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Managing the Spectral-Spatial Mix in Context
Classification Using Markov Random Fields

X. Jia, Senior Member, IEEE , and J. A. Richards, Fellow, IEEE

Abstract—A straightforward method is presented for determin-
ing the most appropriate weighting of the spectral and spatial
contributions in the Markov random field approach to context
classification. The spectral and spatial components are each nor-
malized to fall in the range (0,1) after which the appropriate
value for the weighting coefficient can determined simply, guided
by an assessment of the importance of the spatial contribution.
Experimental results are presented using an artificial data set and
real data recorded by the Landsat Thematic Mapper and Airborne
Visible/Infrared Imaging Spectrometer.

Index Terms—Markov random fields, spatial context, thematic
mapping.

I. INTRODUCTION

THE MARKOV random field (MRF) process incorporates
spatial information into a classification by modifying the

usual form of a discriminant function through the addition of
a term that recognizes spatial correlations. It is one of a num-
ber of spatial consistency-seeking techniques that also include
probabilistic relaxation [1]. When based on the maximum-
likelihood estimation for handling the spectral data, and the
Gibbs distribution/Ising model basis for the spatial term, the
MRF-based discriminant function for the class on pixel m is
usually expressed [1] as follows:

gc(xm) = −1
2

ln |Σc| −
1
2
(xm − mc)t

× Σ−1
c (xm − mc) −

∑

∂m

β [1 − δ(ωc, ω∂m)] (1)

where mc and Σc are the mean vector and covariance matrix
of class c, respectively, ω∂m is the labeling on the pixels in a
neighborhood surrounding pixel m, and β > 0 is a parameter
with value fixed by the user.

To use (1), there needs to be an allocation of classes over
the scene before the last term can be computed. Accordingly,
an initial classification is performed and (1) is applied itera-
tively over the full scene until the labeling has stabilized.

The first term in (1) is the likelihood of a pixel belonging
to class c determined from the spectral measurements only.
Although other models may not be based on the assumption of a
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Gaussian class-conditional density in (1), they can be employed
as long as they provide posterior probabilities or their equiva-
lents. For example, a minimum-distance classifier leads to

gc(xm) = −(xm−mc)t(xm−mc)−
∑

∂m

β [1 − δ(ωc, ω∂m)] .

(2)

The data range for the first term in either (1) or (2) can
vary largely and is difficult to predict because it is affected
by a number of factors, such as radiometric resolution of the
data, number of spectral bands, number of classes, and class
model used.

The second term in (1) and (2) is a measure of spatial support
for the pixel’s likelihood of belonging to class c. When all the
K neighbors are labeled as class c, we have the case of the
strongest support. The second term will then be zero so that
there is no reduction on the likelihood of belonging to class c
for the central pixel under examination. When none of the
neighbors is labeled as class c, corresponding to the weakest
support, the spectral likelihood value will be reduced by the
full value of second term, i.e., Kβ.

An optimal value for the parameter β needs to be determined
for each application of MRF because an inappropriate balance
of the spectral and spatial terms can yield poor results; however,
that is not a straightforward task because of the unpredictable
range of the first term. Often, β is found experimentally [2],
using a set of trials on a labeled training set. There are,
however, theoretically more rigorous methods for finding the
parameters in applying MRF in classification, but the complex-
ity involved in their determination can sometimes obviate the
benefit of a theoretical basis. Salzenstein and Pieczynski [3] use
iterative conditional estimation as a means for estimating the
parameters, whereas Tso and Mather [4] develop an approach
based on genetic algorithms to improve the efficacy of the
use of MRF in classification. Serpico and Moser [5] employ a
Ho-Kashyap optimization for determining the parameters. An-
other recent approach by Farag et al. [6] estimates the spectral-
spatial mixing parameters by iterating the overall classification
map until there is no further improvement in the log likelihood
of class membership. Interestingly, they base the spectral term
on a support vector algorithm. Similarly, Lakshmanan and
Derin [7] determine the parameters iteratively while simulta-
neously segmenting (classifying) the image. Their method also
copes with additive Gaussian noise. Although this method is
theoretically appealing, the authors have to invoke simplifi-
cations in their optimization process to render the approach
tractable.
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In this letter, a convenient method is provided to manage the
spectral-spatial mixing parameter in context classification.

II. METHOD

We have devised a simple heuristic method for estimating β
in (1) or (2). As will be seen, it does not change the fundamental
structure of the application of MRF as expressed in (1) and (2),
and yet it is much easier to use than iterated methods that seek
spectral-spatial consistency simultaneously and gives the same
results as the more usual practical approach based on a number
of experimental trials.

Rewrite (1) and (2) as

gc(xm) = −e(c) − βa(c) (3)

in which e(c) is the spectral component of the discriminant
function, and a(c) is the spatial component. If we first normal-
ize the spectral and spatial terms to the range (0,1), finding β is
easier and more meaningful.

The spectral term is normalized over all classes

e(c)∗ =
e(c)∑

c
e(c)

.

The spatial term is nomalized by the number K of members in
the neighborhood chosen by

a(c)∗ =
a(c)
K

.

We now search for the optimal weighting β∗ of the normalized
spectral and spatial terms

gc(xm) = −e(c)∗ − β∗a(c)∗. (4)

In (4), β∗ directly indicates the proportion of the spatial
information to be taken into account. Trials to find β∗ can be
narrowed greatly compared with the case for MRF in its orig-
inal form because we often have some feeling for the relative
importance of the spectral and spatial contributions.

Modification of (4) does not materially alter the algorithm.
For example, we can multiply (3) throughout by an arbitrary
constant A

gc(xm) = −Ae(c) − Aβa(c) = −Ae(c) − β′a(c).

Without affecting the decision rule, we can choose

A =
1

C∑
c=1

e(c)
β′ =

β∗

K

which leads to (4).

III. EXPERIMENTS AND RESULTS

Fig. 8.9 of Richards and Jia [1] was used to demonstrate the
β∗ selection method above. The initial spectral classification
accuracy is 88%.

Choosing the influence of the spatial term to improve label-
ing accuracy with MRF depends on the strength of the initial

Fig. 1. Classification accuracy as a function of the weighting coefficient for
an artificial image (Fig. 8.9 Richards and Jia [1]).

spectrally derived classification. Two sets of initial member-
ships were tested.

1) Correctly labeled pixels with posterior probabilities of
0.85 and wrongly labeled pixels with posterior proba-
bilities of 0.65. This is called the strong initial member-
ship case.

2) Correctly labeled pixels with posterior probabilities of
0.65 and wrongly labeled pixels with posterior proba-
bilities of 0.85. This is called the weak initial member-
ship case.

Three iterations were applied, given that the neighbors up
to three pixels away are considered adequate. It can be seen
in Fig. 1 that improvement in classification accuracy for case
1) starts even when a small proportion of the spatial term
is applied. It reaches a maximum (100% accuracy) when the
spatial weight is in the range 0.8–1.4. Higher weights are
required for case 2), and the improved accuracy is limited to
98%. This is a result of the poor initial class membership for the
correctly labeled pixels (and the good initial class membership
for the wrongly labeled pixels). Here, the spatial term is more
important, but the improvement is limited by the poor initial
results.

Tests were also conducted on a 145 × 145 pixel portion
of a Thematic Mapper (TM) image (with an eight-bit radio-
metric resolution) recorded over Tippecanoe County, IN. The
data originally consisted of eight classes. We classified the
data into the four largest classes (alfalfa/oats, soybeans, corn,
and wheat) using a minimum-distance algorithm. All available
pixels were allocated to those classes so that the performance
of the algorithm could be inspected free of any unclassified
regions. Even though some additional errors would be intro-
duced into the original classification, that is not important in the
context of examining the performance of procedures that seek
to develop spatial consistency using neighborhood information.
The numbers of training samples of 171, 185, 80, and 75,
respectively, for the four classes were used for the spectrally
based classification using a minimum distance algorithm.

Two different sets of testing data were used to check the
operation of the algorithm. In the first, the testing data consisted
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TABLE I
CLASSIFICATION ACCURACY FOR THE

HOMOGENEOUS AREAS IN THE TM IMAGE

of 121, 115, 88, and 44 homogeneous samples, respectively, of
each of the four classes.

In the second testing set, all the known labeled data of
18 061 pixels were used for checking accuracy improvement
with MRF. The main difference from the first set data is
that the second set contains heterogeneous fields that include
boundaries between classes. We chose these two different trials
to assess the algorithm 1) at a per-field level with a well-trained
classifier (because most context methods basically favor label-
ing with same-class neighbors) and 2) when field boundaries
are involved in the testing data.

The results with the first testing set are shown in Table I.
Both the conventional MRF method for determining β and our
normalized process were applied. It can be seen that the value
of β in the conventional approach has a much greater range
requiring some time to find the right value. The weighting coef-
ficient β∗ is easier to select based on our feel for the significance
of the spatial term. In the end, the same highest accuracy was
achieved by both methods. The results were achieved after five
iterations, which allow the neighbors up to five pixels away in
each direction to contribute the central pixel’s labeling. This
was shown to be reasonable in an earlier study [8]. It can be
seen that the improvement starts at a weight of 0.2 and is best
when the weights are higher than 1.6 for homogenous testing
fields.

Fig. 2 shows the results with the second testing set. The
improvement is slightly peaked at a weighting coefficient of 1.6.

A 145 × 145 pixel Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) data set (with 16-bit radiometric resolution)
was used as well to test the new method. It covers an area of
mixed agriculture and forestry in northwestern Indiana. The
data were recorded in June 1992 with 220 bands. The ground
truth consists of 16 classes, with 10 366 labeled pixels [9].

Fig. 2. Classification accuracy versus weighting coefficients for the heteroge-
neous areas in the TM image.

TABLE II
CLASSIFICATION ACCURACY FOR THE AVIRIS IMAGE

Maximum-likelihood classification was performed using every
fourteenth band. The initial spectral classification accuracy is
79.20%. Table II shows the improvement, with selection of the
weighting coefficient by the method of this letter and by the
conventional approach, after five iterations. It can be seen that
the results are consistent with the TM data results, although
with the normalized approach, much smaller values of β∗ can
provide accuracy improvement. Interestingly, that is related
to the number of classes. With more classes (16 in the case
of the AVIRIS trial compared with 4 for the TM data), the
gap between the spectral likelihood of a pixel belonging to
each class is smaller; therefore, the chance that the labeling is
affected by the spatial term becomes higher.

Fig. 3 shows the initial (spectrally determined) labeling, and
the outcome after MRF with a β∗ of 1.6 is used over five
iterations.

IV. DISCUSSION AND CONCLUSIONS

With the spectral and spatial components normalized, an
appropriate value for the weighting coefficient for the spatial
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Fig. 3. Portion of the TM image. (a) Ground truth, (b) after original spectral
classification, and (c) after application of MRF with weighting coefficient of
1.6. From dark gray to white, the classes are alfalfa/oats, soybeans, corn, and
wheat, respectively. (Black pixels in (a) are the undefined background areas.)

term can easily be found. This modified version of MRF
classification makes a systematic evaluation of the impact of the
choice of weight on the ultimate classification results achieved
possible.

In the MRF approach, the spatial component is implicitly
based on the assumption that the neighboring pixels have the
same class labels as the central pixel under examination. Thus,
as the weight is increased, classification accuracy improves
more in homogenous regions, but pixels at class boundaries
are at the risk of overcorrection. When the spatial weighting
is increased further, the overall accuracy may not be improved
further, and beyond a certain critical level, classification accu-
racy may start to decrease as shown in the artificial data.

The optimal weighting coefficient is not only affected by
the degree of the spatial correlation in the scene but also by
the quality of the initial spectrally based classification. It is
also weakly dependent on the number of classes, as inferred
from our results above, because the degree of adjustment to the
discriminant function for a given class will depend upon how
many classes are represented among the neighboring pixels.

Spatial resolution is also a factor that influences spatial cor-
relation and therefore affects how many iterations are required
in the application of MRFs. For the current image with a
spatial resolution of 20 × 20 m, three iterations are adequate,
although five are generally preferred. It is recommended that the
weight be determined by considering the spatial resolution of
the sensor, scene correlation, and initial spectral classification
uncertainty.
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