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Planetary warming may be exacerbated if it accelerates loss of soil carbon to the 19 

atmosphere. This carbon cycle-climate feedback is included in climate projections. Yet 20 

despite ancillary data supporting a positive feedback, there is limited evidence for soil 21 

carbon loss under warming. The low confidence engendered in feedback projections is 22 

reduced further by the common representation in models of an outdated knowledge of soil 23 

carbon turnover. ‘Model-knowledge integration’ – representing in models an advanced 24 
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understanding of soil carbon stabilisation – is the first step to build confidence. This will 25 

inform experiments that further increase confidence by resolving competing mechanisms 26 

that most influence projected soil carbon stocks. Improving feedback projections is an 27 

imperative for establishing greenhouse gas emission targets that limit climate change. 28 

 29 

Hundreds of studies have shown effects of warming on soil carbon (C) dynamics1,2. Much of this 30 

empirical research has been motivated by the possibility that climate warming will stimulate 31 

biologically mediated decomposition of soil C to CO2
3-7. Enhanced rates of soil C decomposition 32 

may reduce the capacity of the land to act as a CO2 sink, so that a greater proportion of 33 

anthropogenic CO2 emissions remain in the atmosphere8-10. The magnitude of this so-called 34 

‘carbon-climate feedback’ is therefore critical for estimating the allowable greenhouse gas 35 

emissions that are compatible with climate targets10. The soil is the largest store of C (~1,500-36 

2,400 Pg) in the terrestrial biosphere, containing more than double the C of the atmosphere11-13. 37 

Hence, loss of even a small proportion of this store may result in higher atmospheric CO2 38 

concentrations and consequently additional planetary warming8,14. 39 

Despite the wealth of research into warming effects on soil C dynamics, there is no 40 

consensus on the magnitude of warming-induced reductions in soil C stocks1,14,15. The low 41 

confidence in the projected range of soil C losses arises in part from an empirical focus on the 42 

responses of soil C decomposition rates to warming, rather than the direct measurement of 43 

changes in total soil C stocks. Confidence in projected losses is further eroded because emerging 44 

ideas2,16 about how soil C is formed and stabilised are not commonly represented in the soil 45 

biogeochemical models used for climate change projections17-19. Instead, the assumptions in 46 

these models about the mechanisms underlying soil C responses to warming are largely 47 
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similar11,14,20,21 and often conflict with emerging understanding16,22,23. These assumptions 48 

underlie Earth System Model (ESM) projections of soil C losses through climate warming9,24. 49 

The ESMs are the most complex of the climate models, and incorporate the global C 50 

cycle to simulate how the atmosphere and biosphere interact to shape climate trajectories11. The 51 

ESM projections of warming-induced soil C losses range from minimal, to a third of the stock 52 

lost by 21008,9,25. The ESM characteristics generating this wide range in the projected magnitude 53 

of the feedback are well documented, involving uncertainties in the parameter values used to 54 

control the rate at which soil C decomposes and the sensitivity of this rate to warming26,27. 55 

Reducing these parameter uncertainties will do little to build confidence in the magnitude of the 56 

modelled feedback. 57 

In this paper, we distinguish the meaning of ‘uncertainty’ from ‘confidence’. Many forms 58 

of uncertainty exist when modelling climate change and associated biosphere feedbacks28, but 59 

they do not equally contribute to the confidence one has that projected changes will occur29. We 60 

focus on the major uncertainties underpinning low confidence in projections of soil C stock 61 

responses to warming. Three primary areas of empirical uncertainty exist: the paucity of direct 62 

observations of warming effects on soil C stocks, the potential for organism responses to 63 

warming to alter short-term biogeochemical responses, and dramatically changing ideas about 64 

how soil C formation and stabilisation are regulated. The major modelling uncertainty is 65 

associated with representing common and out-dated ideas about soil C turnover in the soil sub-66 

models of the ESMs. We demonstrate the importance of instead representing different ideas in 67 

ESMs – i.e. ‘structural uncertainties’ – that capture emerging concepts of soil C stabilisation. We 68 

conclude by proposing ways forward for empiricists and modellers to improve confidence in 69 

projected soil C-climate feedbacks. 70 
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 71 

Empirical uncertainties 72 

Evidence for carbon loss 73 

Empirical research into soil C stock responses to warming has primarily focused on 74 

decomposition (Fig. 1). There is compelling evidence from observational studies across climate 75 

gradients, and both laboratory and field warming experiments, that decomposition rates respond 76 

positively to warming (but see15), at least in the short-term (<1 to ~10 years)1,2,30. These 77 

increases in decomposition of soil C to CO2 occur with plants present or absent, suggesting that 78 

warming accelerates C loss from soils primarily by stimulating the activities of microbes31. This 79 

microbial mechanism underlies the C-cycle pathway in the ESMs through which soil C is 80 

redistributed to the atmosphere as climate warms. 81 

The soil C stock is not, however, just determined by microbial decomposition rates. 82 

Changes in the soil C stock are the net product of outputs (decomposition) and also inputs (soil C 83 

formation, Fig. 1). More rapid decomposition is then not synonymous with reductions in total 84 

soil C stocks15 if coupled with similar increases in soil C formation. The idea that soil C stocks 85 

are the net outcome of inputs and outputs seems obvious and is captured by the soil sub-models 86 

in the ESMs27. Yet expectations for reductions in soil C under warming are still primarily driven 87 

by empirical data of accelerated decomposition rates1, despite little evidence that decomposition 88 

responses can be used to infer responses in soil C stocks1,32. In a synthesis of field data, for 89 

example, the mean effect size of warming on decomposition rates was statistically significant 90 

and strongly positive2. However, the same meta-analysis showed that the mean effect of 91 

warming on soil C stocks was indistinguishable from zero. Collectively then the plethora of 92 
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studies reporting positive decomposition responses to warming provide weak, indirect support 93 

for the existence of a positive land C-climate feedback1,5,6. 94 

The lack of direct evidence for reductions in soil C stocks may, in part, reflect a signal-to-95 

noise issue. Soil C varies markedly at nanometre to metre scales in amount, chemistry, and the 96 

physical setting where it is found33,34. These attributes can protect soil C from microbial 97 

decomposition, meaning that a large proportion of the C in a given soil will respond slowly, if at 98 

all, to warming1. Looking for a small change in a large, spatially variable stock makes it difficult 99 

to quantify effects of warming on total soil C (Fig. 1). For example, the statistical power to detect 100 

a change in total soil C stocks at a site is typically far below that recommended, demanding 101 

higher replication than generally used35. The use of techniques, such as isotopes and 102 

fractionations, to track and quantify C turnover in soil pools that are differently vulnerable, does 103 

offer a solution for detecting a signal from among the noise36-39. However, the issues with using 104 

such techniques to infer change in stock sizes echoes those for decomposition; environmental 105 

change can alter the sizes of individual C pools or fluxes without altering the total stock40. 106 

The difficulties involved in detecting changes in the total size of soil C stocks likely 107 

encouraged the use of indirect measurements, such as decomposition rates, to understand 108 

warming effects. However, demonstrating definitively that soil C stocks will be reduced under 109 

warming requires a large number of sites, long time scales (>20 years), and ecosystem (versus 110 

soil only) experimental warming. Such long-term network data will not be available in the near 111 

term41 but even collation of soil C stocks in existing field studies would be a step forward. We 112 

know of only five, published field-warming studies that measured soil C directly under 113 

experimental warming plots for timescales >10 years, and they did not consistently show 114 

reductions in soil C2,42. Furthermore, of the 34 studies that have compared soil C dynamics in 115 
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control versus experimental warming plots2,42 – over both the short and longer-term – only six 116 

measured stocks. The remainder measured soil C concentrations but these do not account for 117 

potential changes in soil bulk density, which could markedly affect stock sizes43,44. A key 118 

challenge then is determining how best to improve confidence in projected soil C-climate 119 

feedbacks in lieu of the fact that there is limited direct data on the effects of ecosystem warming 120 

on total soil C stocks.  121 

 122 

Organisms modify direct warming effects 123 

Knowing how to best represent organismal responses to climate change in biogeochemical 124 

models is a significant challenge45. Initial effects of chronic disturbance on an ecosystem are 125 

often transient because the organisms, whose activities mediate biogeochemical processes such 126 

as decomposition, first respond physiologically and second through changes in abundance (Fig. 127 

2)46. Two decades of experimental summer warming of arctic tundra, for example, gradually 128 

increased the dominance of woody plants, altering plant community architecture. The altered 129 

plant community mitigated direct summer warming of the soils but caused indirect warming in 130 

the winter. These longer-term consequences stimulated plant C inputs at depth, increasing both 131 

the activity of the soil microbes and soil C storage, despite the fact that initial warming was 132 

considered to promote soil C loss42. 133 

Soil microbial communities and controls on their activities also shift as temperatures 134 

change, altering their collective responses to warming in the shorter- versus longer-term4,5,47-50. 135 

Substantive debate exists as to whether these shifts will influence soil C decomposition 136 

rates5,46,47,51. Adding to this uncertainty, new efforts to incorporate soil microbial processes in 137 
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biogeochemical models reveal that the manner in which they are represented means that 138 

simulated acclimation to warming can alternatively exacerbate or mitigate soil C losses4,52,53. 139 

Some organismal responses to warming are incorporated in ESM formulations. For 140 

example, positive responses of plant production to warming are expected in cold, high-latitude 141 

systems because higher temperatures extend the growing season42. Most ESMs then project an 142 

increase in land-C stocks at high latitudes because increased plant-C inputs to soils more than 143 

offset increases in soil C decomposition rates11,54. Both model and empirical findings therefore 144 

highlight that warming responses of organisms influencing either soil C inputs or outputs will 145 

likely alter direct effects of warming on soil C stocks. The reality, however, is that we do not 146 

know whether the collective effects of these organismal responses under warming will amplify, 147 

dampen or little influence direct warming-induced changes in the global stock of soil C. 148 

 149 

Changing ideas on soil carbon stabilisation 150 

Low temperature is considered to be one of the dominant forces protecting soil C from 151 

decomposition55. In permafrost soils (those that are ≤0°C for >2 years) decomposition proceeds 152 

slowly because of limited availability of liquid water56,57. As liquid water becomes available, 153 

microbial decomposition of soil C initially proceeds slowly because cool temperatures directly 154 

limit activity58. Warming then releases temperature limitation on the catalytic activities of 155 

intracellular and extracellular microbial enzymes, accelerating decomposition of soil C to CO2. 156 

The land C-climate feedback in ESMs is primarily based on the assumption of this fundamental 157 

biochemical response59. But a paradigmatic shift in our understanding of how soil C is 158 

stabilised60 casts doubt on whether such cellular processes can be directly scaled to biosphere-159 

atmosphere interactions driving the C cycle. 160 
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Microorganisms have been considered the primary agents of soil C decomposition for 161 

over a century. They are now also recognised, somewhat paradoxically, as dominant agents of 162 

soil C formation (Fig. 3)16,23,61. As much as 80% of the soil C in mineral soils that is protected 163 

from decomposition through physico-chemical mechanisms, exists in the form of microbial 164 

necromass and products62, and the proportion may be higher at depth63. Soil microbes therefore 165 

convert large fractions of plant-C inputs to CO2 and a smaller fraction into stable soil C36. The 166 

process has been likened to a microbial funnel, whereby microorganisms consume unprotected C 167 

and a portion that passes through is converted into decomposition-resistant forms36,50,64. This 168 

dual role for microbes raises the possibility that warming could accelerate the decomposition and 169 

stabilisation of soil C, shifting stocks toward proportionally more protected forms of C which are 170 

less sensitive to warming (Fig. 3)65. 171 

The emerging paradigm of soil C formation emphasises microbial growth efficiencies 172 

and mineral-matrix interactions as dominant forces stabilising soil C16,23,66,67. Structural plant 173 

compounds such as lignin, previously considered resistant to microbial decomposition66,68, 174 

represent a poor quality substrate for microbial growth. Physiological inefficiencies involved in 175 

growing on poor substrates result in more plant C being respired to CO2 instead of being 176 

transformed to microbial biomass4. Under this paradigm, most stable C in mineral soils is 177 

produced via microbial uptake of primarily metabolic plant matter inputs, which microbes 178 

rapidly decompose and convert to biomass efficiently (Fig. 3)23,69. The dominant pathway for 179 

these inputs may be via plant roots and their associated mycorrhizal fungi70,71. If this paradigm is 180 

applicable across multiple ecosystems, it could help explain why increased inputs of structural 181 

plant C to soils, from aboveground litter sources, may not translate to higher soil C stocks40,72. 182 
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Once microbial products are formed, interactions with mineral soil surfaces, such as 183 

clays, are required to protect them from decomposition22,34. Hence, even in wet tropical 184 

rainforests, large stores of soil C can be found in aerobic, mineral soils where decomposition 185 

should otherwise be rapid12. The most vulnerable pools of soil C to warming are likely those in 186 

organic-rich soils, such as wetlands and in permafrost, where the lack of oxygen and liquid 187 

water, respectively, slow microbial decomposition. In such systems much of the soil C has not 188 

passed through the microbial funnel, but exists as relatively undecomposed plant material16. With 189 

warming, C in these soils will increasingly pass through the funnel, resulting in a major fraction 190 

being decomposed to CO2 and a small fraction becoming microbial products available for “re-191 

stabilisation”. Yet wetland and permafrost soils are poorly represented in ESM simulations of 192 

land C-climate feedbacks (but see73) and there is little data available to estimate the likely 193 

magnitude of their response to climate change11,58,74. Given that permafrost contains as much C 194 

as all non-permafrost soils combined13, such limitations must be addressed given the potential 195 

importance of their responses in dictating the magnitude of land C-climate feedbacks73. 196 

 197 

Uncertainties in modelling 198 

Model structure 199 

The soil sub-models in ESMs represent soil C responses to warming in a common manner. Soil 200 

C decomposition to CO2 follows a single first-order response curve, similar to half-life plots for 201 

radioactive decay, where the time taken for a constant fraction of soil C to decompose decreases 202 

with warming21,27,75,76. The mechanism then assumes that climate warming increases the short 203 

and long-term potential for microbes to decompose soil C to CO2
8-10, presupposing a positive C-204 

climate feedback14. 205 
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This representation of soil C turnover in ESMs has remained essentially unchanged for 206 

two decades20,21. Over the same time, advances in climate change projection have been made by 207 

representing different mechanisms thought to underlie responses of the physical climate system 208 

to anthropogenic emissions29,77,78. For the physical climate, the spread in an ensemble of model 209 

projections with the same scenario forcing is taken as a measure of model uncertainty28,29,74,78. A 210 

similar principle has been applied to C cycle projections in ESMs9,11,14,24 but the validity of doing 211 

so is questionable. Specifically, the use of multi-model ensembles underlies the Coupled Model 212 

Intercomparison Project (CMIP), which is a hallmark of the Intergovernmental Panel on Climate 213 

Change (IPCC) assessment reports78. A key objective of the CMIP is to quantify the influence of 214 

structural uncertainty, reflected in representing different mechanisms among models, on 215 

projected climate change28,29,77. Yet, because they represent common mechanisms for soil C 216 

turnover, the broad spread among ESMs in the magnitude of projected land C-climate 217 

feedbacks8-10,74 is not the consequence of structural uncertainty26,54. 218 

Differences among soil sub-model projections instead result largely from parameter 219 

uncertainty. Values for parameters such as the “decay constant” for soil C, contribute to a six-220 

fold difference in the simulated global stock of contemporary soil C27. Differences in the 221 

simulated stocks carry forward and translate to substantial among-model variation in the strength 222 

of C-climate feedback projections26,54,79. Efforts to refine parameter estimates may reduce 223 

among-model variation80 but will not improve confidence in projected soil C stock responses to 224 

warming26,81. These improvements will only come through representing the new ideas about the 225 

mechanisms regulating soil C turnover. 226 

Representing structural uncertainty in soil processes in the ESMs has the potential to 227 

drastically change projected terrestrial C cycle feedbacks. For example, beyond warming the 228 
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CO2 fertilization effect is a dominant biogeochemical feedback in ESMs9. Increasingly, model 229 

structures represent the fact that the rate of soil nitrogen (N) supply can strongly constrain plant 230 

growth responses to elevated atmospheric CO2
82. In general, representing coupled C-N 231 

biogeochemistry dampens the CO2 fertilization effect on plant productivity and reduces 232 

terrestrial C storage83,84. Given the complexity of representing global C and N cycles, inclusion 233 

of terrestrial N dynamics may increase C cycle uncertainty, but should build confidence in model 234 

projections. Similarly, recent efforts to represent structural uncertainty in soil C responses to 235 

warming in soil biogeochemical models19,85-87 suggest that divergent projections of the C-climate 236 

feedback will be observed if these efforts are integrated into CMIP exercises. We argue that such 237 

initiatives are necessary to represent the true uncertainty associated with projecting terrestrial 238 

biogeochemical responses to climate change. 239 

 240 

Advances in soil biogeochemical models 241 

Many of the ESMs simulate soil processes by using some of the most widely applied, soil 242 

biogeochemical models27. These ‘conventional’ soil models assume that decomposition of soil C 243 

to CO2 is a product of microbial activity, but that microbes do not regulate the rate of soil C 244 

turnover88. Instead, the control on turnover is exerted by factors such as the chemistry of 245 

different soil C compounds60. These conventional models therefore explicitly represent controls 246 

on microbial activity, but the microbes themselves are considered ‘implicit’ to the dynamics. 247 

Recent major advances in understanding soil C dynamics have come about in the broader context 248 

of soil biogeochemical models (as opposed to the narrow subset of these models used in the 249 

ESMs) by representing explicitly how microbial physiology, biomass and enzyme kinetics 250 

respond to warming27,48,65. 251 
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Marked reductions in the size of the soil C stock in response to 30 years of simulated 252 

warming were observed with a conventional model structure but not with a microbial-explicit 253 

structure, despite the assumption that all of the processes were temperature sensitive52. The 254 

difference in model structure was that, in the latter case, the microbial biomass controlled soil C 255 

decomposition rates via production of degradative enzymes. As microbial biomass and hence 256 

enzyme production declined over time, because warming was assumed to reduce microbial 257 

growth efficiencies59, decomposition slowed and soil C stocks were maintained. Whereas the 258 

conventional model projected that warming would reduce soil C stocks, because the first-order 259 

decay mechanism assumes soil C decomposition rates are independent of the size of the 260 

microbial biomass52. Whether the microbial-explicit models are a more accurate mechanistic 261 

representation of soil C dynamics is unknown. However, they have been shown to improve the 262 

ability of conventional soil C model structures to estimate observed spatial variation and stock 263 

sizes of global soil C, as well as their responses to environmental change19,85-87. 264 

Another ‘implicit’ assumption of most conventional soil models is that the rate of soil C 265 

formation (as opposed to decomposition) is regulated by microbial growth efficiencies, with 266 

higher efficiencies leading to higher formation rates89. Warming-induced reductions in growth 267 

efficiencies then exacerbate, rather than mitigate as estimated by microbial-explicit models, 268 

losses of soil C stocks4. Although microbial growth efficiencies are assumed to be invariant in 269 

most conventional models (an assumption that is under debate4,90), the example demonstrates 270 

that even slight structural differences in how soil C turnover is represented can translate to a 271 

broad spread in the projected magnitude of soil C losses. Until such structural uncertainties are 272 

represented in ESM soil sub-models, we cannot know whether the spread in the projected 273 

magnitude of the C-climate feedback is reflective of our contemporary conceptual understanding 274 
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of soil C turnover. As such there is low confidence in the current ESM projections of the C-275 

climate feedback and the resulting constraints on allowable greenhouse gas emissions14,74. 276 

 277 

Addressing uncertainties to build confidence 278 

We have neither those data nor the models required to reliably determine how soil C stocks will 279 

be affected by a warmer world. These realities suggest a need for modellers and empiricists to 280 

collaborate to increase confidence in the magnitude of projected C-climate feedbacks. Such 281 

collaborations will succeed through an open discussion – of the knowledge and data gaps in soil 282 

C research – between the more geophysical-based Earth system modelling community and the 283 

more ecological-based empirical community91. 284 

We propose four ways forward for modellers and empiricists to focus efforts on 285 

identifying and addressing critical and tangible assumptions that generate low confidence in 286 

projected soil C stock responses. The overarching idea is to induce an exchange cycle of model 287 

and empirical insights that rapidly advance mechanistic understanding of how soil C is formed, 288 

stabilised, and decomposed. The expectation is that these advances in mechanistic understanding 289 

will improve confidence in soil C stock responses to warming, at timescales more attractive than 290 

those required to assemble direct field observations of soil C stock responses to long-term, 291 

chronic ecosystem warming. Importantly, the development of physical climate models shows 292 

that higher confidence in feedback projections may be achieved through better representation of 293 

mechanisms, even when this does not reduce the spread among model projections29. We suggest 294 

that the aims for soil biogeochemistry should mirror these developments, with the primary focus 295 

on representing and improving our basic understanding of soil C cycling and a secondary focus 296 

on reducing the spread among models in the magnitude of projected feedbacks (Fig. 4). 297 
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 298 

Represent structural uncertainty 299 

The most important near-term goal in Earth System modelling efforts focused on the land C-300 

climate feedback, should be to represent theoretical uncertainty in soil C decomposition and 301 

formation processes through different underlying model structures. The major advances in 302 

representing such structural uncertainty in microbial-explicit soil biogeochemical 303 

models48,52,63,65,92 should facilitate rapid adoption of competing assumptions in soil sub-models 304 

embedded within ESMs. The fundamental approach should emulate standard practices in the 305 

atmospheric sciences to sample model structural uncertainty through multi-model ensembles28. 306 

The standardised protocols, however, should more narrowly compare different mechanistic 307 

representations of soil C decomposition and formation within a common modelling framework 308 

(e.g. different soil biogeochemical models within the same ESM). If these intracomparison 309 

efforts are computationally too expensive at the level of complexity of ESMs, it is feasible to 310 

compare structurally distinct soil biogeochemical models within the land models that are a 311 

component of ESMs19,93. Adopting these systematic intracomparisons will facilitate effective 312 

model evaluation and improvement at regional to global scales. 313 

 Empiricists have two distinct roles to play in these model intracomparison projects. The 314 

first is to work with modellers to develop structural representations that best reflect the 315 

competing conceptualisations of soil C turnover. We refer to this approach as ‘model-knowledge 316 

integration’ to distinguish it from the now ubiquitous model-data synthesis efforts, which have 317 

failed to redress the low confidence in soil C-climate feedbacks. Model-knowledge integration 318 

will likely involve synthesising hundreds of published mathematical and conceptual soil models 319 

into broad classifications94, and summarising the general processes (and ideally their associated 320 
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equations) that need to be represented in models17. This methodology shows awareness of the 321 

human and computational costs related to representing structural uncertainty in climate models, 322 

which demands that only the most plausible sets of mechanisms are compared. 323 

The second role for empiricists is to design and execute empirical studies that distinguish 324 

which of the rapidly proliferating mechanisms put forth to govern soil C formation and 325 

stabilisation16,22,23,60, are most consistent with field observations of soil C turnover. The rapid 326 

growth in development and application of fractionation and isotopic techniques that permit a 327 

“look inside” the soil to resolve such dynamics as root-microbial-mineral interactions34,37,38,40, 328 

highlight the potential for such approaches to refine the sets of mechanisms that must be 329 

represented in models. Empiricists can be guided in these efforts by the structural assumptions 330 

about soil C turnover to which simulated soil C stock responses are most responsive. An 331 

improved mechanistic understanding of soil C turnover can then go hand-in-hand with reductions 332 

in model structural uncertainty and, consequently, increasing confidence in the magnitude of the 333 

projected feedback (Fig. 4). 334 

 335 

Refine parameter estimates 336 

Once structural uncertainty is represented and reduced, the aim to lessen the spread in the 337 

projected magnitude of the C-climate feedback by refining parameter estimates26,79,81 will be of 338 

great value. The current ensemble of ESMs vary markedly in the assumed values of soil 339 

parameters, such as the sensitivity of decay constants to warming27. Similarly, variation in even 340 

the parameter value of a single physiological process in the microbial-explicit models, can mean 341 

the difference between large versus no losses of soil C stocks under warming52. Notably, soil C 342 

stocks are sensitive to a huge range of processes in these microbial models, including community 343 
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composition, enzyme activities, carbon use efficiency, microbial turnover, and mineral surface 344 

interactions19,48,65,95,96. Parameter values for these processes tend to be poorly constrained by 345 

observations39,56,80,90,94. Hence, modellers can provide critical guidance to empiricists by 346 

identifying processes where modelled soil C stocks are strongly sensitive to the assumed 347 

parameter value. Such guidance will allow empiricists to focus on identifying the plausible range 348 

of values observed in nature and how these values depend on environmental conditions57,97. 349 

 350 

Consider spatially-explicit processes 351 

A guiding principle in developing climate and Earth system models has been to represent major 352 

processes, within a model, in a mathematically uniform manner across space. This principle has 353 

been effective for representing physical atmospheric processes and also biological processes 354 

such as photosynthesis, where trade-offs in the balance between leaf respiratory demands and 355 

photosynthetic rates constrain the set of mechanisms and parameter values that can co-occur98. 356 

However, soil C turnover is regulated by interacting physical and biological processes, with the 357 

relative role of each process dependent on a complex suite of environmental conditions that vary 358 

in space65,73. For example, the recent focus on the role of microbial-mineral surface interactions 359 

in soil C stabilisation23, combined with a move away from ideas of inherent chemical 360 

recalcitrance of plant inputs16,66,68, may fail to represent soil C turnover in organic soils where 361 

mineral surfaces are not abundant22,99. Furthermore, there is evidence that mycorrhizal 362 

associations are key arbiters of soil C stocks37,100, that plants can bypass microorganisms to 363 

decompose soil C38, and that physico-chemical sorption/ desorption processes, and not biology, 364 

may regulate soil C turnover1. Clearly there are a growing number of different and potentially 365 

important controls on soil C stocks that remain poorly understood. As such, it is possible that no 366 
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single structural representation of soil biogeochemistry will be effective at simulating soil C 367 

turnover under warming across diverse landscapes.  368 

The practical and computational costs of using different structural representations in 369 

ESMs may be infeasible, but there needs to be an appreciation that even a single model structure 370 

may need to represent dramatic shifts in the mechanisms underlying soil dynamics. As such, the 371 

spatial and temporal scales at which models are parameterised and applied must be carefully 372 

considered94. For example, effective simulation of soil C turnover may require different 373 

mechanisms to operate as the location changes from one underlain by a mineral to an organic 374 

soil. These different mechanisms may even be required for the same location, where the turnover 375 

of C in organic horizons and underlying mineral horizons are controlled by different factors99. 376 

Initial investigations of such possibilities will be best facilitated by controlled experiments that 377 

separately resolve C turnover in soil C fractions and horizons, and then test whether these 378 

dynamics are better represented by models that use a common or spatially-dependent 379 

mechanistic structure to simulate the total soil C stock. 380 

 381 

Establish long-term warming experiments 382 

Achieving real-world confidence in model projections may ultimately demand direct 383 

observations of soil C stock responses to climate change26. Even once theoretical advances in 384 

understanding soil C turnover are widely represented and refined in ESMs, there will likely 385 

remain the expectation that projections should be compared to observations. Long-term field 386 

ecosystem warming studies are therefore required that, given the expectation that dominant 387 

controls on soil C turnover change with space16, are organised into networks that facilitate 388 

adoption of standard approaches for robust comparison among studies41. Experimental field 389 
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studies are not without limitations. Imposed step-changes in temperature may not elicit the same 390 

responses as the observed chronic rise in temperatures. In addition, the few existing long-term 391 

studies exemplify how even a detailed understanding of the processes governing the formation 392 

and decomposition of different soil C fractions, may not permit accurate inferences about how 393 

the soil C stock will respond in the longer term42. For example, organismal responses can lead to 394 

surprises that modify direct effects of warming, meaning that anticipated losses of soil C stocks 395 

may not necessarily occur30,42. Such long-term studies are arguably too few2 to benchmark model 396 

projections against with any real confidence. 397 

 To be of most value for determining allowable CO2 emissions to meet specified climate 398 

targets, field-warming experiments should be initiated now and/or existing warming experiments 399 

extended to facilitate observations of soil C stock responses. These studies must be well 400 

replicated, warm the aboveground as well as soils, and be of sufficiently long duration so that 401 

changes in soil C stocks can be reliably assessed despite the ‘noise’ created by the slow turnover 402 

of the total C stock and its pronounced fine-scale spatial variation in size (Fig. 1). Long durations 403 

will also permit organismal responses to manifest at multiple temporal scales (Fig. 2), increasing 404 

confidence that the observed responses might represent those of natural systems. Similarly, if 405 

such long-term studies use isotopic and fractionation approaches36-39 to resolve the turnover of 406 

soil C of differing sensitivities to warming, then inferences that shorter-term responses can be 407 

used to estimate total C stock responses can be validated. If long-term studies are broadly 408 

initiated, they may need to measure soil C stocks on a mass basis, and not simply C 409 

concentrations and/or depth-dependent stocks given their inherent limitations43,44. These studies 410 

will face the usual challenge of the limited duration of grants to fund research and so will 411 
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demand a longer-term view of the value they offer in terms of improving confidence in the 412 

effectiveness of greenhouse gas emission targets.  413 

 414 

Conclusions 415 

Major conceptual advances across the last 20 years in understanding soil C turnover are not yet 416 

reflected in the way in which soil biogeochemistry is represented in ESMs. Evaluating these 417 

advances in ESMs will identify how this new knowledge might alter expected responses of soil 418 

C stocks to climate change. In turn, insights from the models will expedite gains in basic 419 

understanding by identifying mechanisms that must be empirically researched before we can 420 

accurately simulate soil C turnover. These activities may initially increase the spread in the 421 

projected magnitude of soil C stock responses to warming, but should systematically improve 422 

confidence in the projections by factoring conceptual uncertainties into recommendations to 423 

manage human-induced changes in climate. 424 

 425 
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 717 

Figure 1  Soil C stocks are the net result of outputs and inputs of plant C but most warming 718 

research focuses only on outputs, making stock responses highly uncertain. Warming-719 

induced outputs (red arrows) in the schematic are represented as CO2 fluxes, reflecting the 720 

assumption in ESMs that the land C-climate feedback occurs through warming stimulating the 721 

activities of soil microorganisms that decompose soil C. Losses of soil C do occur through other 722 

pathways (lateral transport and soil erosion), but warming effects on these losses are not well 723 

characterised. Instead, the majority of warming studies focus on decomposition of soil C to CO2. 724 

Despite strong warming effects on decomposition, there are very few observed reductions in soil 725 

C stocks. This paucity of data reflects the fact that there has been far less research (depicted by 726 

thickness of flux arrow lines) into how warming affects soil C formation through plant inputs 727 

(green down arrows) versus its effects on decomposition. It also reflects the signal-to-noise 728 
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issues in detecting a change in soil C stocks, given marked local variation (horizontally as well 729 

as with depth) in soil C stocks and the fact only a proportion of this C is likely sensitive to 730 

warming-induced losses. 731 

 732 

Figure 2  Timescale of organismal responses to warming, with the potential that initial 733 

increases in microbial activity are exacerbated or mitigated through physiological, 734 

population and community level responses as the warming perturbation continues.  735 

Modelled land C-climate feedbacks rely on warming-mediated increases in the potential 736 

activities of microbial enzymes, which catalyse the decomposition of soil C, being maintained in 737 

the longer term. Yet, physiological acclimation and turnover in populations and communities – 738 

both aboveground and belowground (represented as plants and soil microbes, respectively) – 739 

may modify the assumed translation of this initial cell-level warming response directly to 740 

changes in soil C stocks. How the responses at intermediate levels of biological organisation 741 

modify this translation becomes increasingly uncertain with time, given the large and diverse 742 

array of interactions that can occur to re-structure communities.  743 

 744 

Figure 3  The dual role of soil microbes as the agents of both soil C decomposition and 745 

stabilisation. A new conceptualisation of how soil C is formed and stabilised emphasises that 746 

plant-C inputs on which microbes grow most efficiently result in larger protected stocks of soil 747 

C. Warming-induced increases in decomposition rates may then cause more unprotected (i.e. 748 

more warming sensitive) soil C to be converted into stable pools, ultimately mitigating the 749 

presumed land C-climate feedback because accelerated decomposition rates are balanced by 750 

elevated formation rates. The grey-hatched arrow depicts this theoretical shunt of soil C from 751 
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more to less temperature-sensitive pools under warming via the microbial funnel into microbial 752 

product-mineral complexes. 753 

 754 

Figure 4  Proposed activities to address low confidence in the projected magnitude of 755 

carbon-climate feedbacks. Shown is a timeline for major initiatives (see text) that empiricists 756 

and modellers can act on to address the low confidence and wide projected spread in soil C stock 757 

responses to warming. Real-world confidence (inverted triangle) in the projected magnitude of 758 

these responses increases when different assumptions (i.e. structural uncertainty) about the 759 

mechanisms governing soil C turnover are represented in models, which then guides empirical 760 

research to advance understanding of the mechanisms to which the models are most sensitive. 761 

The trajectory of change in the spread among models of the projected magnitude of the feedback 762 

is less assured and may increase when structural uncertainty is represented. To establish 763 

allowable emissions of greenhouse gases to meet specified climate targets, high confidence in 764 

widely divergent projections is superior to low confidence in a narrow range of projections, 765 

because policy can then be developed in light of the knowledge that the best available science is 766 

considered. 767 
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