2
is in the range of 2–5 Torr, nearly unmeasur-

able gradients of �0.5 Torr would greatly impact these reac-
tions. As illustrated in Fig. 1c, Mb operates in this PO2 range as
a sensor around a set point defined by its P50. If PO2 drops
below the set point, proportionally more O2Mb molecules
convert to deoxyMb, less endogenous NO is scavenged, and

more NO produced by NO2
� conversion. As local NO in-

creases, CcO activity slows down, reducing V̇O2 and returning

local PiO2
toward the set point. Conversely, as PiO2

begins to

rise above the set point, MbO2 scavenges more NO, allowing

CcO to operate at higher O2. This, in turn, reduces PiO2
closer

to the set point. Any radial PO2 gradient across the muscle fiber
would thus be attenuated, while ensuring that areas of the
highest PO2 are available to sustain the mitochondrial H�-
electrochemical potential.

This regulatory behavior of Mb is likely to be subtle. Even
at PO2 of 10 Torr (e.g., near the sarcolemma), �20% of the Mb
is desaturated and could contribute to NO formation, while the
remaining 80% is simultaneously absorbing NO. Such a gra-
dation of response, above and below the set point, encompasses
the engineering characteristics of a “proportional controller”

set to optimize PiO2
at a set point and minimize overshoot

during transients in PO2.
The net effect is that as exercise intensity increases, regional

PO2 will remain more uniform across the fiber with little or no
loss in the rate of local ATP production in any location (Fig.
1C, inset). In addition, when a greater load of V̇O2 is carried by
the mitochondrial reticulum just below the sarcolemma, the
trans-membrane gradient for O2 diffusion will be increased.
This effectively reduces the diffusion path for O2. In this way,

“mean” muscle fiber PiO2
remains unchanged (Fig. 1C, inset),

although the rate of metabolism and O2 flux is drastically
elevated.

The concept of regional separation of mitochondrial meta-
bolic function, radially across the fiber is also supported by
measurements of the distribution of metabolic enzymes (13).
Subsarcolemmal mitochondria contain significantly higher
concentrations of complex IV (CcO), but complex V (ATP
synthase) is found throughout the fiber. In this setting, myo-
globin’s role is to coordinate the effectiveness of the power
grid to continue to generate new ATP throughout the fiber,
optimizing which regions of the reticulum are supporting the
proton gradient and assigning these to areas of highest PO2.
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Fig. 1. A: reactions of myoglobin (Mb) with nitric oxide (NO). Two contrasting reactions of oxymyoglobin (MbO2) and deoxymyoglobin (deoxyMb). At high

PO2 (top region), MbO2 reacts rapidly with NO to form nitrate (NO3
�), which can be secreted into the circulation. At low PO2 (bottom region), deoxyMb reacts

with nitrite (NO2
�) to produce NO. On the far right is an idealized long segment of the mitochondrial reticulum, in which at low PO2, NO inhibits cytochrome

c oxidase (CcO). At high PO2, the CcO is ungoverned and able to operate at full capacity, as required. It can therefore provide electrical power in the form of
H� gradient throughout areas of the mitochondrial reticulum exposed to low PO2. B: regional distribution of NO regulated by Mb. Within the intact mitochondrial
network, the rapid reaction of MbO2 with NO, very near the sarcolemma, functions as a protective shield, essentially eliminating the inhibitory effects of NO

on CcO activity. Cytosolic NO in active skeletal muscle can arise from NOS1 or NOS3; it can diffuse from NOS3 in the vasculature or from the NO2
� reduction

reactions. C: Mb-NO regulatory controller: Mb behaves as a proportional O2 sensor/switching system, directing regional oxygen consumption based on O2

availability. The “sensor” is Mb, the “effector” is NO, and the “molecular target” is CcO. The set point for the sensor is ~3 Torr, the P50 for MbO2. Inset: overall

effects of minimizing PiO2
across the fiber, resulting in lower PO2 at the subsarcollemal microenvironment, thus reducing the effective mean diffusion distance

for O2.
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