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ABSTRACT
This paper presents experience with explicitly managing
variability within a software architecture. Software architects
normally plan for change and put mechanisms in the architecture
to support those changes. Understanding the situations where
change has been planned for and recording the options possible
within particular situations is usually not done explicitly. This
becomes important if the architecture is used for many product
versions over a long period or in a product line context where the
architecture is used to build a variety of different products. That
is, it is important to explicitly represent variation and indicate
within the architecture locations for which change has been
allowed.

We will describe how the management of variations in an
architecture can be made more explicit and how the use of
variation points connected to the choices a customer has when
ordering a product can help to navigate to the appropriate places
in the architecture.
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1. INTRODUCTION
Designing the architecture for a product or a family of

products means to create the software structures that enable the
system to achieve its quality goals. One very common goal is to
prepare the software for change. This is important to minimize
efforts required for maintenance and especially when an
architecture for a family of products is designed.

An architect preparing a software architecture for change,
will try to predict likely changes and will design components in
the architecture that encapsulate the change in a single
component. For the other components of the architecture rules
like strong cohesion and loose coupling are used to increase the
probability that unpredicted changes only affect a single
component. At the end, there will be a documentation of the
architecture, probably as a “boxes and lines” diagram, where the
implicit assumption is that the boxes are the points of variations.
In reality, an architecture also must support designs in which a
single variability is spread across multiple components. The
variability may also involve the relations among multiple
components. Usually, relations do not carry a notation for
variation and this adds additional, normally undocumented
dependencies. I.e., the dependencies between components and
their relations that need adaptation to support a specific type of
change.

The architectural documentation does not necessarily reflect
the thought and efforts the architect put into the design in order to
achieve support for variability. At least for the predicted changes,
the architect might have thought about possible alternatives and
might have had a concept for what to do if the change actually
occurs. As long as this architect is involved in the analysis of how
to support a required variation, the result will likely be of high
quality. Sometimes however, especially in a product family [2]
context, the adapters of the architecture are not the creators. To
enable the adapters to achieve high quality requires an explicit
documentation of planned variability in the architecture is
required.

During the lifetime of an architecture it is also very likely
that changes occur that were not planned. In this paper we will not
discuss those kind of variability because unplanned changes
cannot have an explicit architectural solution (beside documenting
rationale and providing traceability links).

In this paper we will first describe the different types of
variability that are visible in an architecture description. Then we
will show some possibilities of how to represent those types of
variabilities. We will also describe at what times in the
development cycle adaptations can be done and finally we show
features that could be added to the architecture description to
make it easier to find the places in the architecture that support
adaptations.

The examples shown in this paper are based on a product
line architecture designed by the Robert Bosch GmbH in
cooperation with the Software Engineering Institute.



2. CAUSES OF VARIABILITY
Two of the cases where there is a requirement to represent

different possibilities within an architecture are:

1. During design, a collection of alternatives may exist and
capturing these alternatives may be necessary if a
decision among them is deferred.

2. An architecture for a product line may encompass a
collection of different alternatives for dealing with the
variation among products. Capturing these alternatives
and the rationale for each alternative enables the team
constructing a product to have a list of potential
solutions to choose from.

These two situations are really the same. That is, at the point
in time when the representation is being generated, it is not known
which alternative is going to be chosen for a product and so the
alternatives have to be captured. The alternatives are best captured
in the context of the remainder of the architecture and so the
architecture representation, itself, should support variability.

We begin by discussing some sources of variation and then
we discuss how support for these variations could be represented
within an architecture representation.

Variation in function. A particular function may exist in
some products and not in others. For example, consider a car
radio/navigation system within an automobile. Some automobiles
may have a radio and no navigation, others navigation without the
radio and still others may have both. The characteristics of the
radio will vary across different products as well. This situation
may also arise within a single product if the requirements are not
known as the design proceeds.

Variation in data. A particular data structure may vary from
on product to another. For example, assume in a call center
application two components exchange information about a
customer. This information contains among other things the
mailing address, which is realized as an unstructured text string.
To support a feature in another version of the call center
application (e.g. a structured display of the customers mailing
address) the format of the mailing address has to be different.
Variation in data in most cases is a consequence of variation in
function.

Variation in control flow. A particular pattern of interaction
may vary from on product to another. For example, assume there
is a notification mechanism between components in place that
informs interested components that some data values have been
changed. One possible implementation is that all the components
get notified in sequence within a single control flow. In a
particular product some of the components to be notified may
actually be 3rd party components, which may have some unknown
behavior. For reliability reason it might be a good idea to direct
the control to a component that is able to do an error recovery in
case a notified component does not return the control.

Variation in technology. The platform (OS, hardware,
dependence on middleware, user interface, run-time system for
programming language) may vary in exactly the same fashion as
the function. A particular piece of middleware may be required in
one product and not in another. The OS or the hardware may vary
from product to product. For example, a sensor may be connected

directly to the controller whose software is being designed or it
may be connected over a communication line. If the sensor is
connected directly to the controller, then sensor management
software is needed, if it is connected over a communication line
then communication line management software is needed.

Variation in quality goals. The particular quality goals
important for a product may vary. For example, the coupling
between a producer and consumer of a data item may be achieved
via a publish subscribe mechanism or via a permanent connection.
The choice of one or another of these two options embodies a
choice of the importance of performance and modifiability and
this choice may be different in different products.

Variation in environment. The fashion in which a product
interacts with its environment may vary. For example, a particular
piece of middleware may be invoked from either C++ or Java. The
invocation mechanism may vary from one product to another.

Since the focus of this paper is on how to describe variability
on architecture level, we will not describe how to deal with
variability that is not visible in the architecture. For example, if
the architecture describes an application that uses an operating
system, but the operating system is not described because it is not
of interest, then variability in the operating system cannot be
described. Or, if a specific variability was implemented by
creating a component that realizes all possible variations, then no
differences in the architecture would appear between different
products/versions. Thus, this variability is not architecturally
relevant.

3. TYPES OF VARIATION
No matter what causes the variation, any variation has a type. That
is:

• A variation can be optional

• A variation can be an instance out of several alternatives

• A variation can be a set of instances out of several
alternatives.

A variation is optional if, for example, a specific functionality is
contained in one product but not in another. Of specific interest
here are relations that other functions have to the optional
functionality and what happens to those relations in case the
optional functionality is not included in the product. In section 7
we will discuss possible mechanisms that deal with optionality.

A variation can be an alternative. This means that the architecture
provides a placeholder in which one of several alternatives can be
inserted. For example the architecture may provide a place for
“cruise control” functionality. In high-end cars this might be
realized by an “adaptive cruise control” (adapts car speed to the
car driving in front), while low-end cars use the normal cruise
control (constant speed). The latter can be realized with less
memory and less computing power, thus at lower cost.

A variation can be a set of alternatives. This means that the
architecture provides a placeholder in which multiple instances of
different alternatives can be inserted. For example a software
system may have the ability to communicate with the outside
world by using different communication protocols in parallel.
Thus, one product could be built using one set of communication
protocols while another product has a different set. In this case
also the relations that other functions have to the set of



alternatives are of interest since a binding to the instances of the
collection needs to be done. Section 7 discusses possible
mechanisms for this.

4. PUTTING VARIATION IN CONTEXT
Our concern is how to represent variation of the three types we
have identified. The first question is what, more precisely, do we
mean by variation. Let us examine variation in function in more
detail to begin to answer that question. Figure 1 shows a module
view of two systems. There are modules and they are related by
“depends on”. The first product shown (Product 1) includes
module B, which may have the “radio” functionality. In another
product (Product 2) the radio is substituted by a high-end radio
shown as module D.

Figure 1 Alternative architectures for two products

In this example, the differences between the two products are
located in one module (Module B is replaced by Module D). To
express an architecture that supports this variation the two
diagrams shown in Figure 1 need to be collapsed into one
diagram.

Figure 2 shows the two architectures in a single picture. The
box “Variant A” in this picture now has different semantics. It
describes a variation point and not a specific functionality, as a
module would do. Therefore a different notation (here a shaded
box) should be used to clearly express this fact.

Figure 2 Variation in architecture

The problem now becomes how to keep track of possible
implementations of Variant A. This leads to Figure 3.

Figure 3 Alternatives for Variant A

Variations also can occur for relations between components
of an architecture. Figure 4 shows again a module view of two
possible products. In this example the variation occurs between
Module B and Module C. In product 1 module B, a low cost
radio, issues a command “Display Frequency” to module C, a user
interface. In product 2, the high-end version, the name of a radio
station is available and has to be displayed.

Figure 4 Variation of relation

A closer look on variations of relations reveals that this
normally includes variation of the connected components. If the
relation is now an information exchange of an the station name,
then at least the producer of that information has to be different.
The information has to be extracted from the signal the station
sends. Most likely, also the consumer of the information varies.
Therefore a variation in a relation can be described as shown in
Figure 5. In addition, Figure 6 shows the dependencies between
the alternatives for variant A and B. That is, both Module B and
Module C together realize the feature to display the frequency
whereas Module D and Module E together realize the display of
the station name.
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Figure 5 Variation of relation as variation of components

Note that the relation between module B and C as well as the
relation between module D and E are realizations of the relation
between variant A and B.

A variation in function may affect multiple modules in
various portions of the architecture, similar to the case shown in
Figure 6.

Figure 6 Constraints between alternatives of variants

This same picture suffices for variations caused by platform,
control flow, or quality as well. It also would suffice for multiple
variations rather than just the two we have hypothesized. Thus, in
general, we can situate variants in the architecture by identifying
those modules that are in the architecture for all of the variants
and those modules that will vary based on some cause of
variation. Furthermore, if we can describe a single variant within
its context then we can describe all of the variants. This limits our
scope of concern when discussing variation to representing a
single variation.

We now examine the relation between a variant and
decomposition. In the radio example we used so far it is obvious
the two different types of radios (low-end and high-end) still have
a lot in common. It is not very realistic to assume that module B
and D, which are alternative implementations of the variant A, are
totally different and independent from each other. When
decomposing both modules we can be more explicit where the
variation really occurs. Some parts of the decomposition are
common for all alternatives and some differ. This suggests that
there is a decomposition of a variant such as it is shown in 0.
Variant A actually consists of the modules A1 and A2, which are

common for all alternatives of variant A, and it has a variation
point A1 with two alternative solutions, module A3 and A4.

This opens two possibilities to describe and implement
alternatives of a variation. The alternatives can be described on
the more abstract level as shown in Figure 2 and Figure 3 with the
composition rule that module B is composed using module A1,
A2, and A3 whereas module D is composed using module A1,
A2, and A4. The second possibility is to describe the variation of
the detailed, the decomposed level as shown in 0. What to use
strongly depends on the mechanisms chosen to realize the
different products, as well as the decision of the organization on
what level of granularity the product definition should be handled.

Figure 7 Decomposition of Variant A

We now introduce a basic notation for the different types of
variants for the purpose of better understanding of examples in
this document. As shown in 0 we distinguish between:
• Optional variant (Variant A), which means that there exists

exactly one implementation that could be included in a
product.

• Alternative variant (Variant B), which means that there exist
multiple realizations of this variant and exactly one must be
included in the product.

• Set of alternative variants (Variant C), which means that
there exist multiple realizations of this variant and at least
one must be included in the product.

• Optional alternative (Variant D), which means that there
exist multiple realizations of this variant and one of it could
be included in the product.

• Optional set of alternatives (Variant E), which means that
there exist multiple realizations of this variant and a
collection of it could be included in the product.
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Figure 8 Notation for types of variants

Using this notation, Figure 5 is redrawn into Figure 9.
Variant A and B are alternative variants each with two possible
implementations as shown in Figure 6, which describes that
variant A and B have alternative solutions.

Figure 9 Basic problem statement

5. RELATIONSFROMANDTOVARIANTS
The relations between variants and/or modules of the

architecture are of special interest if the architecture is designed to
support change. Changing the variants almost always influences
the relations among those variants and modules.

Relations that point from a variant to a module are easy to
handle. A specific implementation of a variant may or may not use
that relation. As long as the relation is used by a module as
intended no specific action is required.

More difficulties arise with relations that point to a variant,
like the relation from Module A to Variant A or from Variant A to
Variant B in Figure 5. The simplest case is when an alternative
variant was designed. The only condition is that all
implementations of that variant have to comply with the interface
required by the relation that points to the variant.

Optionality requires specific actions by modules pointing to
an optional variant. Since optional means that a variant may not
have an implementation, all relations to this variant must also be
optional. Having two different implementations of the module that
uses an optional variant could do this. However, this would
automatically change a module into a variant. This is not really
what is desired. Variations should be kept as local as possible and
such kind of ripple effect through the architecture should be
avoided. A possible solution is to do the adaptation during
development time by using techniques like generators or compiler
switches (see section 7 for more information about how to
implement variations). Those techniques hide the adaptation on
the architecture level.

Another difficulty to be dealt with occurs when a variant is
designed as a set of alternatives. Modules that use this set have to
be able to deal with a varying set of implementations. This
normally requires some sort of distribution mechanism. This, in
turn, means that requests to the set of alternatives are not sent
directly to them but are routed through a distributor of some kind.
A “factory pattern” would be an example of such a distributor.

The distributor clearly has to be an indirection in the relation
to the set of alternatives. Generally speaking there would be three
possible places to locate the distributor. The distributor can be a)
part of the module that requests the service, b) it can be a separate
module between the module and the set or c) it can be a
“wrapper” around the set. Alternative a) would very likely change
a common module into a variant, alternative b) would require a
change in the architecture, and alternative c) would add the
adaptation to the different sets into the variant itself. Thus, for the
management of variants point of view, alternative c) is the
preferred one since it limits the number of variants.

6. CONNECTION TO REQUIREMENTS
Representing the variation in the architecture solves one part

of the problem. The other problem is that those variations have to
be found in the documentation. Even the architecture of a midsize
system can contain many modules with a fairly high number of
them designed to be variants. Several of those variants may also
have dependencies among each other to fulfill a single customer
requirement. For example, allowing a customer to make a single
choice of having either a radio that displays the frequency or the
station name as shown in Figure 6 actually created two variants
(Variant A and B) in the architecture and these two variants
depend on each other.

To fully utilize the designed variations a mechanism for
finding them is needed. A possibility is to introduce “variation
points” [3]. Those variation points build the connection between
the customers’ requirements/features where variation can occur (if
planned for) and the places in the architecture that are designed to
support those variations. Variation points also contain the
information needed to build the required architecture for the
specific product, such as decisions to be made, implementation
techniques to be used, rationale why the variation was build that
way, etc. An example of how to represent a variation point in the
architecture is shown in Figure 10. This example shows the
alternatives from Figure 6 in combination with a possible choice
for a customer who can choose between a radio that only displays
the frequency or one that displays the station name. It shows that a
customer can choose the display type of a station. The example
also shows that the choice is designed to be an alternative. Exactly
one of the alternatives has to be chosen.

Variant AOptional

Variant BAlternative

Variant CSet of Alternatives

Variant DOptional Alternatives

Variant EOptional set of Alternatives

0

1

1..*

0..*

0..1

Module A

1
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Figure 10 Variation Points

This notation should not be confused with the description of
alternatives of modules as described in 0. Variation points
describe variations in requirements and state the customer choices
for a specific product, while the description in 0 states possible
implementations for a variant. Choices in the requirements may or
may not lead to choices in the architecture. That actually depends
on the way the architecture is designed. For instance, the
architecture could have exactly one component that is able to deal
with both types of addresses. A configuration file may define
which type actually was chosen.

Variation points can be used as input for generators in case
that creating the product specific architecture is actually done by
the generator technique. For more information see section 7. In
this case the syntax of a variation point is determined by the
generator to be used.

The example shown in Figure 10 suggests that the
documentation of variation points is part of the architecture
documentation. This is not the only possibility for documenting
variation points. Variation points build the link between the
requirement documents and the architecture description.
Therefore variation points could be part of the requirement
documents, the architecture documents, or could even be a
separate document. What is important is that there is a means for
the users of the documentation (hopefully with tool support) to
easily find the places of variations in the architecture.

7. IMPLEMENTATIONS OF VARIATIONS
After the places where variation can occur are designed in

the architecture the decision has to be made which
implementation technique to use to implement the variation. Two
basic implementation techniques are possible, which are module
replacement and data controlled variation.
Module replacement

Module replacement is the technique of having multiple
code-based versions of a particular module and choosing the
correct one. The interfaces to all versions of the module are
compatible and, thus, the modules that depend on the variable
module do not need to be modified based on the choice of
variants. This choice can be done at execution time or at an earlier
time. Within the module, there can be a portion that is common to
all variants (possibly empty) such as adaptation to the

communication mechanism used, and a portion that is variant
dependent.

Module replacement supports very easily the different cases
of alternative variants, as shown in 0. To deal with optionality is a
little bit more difficult. A possible solution would be to
implement a module that delivers fixed responses that describe the
case as if the module wouldn’t be there. This would change an
optional variant into an alternative variant were one alternative is
an almost empty module that acts as a placeholder to satisfy
references to the variant.
Data controlled variation

Data controlled variation is the technique of maintaining the
variation information in a data structure and having a single
module that understands how to navigate the data structure to
determine the correct actions. A simple example of data controlled
variation is to have a parameter to the module that determines the
variant to execute. A more complicated example is to have the
variation incorporated in a data structure that might be generated
from a parser and have the module be an interpreter for the
language underlying the parse tree. Intermediate examples are to
incorporate collections of parameters or control information into a
data structure. In any case, the module, itself, remains unchanged
from variant to variant but the data on which it operates will
control the variant.

Data controlled variation can actually lead to a design where
a variant is described in the architecture, which has exactly one
implementation, which would be the variant itself. If that
mechanism were used, the example shown in Figure 9 and Figure
10 would change as shown in 0.

Figure 11 Data controled variation
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Realization mechanisms
There are several mechanisms [1] available that can be used

to build the customer specific product. Among those are:
• Generators can be used if the goal is to generate a product

specific architecture that contains only what is needed for the
product. Although this technique leads to very
understandable designs, it requires the implementation of the
generator, which is a cost factor that has to be considered. A
generator can nicely deal with alternatives and optional
modules as well as the relations among them.

• Using a Configuration Management System to build a
customer specific product would enable the assembly of a
product that only contains needed modules. The
configuration management system takes the designed
variants and the variation points as input and provides the set
of configuration items that form the product. This mechanism
can easily deal with alternative implementations. It is
difficult to deal with optional components on the level of the
configuration management. To build a configuration
management that supports the described variation still is
costly, but probably not as costly as it is to build a generator.

• When using Compilation as a mechanism to manage
variation, the variations are implemented on code level. This
implementation uses “complier switches” so that a specific
set of parameters, which are input for the compilation
produces the product specific object code. The
implementation of the “gnu compiler”, which needs to be
adapted to a variety of platforms is an example for the use of
this mechanism.

• A very common form to realize variations is the adaptation
during start-up. The software normally is implemented so
that it can handle all possible variants. By reading a
configuration file of some sort the software learns how to
react. The easiest way to support this mechanism is to
implement the modules as data controlled. To use module
replacement requires a dynamic load mechanism either
provided by the implementation language or by the
infrastructure (operating system) the software is running.

• Adaptation during normal execution could also be done.
“Plug-ins” for a program, such as an Internet browser, are
examples for adding and/or removing modules while the

program is running. Since the decision which module to use
to support a variant is deferred until a user actually uses a
program, this mechanism offers the most flexibility for users
but also requires an implementation that ensures consistency
which normally would be provided by a configuration
management system or a compiler.

8. CONCLUSIONS
To utilize the potential for variation that has been placed into

a software architecture requires an explicit link between the
requirement analysis/management discipline and the architecture
development. An explicit design of variants in the architecture
and the definition of variation points that support finding those
variants in the architecture enables developers who are not
necessarily the creators of the architecture to fully employ
designed variations. Placing advice on how to implement variants
within a variation point description also helps to clarify the
instantiation of a product.

To make this happen in an industrial environment however needs
tool support. The tools available today focus more on either the
requirements side or the design side. They offer some basic
support to handle variations. Mostly additional semantics to cope
with variations have to be added by the users of the tools.
Requirement and design tools also support some rudimentary
connection among them to at least exchange some basic
information. This is by far not sufficient to support the described
variation points. Developers who want to use the described
techniques will end up implementing their own “variation point
tool”.
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