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Abstract

We model a call center as a queueing model with Poisson arrivals having an unknown
varying arrival rate. We show how to compute prediction intervals for the arrival rate,
and use the Erlang formula for the waiting time to compute the consequences for the
occupancy level of the call center. We compare it to the current practice of using a point
estimate of the arrival rate (assumed constant) as forecast.

1 Introduction

A call center consists of equipment and people capable of delivering services by telephone. In
the current paper we assume that these telephone calls are all inbound, i.e., they are generated
by outside customers. The performance level of a call center is usually measured in terms of
the waiting time of calls and the productivity of the call center employees, often called agents.
One of the main problems in managing a call center is the uncertainty in call volume, and the
fact that calls need to be answered quickly (on average between 10-20 seconds). The solution
to this is to schedule some overcapacity with respect to the average call volume as to be able
to handle peaks in incoming traffic. This overcapacity needs to be as small as possible, as
overcapacity means unproductivity.

Uncertainty in call volume has various sources. Divide the period to be considered in
fixed time intervals. It is often assumed that, during each time interval, arrivals follow a
homogeneous Poisson process and that call handling times are exponentially distributed.
This randomness creates short-term fluctuations in call volume. It is also often assumed that
call handling times (service times) are constantly distributed in time. This assumption is
justifiable to a considerable extent. However, assuming the arrival rate λ of the calls to be
constant, is highly unrealistic. If the rate were constant, the expected waiting time could be
estimated using the so-called Erlang formula. In section 2 we will describe this procedure
and give interval estimates for the constant rate. Current practice is that call center planners
differentiate between variables such as day of week, holidays or marketing activities, to obtain
an estimate for the rate which is needed to apply the Erlang formula. Still, this differentiation
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does not explain all variability in call volume. Adding more explanatory variables not only
makes the analysis more complicated and time-consuming, it can also be useless: bad weather
conditions can only be foreseen a few days in advance, while agent rosters often have to be
published one or more weeks in advance. Hence, there is a need to model this extra variability
in the call volume differently.

We propose to model the rate itself as a random variable. This could be done after or
without differentiating between certain explanatory variables. In section 3 we will discuss the
Poisson mixture model that corresponds to this situation and explain how the Erlang formula
can be used if an estimate for the distribution of the rate (the mixing distribution) is available
from the data. The problem of estimating the mixing distribution is addressed in section 4.
A parametric as well as a nonparametric procedure is suggested.

Using our method, one gets a prediction interval for the arrival rate of calls, based on the
data. Combined with the Erlang formula, this result can be used in two ways, that we will
discuss both.

Assume that there is a certain service level, formulated as a function of the waiting time,
that we have to adher to. There is a second performance measure, personnel costs, that has to
be minimized. The first approach can be summarized as follows. We assume that we cannot
adapt the workforce to changing conditions. This means that we have to take a worst-case
scenario. By looking at a prediction interval for the arrival rate, we can give a stochastic
guarantee for the service level: in α% of the cases the service level is at least such that p%
of the calls waits less than s seconds. This is based on applying the Erlang formula to the
upper bound of the prediction interval. The lower bound can be used to show how far costs
can be off, up to which level we can waste money for not needed personnel.

The second approach uses also the prediction interval, but in another way. Here we assume
that the workforce can be adapted in a flexible way, for example by having flexible contracts
that allow the call center to call for extra personnel if needed. The question is how many
flexible and non-flexible agents should be scheduled. This is where the prediction interval
comes in: the lower bound fed into the Erlang formula gives the number of fixed agents, the
difference in needed agents between upper and lower bounds gives the number of agents with
a flexible contract that might be needed.

Section 5 is devoted to a case study. The ideas and techniques of this paper are applied
to data that were obtained at a call center of a Dutch insurance company.

We finish this introduction with a few references to the considerable call center literature.
We would like to mention the modeling studies Brandt et al. [3] and Mandelbaum et al. [10]
and the references in these papers. For a more managerial view on call centers we recommend
Cleveland & Mayben [4].

2 Erlang formula for simple model

We consider a call center at a fixed period of time during a week day. The average call duration
is 1/µ. It is our objective to determine the optimal number of agents to be scheduled. For
the moment, we assume that there are c agents. As is customary in workforce management
tools, we model the call center as a standard M/M/c/∞ system. Then, for a fixed arrival
rate λ, the waiting time can be approximated using the well known Erlang formula.

The Erlang formula requires that service times are exponential and that a stationary
situation has been reached; both requirements are unrealistic in practice. However, it can be

2



seen that the Erlang formula gives an excellent approximation in most realistic cases. Let W
denote the waiting time of an arbitrary customer. Define the load to the system a = λ/µ. If
a ≥ c, then the load exceeds the service capacity, and the number of calls in the system grows
to infinity. In this case W = ∞. We assume that a < c, the stability condition. Standard
queueing theory (see, e.g., Gross and Harris [5], Section 2.3, Eq. (2.49)) tells us that

IP (W > t) =

{
C(c, a)e−(cµ−λ)t if c > a
1 if c ≤ a

Here

C(c, a) =
ac

(c− 1)! (c− a)

c−1∑
j=0

aj

j!
+

ac

(c− 1)! (c− a)

−1

.

is known as the probability of delay (indeed, IP (W > 0) = C(c, a)) and a = λ/µ as the
offered load. The productivity is a number in [0, 1], defined as the mean number of busy
agents divided by the number of agents, which is equal to ρ = λ/(cµ).

It is current practice to use point estimates for µ and λ to obtain an estimate for the
waiting time distribution. In this simple constant-rate model, more can be said based on stan-
dard statistical theory. Suppose that we have K (comparable) periods in which respectively
x1, x2, . . . , xK calls came in. Moreover, suppose that these calls had durations y1, y2, . . . , yn.
Here n =

∑K
i=1 xi. Then the usual estimates for µ and λ are

µ̂ = n
( n∑

i=1

yi

)−1
and λ̂ = K−1

K∑
i=1

xi (1)

However, since one can usually also use information on durations of calls from other periods
to estimate µ, the estimate of µ is usually more accurate than that of λ. Moreover, an
approximate 100(1− β)% confidence interval for λ is given byλ̂− u1−β/2

√
λ̂

K
, λ̂ + u1−β/2

√
λ̂

K

 (2)

where uβ denotes the β-quantile of the standard normal distribution, i.e., Φ(uβ) = β where
Φ is the cumulative probability distribution of a standard normal random variable.

The quantities of interest ρ and IP (W > t) are both increasing in λ. (For ρ this is trivial,
for IP (W > t) this follows from a simple coupling argument, see, e.g., Ross [11], Section 8.2.)
Therefore, the Erlang formula applied to the confidence limits for λ furnishes a confidence
interval for IP (W > t). Similarly a confidence interval for ρ can be derived. In these intervals
the point estimate for µ can be used (because it is much more accurate than that of λ), but it
is also possible to use the confidence limits for that. Then monotonicity of ρ and IP (W > t)
in µ is used.

3 The Poisson mixture model

The assumption of constant rate is unrealistic in many practical examples. For data to be
generated independently by a single Poisson distribution, the variance and the mean should
be approximately the same. Call volume data sometimes show a variance that substantially
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dominates the mean. A method of dealing with this overdispersion of count data, is to use a
Poisson mixture model for the data generating mechanism. Basically, each data point is being
interpreted as generated in two steps. First, the rate λ of the Poisson variable is drawn from
a distribution with distribution function H on (0,∞), and then a Poisson variable X with
that rate is generated. This means that the distribution of X is a so-called Poisson mixture
with mixing distribution H:

PH(X = x) =
∫ ∞
0

λx

x!
e−λ dH(λ) (3)

In the biomedical literature, Poisson mixtures are often used to account for overdispersion
in Poisson count data. If the mixing distribution has finite support, it has the intuitive
appeal that the population one draws from is heterogeneous, but consists of a finite number
of homogeneous Poisson subpopulations. See e.g. Lindsay [8] and Böhning [2] for medical
applications of Poisson mixtures.

We are given realized values x1, x2, . . . , xK of the independent and identically distributed
random variables X1, X2, . . . , XK , that are distributed as X. It is our objective to schedule
agents (both for the models with and without flexible agents) in a statistically correct way,
using the Erlang formula.

We want to apply the Erlang formula to a range of plausible λ’s to assess the variability
in the number of agents taking into account that λ is not fixed and known. To do this we
propose to give λ and λ such that for the next draw Λ from H the following holds

PH(Λ ∈ [λ, λ]) ≥ 1− α (4)

Now, if H were known, we could take λ = H−1(α/2) and λ = H−1(1 − α/2). This means
that all uncertainty is contained in the randomness of Λ. As a special case, if we would know
H to be a degenerate distribution on a known point, we could take this λ = λ = λ.

Of course, H is not known in practice, and has to be estimated from the data. If we would
know H to be a degenerate distribution function assigning all its mass to one (unknown) point
λ, we would estimate λ by λ̂ as in (1). As argued in section 2, one can use the confidence set
(2) of λ to get a confidence result in the spirit of (4): with confidence at least 1−α, the true
λ will be in the set [λ, λ]. If nothing is known about H, the first step is again to estimate
the quantiles we are after. A next step would be to construct confidence intervals for these
quantiles. Statistically, we therefore want to give point- or interval estimates of quantiles of
the mixture distribution in a Poisson mixture. We restrict ourselves to point estimation in
section 4.

4 Estimating the mixing distribution

How can we estimate (quantiles of) H? There are many ways, depending on the assump-
tions imposed. One approach is to estimate the distribution function H parametrically, and
estimate the distribution by estimating its parameters. A well known drawback of this para-
metric procedure is that the choice of parametric family is rather arbitrary and usually only
motivated by mathematical convenience. An advantage is that computations and statistical
properties of the estimators can be dealt with relatively easily. Another way is to estimate the
distribution function H nonparametrically (e.g., via maximum likelihood). We will discuss
both approaches here.
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Consider the demixing problem. If we take a known parametric family of distributions
where H should belong to, we usually get a (less known) parametric family for the (discrete)
sampling distribution. For specific classes of distributions for H, however, known discrete dis-
tributions emerge for X. For example, assume H to belong to the class of Gamma distribution
functions, with densities

hs,r(λ) =
sr

Γ(r)
λr−1e−sλ1[0,∞)(λ). (5)

Then (3) yields

Ps,r(X = x) =
∫ ∞
0

λx

x!
e−λhs,r(λ) dλ =

sr

x!Γ(r)

∫ ∞
0

λx+r−1e−λ(1+s) dλ

=
Γ(x + r)
x!Γ(r)

(
s

1 + s

)r (
1− s

1 + s

)x

=

(
r + x− 1

x

)(
s

1 + s

)r (
1− s

1 + s

)x

This shows that the sampling distribution is the negative binomial distribution with success
probability s/(1 + s) and (for r ∈ {1, 2, . . .}) number of successes r. Estimating the mixing
density thus boils down to estimating the parameters from a negative binomial distribution
based on direct observations from this distribution, and plugging these estimates into expres-
sion (5). In section 6 we give details on this estimation problem. Having estimates r̂ and ŝ
based on the sample, we can use the quantiles H−1

r̂,ŝ (α/2) and H−1
r̂,ŝ (1− α/2).

One of the drawbacks of using a Gamma mixing distribution is that Gamma distributions
are unimodal. If, e.g., one uses data for different time periods in the model (heterogeneous
population), a very natural (though not necessary) consequence is that the mixing distribution
is multimodal. The Gamma family is too rigid to allow this. One way out of this problem
is to estimate the mixing distribution nonparametrically. A natural estimator for the mixing
distribution is the (nonparametric) maximum likelihood estimator. Given data x1, x2, . . . , xK ,
we can write the loglikelihood function as

φ(H) =
K∑

i=1

log PH(Xi = xi) =
K∑

i=1

log
∫ ∞
0

λxi

xi!
e−λ dH(λ)

=
k∑

j=0

mj log
∫ ∞
0

λj

j!
e−λ dH(λ) =

k∑
j=0

mj log
∫ ∞
0

λje−λ dH(λ) + C

Here k = maxi xi and mj is the number of times j occurs in the sample x1, . . . , xK . The
constant C in this expression does not depend on the function H.

Some properties of the maximum likelihood estimator are known. In Lindsay [7] it is
shown that it is a discrete distribution function with no more than K jumps. Moreover,
as the sample size K tends to infinity, the estimator converges to the underlying mixing
distribution uniformly in probability. See Kiefer and Wolfowitz [6].

There are many algorithms that can be used to compute the MLE. One specific program,
developed by Böhning and Schlattmann and available as shareware on the web, is C.A.MAN
(Computer Assisted Mixture ANalysis).

5 Case study

Now consider the data that were obtained from a call centre of a Dutch insurance company.
In the period January 3 till February 9, 2000, the number of incoming calls were registered
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each half hour. We consider the calls that arrived between nine o’clock and half past nine
during the week days in this period (excluding Saturdays). This means we have a dataset
with K = 28 and n = 3278 (part of the data is given in the appendix). Common practice
would be to assume a Poisson distribution and estimate λ by λ̂ = 117.1. We could include
information on the accuracy of this estimate and construct confidence interval (2). In the
present situation this is given by [113.7, 120.4].

First we will test for a (unicomponent) Poisson distribution. One way of doing so is
using Neyman-Scott test for this situation. Following Lindsay [8], chapter 4, this procedure
corresponds to using the test statistic

TK =
√

K/2

(
S2

K

XK
− 1

)
.

For K large, this statistic is approximately standard normally distributed under the null
hypothesis of a unicomponent Poisson distribution. This can be seen using the Central Limit
Theorem, the delta method and Slutsky’s lemma. See Van der Vaart [12], example 3.4 for
the reasoning in a related example. For our dataset, we have tK = 15.4, with corresponding
p-value of zero. Hence, the unicomponent Poisson distribution is clearly rejected. Since
tK >> 2, we say the data is overdispersed. In our Poisson situation this corresponds to the
fact that the sample variance is too big compared to the sample mean.

Having rejected the unicomponent Poisson distribution, one could consider to use a graph-
ical method discussed in Lindsay and Roeder [9], to asses the plausibility of a Poisson mixture.
However, with our sample sizes in comparison with the range of the counts, these methods
break down because of the many zeroes in the observed frequencies.

Assuming the mixing distribution to be a Gamma distribution, we obtained as estimates
for the parameters s and r respectively ŝ = 3.6 and r̂ = 32.3. The estimated 5% and 95%
quantiles of the mixing distribution are therefore given by 85.5 and 152.9. Using a bootstrap
test based on the Kolmogorov Smirnov statistic (see appendix) to assess the goodness of fit of
the Gamma mixing distribution, we obtained a p-value of approximately 0.15. Hence, based
on the data of 9.00-9.30, the Gamma Poisson mixture model cannot be rejected.

Figure 1 shows the empirical distribution function of the counts with the distribution
functions based on the unicomponent Poisson model and the Gamma Poisson-mixture.

Table 1 gives for the different methods the bounds for λ. In the unicomponent case, this
is the 90% confidence set, whereas in the other situations these are the estimated quantiles of
the mixing distribution. The period 9.00-9.30 corresponds to the situation described above.
The other periods were analyzed in exactly the same way.

Table 1 shows that the Gamma mixture of Poisson distributions furnishes an acceptable
model for most time periods. The p-values are usually above 0.05. Exception is the period
09.30− 10.00. There the empirical distribution of the counts differs more from the maximum
likelihood fit based on the Gamma mixture of Poisson distributions than would be plausible
if the true distribution would be a Gamma mixture of Poisson distributions.

Using the available data, we estimate the mean length of a call by µ̂ = 419 seconds. Table
2 shows the consequences for the lower and upper bound of people to be scheduled when
based on the different methods discussed in this paper by applying the Erlang formula to the
bounds on the Poisson rates.

The results can be interpreted as follows. Let us consider the 9.00-9.30 interval. It
is common practice in call centers to schedule based on a simple point estimate. Then
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Figure 1: Empirical distribution function of the data with unicomponent fit (dotted line) and
Gamma mixture fit

there should be 34 agents available for call handling from 9.00 to 9.30. The (rejected!)
unicomponent model gives confidence bounds 33 and 34. Call centers using this method
experience highly fluctuating service levels. The reason lies in the fact that the unicomponent
model is rejected; instead a model such as the Poisson mixture could be used. This model
shows that within reasonable bounds, the arrival rate can vary between 85.4 and 152.9, with
corresponding occupation levels 25 and 43. Thus, using the monotonicity of the Erlang
formula discussed earlier, if we were to schedule 43 agents, then with probability 0.95 we
satisfy the service level constraint that 80% of the customers has a waiting time shorter than
20 seconds. On the other hand, if we schedule only 25 agents, then the service level will only
be attained with probability 0.05, corresponding to the fact that the Λ drawn from H will be
sufficiently small.

A call center manager should manage his or her call center in such a way that it is possible
to vary, on a relatively short term basis, between 25 and 43 agents. A number of ways to do
this are:
- Let scheduled agents do other work such as outgoing calls or handling incoming emails;
- Have supervisors or other employees on standby to join the agents;
- Have agents with flexible contracts on standby.
For the 9.00 to 9.30 interval for example, we might have 30 scheduled agents in the call center
and 5 additional agents that are supposed to handle emails, faxes, and letters. There are 2
supervisors, and at the beginning of the day there are 6 agents that can be called to join
the call center. (Based on expectations and call volume between 8.00 and 8.30 these agents
are called; details on the correlation between call volume in different intervals fall outside the
scope of this paper.) We assume that there are enough emails and other tasks to work on
to employ 5 additional agents. It is easily seen that the number of agents between 9.00 and
9.30, in this realistic situation, can indeed vary between 25 and 43.
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Period λ̂ Confidence bounds r̂ ŝ Gamma quantiles p-val
08.00-08.30 12.1 [11.0, 13.2] 16.5 0.7 [7.6, 17.3] 0.07
08.30-09.00 41.8 [39.7, 43.8] 24.3 1.7 [28.9, 56.6] 0.71
09.00-09.30 117.1 [113.7, 120.4] 32.3 3.6 [85.4, 152.9] 0.15
09.30-10.00 155.5 [151.7, 159.4] 21.1 7.4 [104.3, 215.1] 0.00
10.00-10.30 158.4 [154.5, 162.3] 23.6 6.7 [108.9, 215.5] 0.51
10.30-11.00 160.2 [156.2, 164.1] 26.7 6.0 [112.8, 214.3] 0.23
11.00-11.30 157.4 [153.5, 161.3] 25.2 6.2 [109.6, 212.2] 0.12
11.30-12.00 156.3 [152.4, 160.1] 34.7 4.5 [115.3, 202.3] 0.24
12.00-12.30 131.1 [127.6, 134.7] 30.0 4.4 [94.3, 172.8] 0.23

Table 1: Estimate of λ with associated confidence set in unicomponent model. The p-values
for the unicomponent model were zero invariably. Also estimates of parameters of Gamma
mixing distribution and resulting quantiles are given. The final column gives the p-values
of the goodness of fit test for the Gamma mixing distribution based on 500 simulations (see
section 6.2).

6 Appendix

6.1 The negative binomial distribution

In this section we show how the maximum likelihood estimators for the parameters in the
negative binomial model can be estimated. Consider the probability density given by

Pp,r(X = x) =
Γ(x + r)
x!Γ(r)

pr(1− p)x

for r > 0 and 0 < p < 1. Our aim is to estimate the parameter vector (p, r) based on a sample
x1, . . . , xK of this negative binomial distribution. The loglikelihood function is given by

φ(p, r) =
1
K

K∑
i=1

log(Pp,r(X = xi)) =
1
K

K∑
i=1

(
log

Γ(xi + r)
xi!Γ(r)

+ r log p + xi log(1− p)
)

For fixed values of r, this loglikelihood can easily be maximized over p: its maximum is
attained in p̂r = r/(r + x̄K). Hence, the profile loglikelihood (apart from constants not
depending on r in the transition .=) becomes

φ̃(r) = φ(p̂r, r)
.=

1
K

K∑
i=1

log
Γ(xi + r)

Γ(r)
+ r log r − (r + x̄K) log(r + x̄K)

=
1
K

K∑
i=1

xi∑
j=1

log(r + j − 1) + r log r − (r + x̄K) log(r + x̄K)

This function can be maximized using for example Newton’s method. After having found r̂,
we get p̂ = r̂/(r̂ + x̄K) and in terms of the Gamma parameters, ŝ = p̂/(1− p̂).

6.2 Bootstrap test on Gamma mixture

To test for the goodness of fit of the Gamma-Poisson mixture model, the following procedure
can be followed. The null hypothesis is H0 : H ≡ Hs,r for some s, r > 0, where Hs,r
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Period N(λ̂) Unicomponent [N,N ] Gamma [N,N ]
08.00-08.30 5 [5, 6] [4, 7]
08.30-09.00 14 [13, 14] [10, 18]
09.00-09.30 34 [33, 34] [25, 43]
09.30-10.00 43 [42, 44] [30, 58]
10.00-10.30 44 [43, 45] [30, 59]
10.30-11.00 45 [44, 46] [33, 58]
11.00-11.30 44 [43, 45] [32, 58]
11.30-12.00 44 [43, 45] [33, 55]
12.00-12.30 37 [36, 38] [28, 48]

Table 2: Numbers of agents associated to the numbers in table 1, obtained by the Erlang
formula with µ = 419, for 80% in 20s. service level. E.g. N in the unicomponent case is
obtained by applying the Erlang formula to the lower confidence limit for λ given in table 1
and N in the Gamma case is obtained by applying the Erlang formula to the estimated lower
quantile of the mixing distribution. The values N are obtained similarly.

denotes the distribution function with density function (5). As test statistic, one can take
the supremum distance between the empirical distribution function F̂ of the counts and the
maximum likelihood fit Fr̂,ŝ of the negative binomial distribution:

T = sup
x>0

|F̂ (x)− Fr̂,ŝ|.

Big values of this test statistic contradict the validity of the null hypothesis. Since the
test statistic is not distribution free over the null hypothesis, we suggest to approximate its
distribution using the bootstrap and Monte Carlo simulation.

Given our data x1, . . . , xK , we estimate r and s via maximum likelihood. The bootstrap
approximation is that we approximate the distribution of T under the null hypothesis by
the distribution of T based on a sample from the (negative binomial) distribution Fr̂,ŝ. The
Monte Carlo approximation to this distribution is obtained by estimating this distribution by
the empirical distribution function of a large sample (of size B) from this distribution.

To draw one observation from this distribution, the following recipe can be used. First
draw a sample of size K from Fr̂,ŝ, and denote this sample by x∗1, x

∗
2, . . . , x

∗
K . Then com-

pute r̂∗ and ŝ∗ based on this generated sample and compute the supremum distance between
the empirical distribution function of x∗1, x

∗
2, . . . , x

∗
K and the distribution function Fr̂∗,ŝ∗ . By

repeating this procedure B times, one gets realizations t∗1, t
∗
2, . . . , t

∗
B from the bootstrap ap-

proximation to the null distribution of T . Denoting by t the realization of T based on the
original sample, the bootstrap approximation to the p-value can then be computed as

p-value ≈ #{1 ≤ i ≤ B : t∗i ≥ t}
B

where #V denotes the number of elements in a set V . Figure 2 shows the empirical distri-
bution function of the 500 T ∗-values together with the observed value t = 0.145 of T for the
period 9.00-9.30.
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Figure 2: Empirical distribution function of the bootstrap sample. The approximate p-value
is 0.154.

6.3 The data

Table 3 gives the dataset used in the case study. Figure 3 gives the boxplot of the columns
of table 3.
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Figure 3: Each boxplot corresponds to the half-hour period starting at the time below it.
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8.00 8.30 9.00 9.30 10.00 10.30 11.00 11.30 12.00
18 44 161 218 248 276 262 251 180
9 27 119 173 183 177 185 209 180

14 35 121 129 168 148 152 167 164
8 42 100 176 158 154 154 159 134

12 31 75 117 140 116 161 152 131
21 58 146 200 212 195 213 184 166
10 35 110 138 159 158 151 170 130
2 37 96 123 116 125 117 151 122
4 37 108 119 102 136 127 120 97
9 41 106 137 128 139 152 124 101

16 51 167 235 197 205 188 184 134
19 32 112 140 166 135 128 140 104
7 34 101 130 127 155 141 131 130

11 38 99 129 133 148 117 137 98
10 27 106 133 115 132 121 127 93
17 71 174 209 192 204 221 185 168
12 43 124 137 174 167 147 152 115
10 38 103 126 136 132 163 147 117
11 28 98 146 126 127 117 121 93
10 28 100 134 121 139 137 133 108
15 58 152 243 218 206 204 196 174
9 42 122 144 161 157 152 142 144

11 57 91 124 154 144 141 139 127
17 50 102 130 129 113 130 143 127
13 43 107 125 132 146 120 132 121
19 58 149 231 213 214 199 197 163
14 46 116 145 174 165 159 157 141
10 38 113 164 153 172 148 125 109

Table 3: Dataset containing numbers of incoming calls on 28 weekdays during different time
periods on the day.
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