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Abstract

Variability in quantitative gait data arises from many potential sources, including natural temporal

dynamics of neuromotor control, pathologies of the neurological or musculoskeletal systems, the

effects of aging, as well as variations in the external environment, assistive devices, instrumentation

or data collection methodologies. In light of this variability, unidimensional, cycle-based gait

variables such as stride period should be viewed as random variables and prototypical single-cycle

kinematic or kinetic curves ought to be considered as random functions of time. Within this

framework, we exemplify some practical solutions to a number of commonly encountered

analytical challenges in dealing with gait variability. On the topic of univariate gait variables, robust

estimation is proposed as a means of coping with contaminated gait data, and the summary of non-

normally distributed gait data is demonstrated by way of empirical examples. On the summary of

gait curves, we discuss methods to manage undesirable phase variation and non-robust spread

estimates. To overcome the limitations of conventional comparisons among curve landmarks or

parameters, we propose as a viable alternative, the combination of curve registration, robust

estimation, and formal statistical testing of curves as coherent units. On the basis of these

discussions, we provide heuristic guidelines for the summary of gait variables and the comparison

of gait curves.

Introduction
Definition of variability

In quantitative gait analysis, variability is commonly
understood to be the fluctuation in the value of a kine-
matic (e.g. joint angle), kinetic (e.g. ground reaction
force), spatio-temporal (e.g. stride interval) or electromy-
ographic measurement. This fluctuation may be observed
in repeated measurements over time, across or within
individuals or raters, or between different measurement,
intervention or health conditions. In this paper, we will
focus on the variability in two types of data: unidimen-
sional gait variables and single-cycle, prototypical gait

curves, as these are the most common abstractions of spa-
tio-temporal, kinematic and kinetic data, typically col-
lected within a gait laboratory.

Measurement

Many different analytical methods have been proposed
for estimating the variability in gait variables. The most
widely used measures are those relating to the second
moment of the underlying probability distribution of the
gait variable of interest. Examples include, standard devi-
ation (e.g., [1-4]), coefficient of variation (e.g., [5-8]) and
coefficient of multiple correlation (e.g., [9,10]). Other less
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conventional variability measures have also been sug-
gested. For example, Kurz et al. demonstrated an informa-
tion-theoretic measure of variability, where increased
uncertainty in joint range-of-motion (ROM), and hence
entropy, reflected augmented variability in joint ROM
[11].

For gauging variability among gait curves, some distance-
based measures have been put forth, including the mean
distance from all curves to the mean curve in raw 3-
dimensional spatial data [12], the point-by-point inter-
curve ranges averaged across the gait cycle [13] and the
norm of the difference between coordinate vectors repre-
senting upper and lower standard deviation curves in a
vector space spanned by a polynomial basis [14]. Instead
of reporting a single number, an alternative and popular
approach to ascertain curve variability has been to peg
prediction bands around a group of curves. Recent
research on this topic has demonstrated that bootstrap-
derived prediction bands provide higher coverage than
conventional standard deviation bands [15-17].

Additionally, various summary statistics, such as the intra-
class correlation coefficient [8] and Pearson correlation
coefficient [18], for estimating gait measurement reliabil-
ity, repeatability or reproducibility have been deployed in
the assessment of methodological, environmental and
instrumentation or device-induced variability. Principal
components and multiple correspondence analyses have

also been applied in the quantification of variability in
both gait variables and curves, as retained variance and
inertia, respectively, in low dimensional projections of the
original data [19].

Sources of variability

As depicted in Figure 1, the numerous sources of variabil-
ity in gait measurements can be loosely categorized as
either internal or external to the individual being
observed [20].

Internal

Internal variability is inherent to a person's neurological,
metabolic and musculoskeletal health, and can be further
subdivided into natural fluctuations, aging effects and
pathological deviations. It is now well known that neuro-
logically healthy gait exhibits natural temporal fluctua-
tions that are governed by strong fractal dynamics [21-
23]. The source of these temporal fluctuations may be
supraspinal [24] and potentially the result of correlated
central pattern generators [25]. One hierarchical synthesis
hypothesis purports that these nonlinear dynamics are
due to the neurological integration of visual and auditory
stimuli, mechanoreception in the soles of the feet, along
with vestibular, proprioceptive and kinesthetic (e.g., mus-
cle spindle, Golgi tendon organ and joint afferent) inputs
arriving at the brain on different time scales [24,26].
Internal variability in gait measurements may be altered
in the presence of pathological conditions which affect

Sources of variability in empirical gait measurementsFigure 1
Sources of variability in empirical gait measurements.
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natural bipedal ambulation. For example, muscle spastic-
ity tends to augment within-subject variability of kine-
matic and time-distance parameters [10] while
Parkinson's disease, particularly with freezing gait, leads
to inflated stride-to-stride variability [27] and electromyo-
graphic (EMG) shape variability and reduced timing vari-
ability in the EMG of the gastrocnemius muscle [28].
Similarly, recent studies have reported increased stride-to-
stride variability due to Huntington's disease [29], ampli-
fied swing time variability due to major depressive and
bipolar disorders [30], and heightened step width [31]
and stride period [32] variability due to natural aging of
the locomotor system.

External

Aside from mechanisms internal to the individual, varia-
bility in gait measurements may also arise from various
external factors, as shown in Figure 1. For example, influ-
ences of the physical environment, such as the type of
walking surface [33], the level of ambient lighting in con-
junction with type of surface [34] and the presence and
inclination of stairs [35] have been shown to affect
cadence, step-width, and ground reaction force variability,
respectively, in certain groups of individuals. Assistive
devices, such as canes or semirigid ankle orthoses may
reduce step-time and step-width variability [36] while dif-
ferent footwear (soft or hard) can affect the variability of
knee and ankle joint angles, possibly by altering periph-
eral sensory inputs [14].

Variability may also originate from the nature of the
instrumentation employed. This variability is often
appraised by way of test-retest reliability studies. Some
recent examples include the reproducibility of measure-
ments made with the GAITRite mat [8], 3-dimensional
optical motion capture systems [9,18], triaxial accelerom-
eters [37], insole pressure measurement systems [4], and
a global positioning system for step length and frequency
recordings [7].

Experimenter error or inconsistencies may also contrib-
ute, as an external source, to the observed variability in
gait data. Besier et al. contend that the repeatability of kin-
ematic and kinetic models depends on accurate location
of anatomical landmarks [38]. Indeed, various studies
have confirmed the exaggerated variability in kinematic
data due to differences in marker placement between trials
[9,39] and between raters [40]. Finally, analytical manip-
ulations, such as the computation of Euler angles [9] or
the estimation of cross-sectional averages [41] may also
amplify the apparent variability in gait data.

Clinical significance of variability

The magnitude of variability and its alteration bears sig-
nificant clinical value, having been linked to the health of

many biological systems. Particularly in human locomo-
tion, the loss of natural fractal variability in stride dynam-
ics has been demonstrated in advanced aging [32] and in
the presence of neurological pathologies such as Parkin-
son's disease [42], and amyotrophic lateral sclerosis [42].
In some cases, this fractal variability is correlated to dis-
ease severity [32]. Variability may also serve as a useful
indicator of the risk of falls [43] and the ability to adapt to
changing conditions while walking [44]. Stride-to-stride
temporal variability may be useful in studying the devel-
opmental stride dynamics in children [45]. Natural varia-
bility has been implicated as a protective mechanism
against repetitive impact forces during running [14] and
possibly a key ingredient for energy efficient and stable
gait [46]. Variability is not always informative and useful
and in fact may lead to discrepancies in treatment recom-
mendations. For example, due to variability in static
range-of-motion and kinematic measurements, Noonan
et al. found that different treatments were recommended
for 9 out of 11 patients with cerebral palsy, examined at
four different medical centres [13].

Dealing with variability

Given the ubiquity and health relevance of variability in
gait measurements, it is critical that we summarize and
compare gait data in a way that reflects the true nature of
their variability. Despite the apparent simplicity of these
tasks, if not conducted prudently, the derived results may
be misleading, as we will exemplify. In fact, there are to
date many open questions relating to the analysis of
quantitative gait data, such as the elusive problem of sys-
tematically comparing two families of curves.

The objectives of this paper are twofold. First, we aim to
review some of the analytical issues commonly encoun-
tered in the summary and comparison of gait data varia-
bles and curves, as a result of variability. Our second goal
is to demonstrate some practical solutions to the selected
challenges, using real empirical data. These solutions
largely draw upon successful methods reported in the sta-
tistics literature. The remainder of the paper addresses
these objectives under two major headings, one on gait
variables and the other on gait curves. The paper closes
with some suggestions for the summary and comparison
of gait data and directions for future research on this topic.

Gait random variables
Unidimensional variables which are measured or com-
puted once per gait cycle will be referred to as gait random
variables. This category includes spatio-temporal parame-
ters such as stride length, period and frequency, velocity,
single and double support times, and step width and
length, as well as parameters such as range-of-motion of a
particular joint, peak values, and time of occurrence of a
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peak, which are extracted from kinematic or kinetic curves
on a per cycle basis.

Due to variability, univariate gait measures and parame-
ters derived thereof should be regarded as stochastic
rather than deterministic variables [47,48]. In this ran-
dom variable framework, a one-dimensional gait variable
is represented as X and governed by an underlying,
unknown probability distribution function FX, or density

function . A realization of this random variable

is written in lower case as x.

Inflated variability and non-robust estimation

It has been recently demonstrated that typical location
and spread estimators used in quantitative gait data anal-
ysis, i.e. mean and variance, are highly susceptible to
small quantities of contaminant data [48]. Indeed, a few
spurious or atypical measurements can unduly inflate
non-robust estimates of gait variability. The challenge in
the summary of highly variable univariate gait data lies in
reporting location and spread, faithful to the underlying
data distribution and minimally influenced by extraordi-
nary observations.

Here, we focus on the issue of inflated variability and non-
robust estimation by examining four different spread esti-
mators, applied to stride period data from a child with
spastic diplegic cerebral palsy. As stated above, the coeffi-
cient of variation and standard deviation are routinely
employed in the summary of gait variables. Given a sam-
ple of N observations of a gait variable X, i.e., {x1,..., xN},
the coefficient of variation is defined as,

where the numerator is simply the sample standard devi-

ation and the denominator, , is the sam-

ple mean. We also include two other estimators, although
seldom used in gait analysis, to illustrate the qualitative
differences in estimator robustness. The interquartile
range of the sample is defined as

IQR(X) = x0.75 - x0.25  (2)

where x0.75 and x0.25 are the 75% and 25% quantiles. The

q-quantile is defined as  where as usual, FX is

the probability distribution of X. Equivalently, the q-
quantile is the value, xq, of the random variable where

. That is, q × 100 percent of the random

variable values lie below xq. We also introduce the median

absolute deviation [49],

MAD(X) = med (|X - med(X)|)  (3)

where med(X) is the median of the sample, or the 50%
quantile as defined above. This last estimator is, as the
name implies, the median of the absolute difference
between the sample values and their median value. We are
interested in studying how these different estimators per-
form when estimating the spread in a gait variable, the
observations of which may contain outlying values or
contaminants. In the left pane of Figure 2, we show a set
of stride period data recorded from a child with spastic
diplegia. The top graph shows the raw data with a number
of obvious outliers with atypically long stride times. We
adopted a common outlier definition, labeling points
more than 1.5 interquartile ranges away from the sample
median as extreme values. According to this definition
there were 21 outlying observations. In the bottom graph,
the outliers have been removed. The bar graph on the
right-hand side of Figure 2 portrays the spread estimates
of the stride period data, computed with each estimator
introduced above, with and without the outliers.

We note immediately that the spread estimates in the
presence of outliers are higher. The standard deviation
and coefficient of variation change the most, dropping 42
and 36 percent in value, respectively, upon outlier
removal. This observation is particularly important in the
comparison of gait variables, as inflated variability esti-
mates will diminish the probability of detecting signifi-
cant differences when they do in fact exist. In contrast, the
interquartile range and median absolute deviation, only
change by 21 and 11%, respectively. We see that these lat-
ter estimates are more statistically stable, in that they are
not as greatly influenced by the presence of extreme
observations.

To more fully comprehend estimator robustness or lack
thereof, the field of robust statistics offers a valuable tool
called influence functions, which as the name implies,
summarizes the influence of local contaminations on esti-
mated values. Their use in gait analysis was first intro-
duced in the context of stride frequency estimation [48].

We first introduce the concept of a functional, which can
be understood as a real-valued function on a vector space
of probability distributions [50]. In the present context,
functionals allow us to think of an estimator as a function
of a probability distribution. For example, for the
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interquartile range, the functional is simply,

.

Let the mixture distribution Fz, ε describe data governed by
distribution F but contaminated by a sample z, with prob-
ability ε. The influence function at the contamination z is
defined as

where T(·) is the functional for the estimator of interest.
The influence function for a particular estimator measures
the incremental change in the estimator, in the presence
of large samples, due to a contamination at z. Clearly, if
the impact of this contaminant on the estimated value is
minimal, then the estimator is locally robust at z. Influ-
ence functions can be analytically derived for a variety of
common gait estimators (see for example, [48]), includ-
ing those mentioned above. For the sake of analytical sim-
plicity and practical convenience, we will instead use
finite sample sensitivity curves, SC(z), which can be
defined as,

SC(z) = (N + 1){T(x1,..., xN, z) - T(x1,..., xN)}  (5)

where as above, T(·) is the functional for the estimator in
question, and z is the contaminant observation. When N

→ ∞ the sensitivity curve converges to the influence func-
tion for many estimators. Like the asymptotic influence
functions, sensitivity curves describe the local impact of a
contamination z on the estimator value. For the purposes
of computer simulation, the functional T(x1,..., xN, z) and
T(x1,..., xN) are simply the evaluations of the estimator of
interest at the augmented and original samples, respec-
tively. Figure 3 depicts the sensitivity curves for the estima-
tors introduced in the stride period example. To generate
these curves, we used the cleansed stride period data
(without outliers) and incrementally added a deviant
stride period from 0.5 below the lowest sample value to
0.5 above the highest sample value. The sample mean for
this data was 1.41 seconds.

We observe that both standard deviation and coefficient
of variation have quadratic sensitivity curves with vertices
close to the sample mean. In other words, as contami-
nants take on extreme low or high values, the estimated
values are unbounded. Clearly, these two estimators are
not robust, explaining their high sensitivity to the outliers
in the stride period data. In contrast, both the interquar-
tile range and median absolute deviation have bounded
sensitivity curves, in the form of step functions. The
median absolute deviation is actually not sensitive to con-
taminant values above 1.1 seconds whereas the interquar-
tile range has a constant sensitivity to contaminant values
over 1.6. Since most of the outliers in the stride period
data were well above the mean, this difference explains

Robust vs. non-robust estimators of parameter spreadFigure 2
Robust vs. non-robust estimators of parameter spread. The left pane shows a sequence of stride periods with outliers (top) 
and after removal of outliers (bottom). The right pane is a bar graph showing the values of four different spread estimators 
before and after outlier removal.
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the considerably lower sensitivity of the median absolute
deviation to outlier influence.

From this example, we appreciate that estimators of gait
variable spread (i.e. variability) should be selected with
prudence. The popular but non-robust variability meas-
ures of standard deviation and coefficient of variation
both have 0 breakdown points [51], meaning that only a
single extreme value is required to drive the estimators to
infinity. Indeed, as seen in Figure 2, the presence of a
small fraction of outliers can unduly inflate our estimates
of gait variability. Outlier management [52], with meth-
ods such as outlier factors [53] or frequent itemsets [54],
represents one possible strategy to reduce unwanted vari-
ability when using these non-robust estimators. Apart
from the addition of a computational step, this strategy
introduces the undesirable effects of outlier smearing and
masking [55], which need to be carefully addressed.

In contrast, outliers need not be explicitly identified with
robust estimation, hence circumventing the above com-
plications and abbreviating computation. The interquar-
tile range and median absolute deviation, have
breakdown points of 0.25 and 0.5, respectively [51]. Prac-
tically, this means that these estimators will remain stable
(bounded) until the proportion of outliers reaches 25%
and 50% of the sample size, respectively. To circumvent
explicit outlier detection and its associated issues
altogether, and in the presence of noisy data, which often
result from spatio-temporal recordings and
parameterizations of kinematic and kinetic curves, robust

estimators may thus be preferable in the summary of gait
variables.

Non-gaussian distributions

Even in the absence of outliers, univariate gait data may
not adhere to a simple, unimodal gaussian distribution.
In fact, distributions of gait measurements and derived
parameters may be naturally skewed, leptokurtic or multi-
modal [56]. Neglecting these possibilities, we may sum-
marize gait data with location and spread values which do
not reflect the underlying data distribution.

Semi-parametric estimation

As an example, consider the hip range-of-motion
extracted from 45 strides of 9 able-bodied children. A his-
togram of the data is plotted in Figure 4. Assuming that
the data are gaussian distributed, we arrive at maximum
likelihood estimates for the mean and standard deviation,
i.e. 40.4 ± 5.1. However, the histogram clearly appears to
be bimodal. A Lilliefors test [57] confirms significant
departure from normality (p = 0.02). A number of
approaches could be undertaken to find the underlying
modes. One could perform simple clustering analysis
[58], such as k-means clustering. Doing so reveals two
well-defined clusters, the means and standard deviations
of which are reported in Table 1. Alternatively, one could
attempt to fit to the data, a convex mixture density of the
form,

Sensitivity curves for various estimators of gait parameter variability based on the stride period exampleFigure 3
Sensitivity curves for various estimators of gait parameter 
variability based on the stride period example.
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where Wi is a scalar such that ∑i Wi = 1 to preserve proba-

bility axioms, NC is the number of clusters or modes and

 is a gaussian density with

mean µi and variance . The fitting of (6) is known as

semi-parametric estimation as we do not assume a partic-
ular parametric form for the data distribution per se, but
do assume that it can modeled by a mixture of gaussians.
In the present case, NC = 2 and we can use a simple opti-

mization approach to determine the parameters of the
mixture. In particular, we determined the parameter vec-
tor [W1, W2, µ1, σ1, µ2, σ2] to minimize the objective

function , where nj is the number of

points within an interval of length ∆ around xj and N is the

number of points in the sample. The latter term in the
objective function is a crude probability density estimate
[59]. As seen in Table 1, the results of fitting this bimodal
mixture yields similar results to those obtained from
clustering.

What are the implications of naively summarizing these
data with a unimodal normal distribution? First of all, the
probabilities of observing range-of-motion values
between 35 and 39 degrees, where most of the observa-
tions occur, would be underestimated. Likewise, ROM
values between 39 and 48 degrees, where the data exhibit
a dip in observed frequencies, would be grossly overesti-
mated. These discrepancies are labeled as regions B and C
in Figure 4. More importantly, the discrepancies in the
tails of the distributions, regions A and D, suggest that sta-
tistical comparisons with other data, say pathological
ROM, would likely yield inconsistent conclusions,
depending on whether the mixture or simple distribution
was assumed. Indeed, as seen in Table 1 the lower critical
value of the simple normal distribution for a 5% signifi-
cance level is too low. This could lead to exagerrated Type

II errors. Similarly, the upper critical value is not high
enough, potentially leading to many false positive (Type
I) errors.

The above example depicts bimodal data. However, the
mixture distribution method can be applied to arbitrary
non-normal data distributions, regardless of the underly-
ing modality. Fitting such distributions can be accom-
plished by the well-established expectation-maximization
algorithm [60]. For a comprehensive review of other semi-
parametric and non-parametric estimation methods, see
for example [59].

Parametric estimation

When we have some a priori knowledge about the under-
lying data distribution, we can adopt a simpler approach
to summarize the gait data. In particular, we could fit the

Table 1: Summary of bimodal ROM data

Mixture distribution k-means clustering Normal distribution

Mode # 1 37.7 ± 2.4 37.7 ± 2.6 40.4 ± 5.1

Mode # 2 49.1 ± 3.5 47.7 ± 3.0 -

Mixing proportion (mode I/mode 2) 0.71/0.29 0.73/0.27 -

Critical value (lower) 33.35 32.96 30.40

Critical value (upper) 53.89 51.70 50.40
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data to a specific parametric form. As an example,
consider the task of comparing two sets of stride period
data from two children with spastic diplegia, with identi-
cal gross motor function classification scores [61]. The
histograms of strides for both children are shown in Fig-
ure 5. It is known that stride period data tend to be right-
skewed [56]. A careful examination of the bottom graph
indicates that the histogram is indeed right-skewed. In
fact, the skewness value is 1.7 and Lilliefors test for nor-
mality [57] confirms significant departure from normality
(p < 10-5). We thus determine the maximum likelihood
gamma distribution for these data. The gamma distribu-
tion has the following parametric form [62],

where a is the shape parameter, b is the scale parameter
and Γ(·) is the gamma function. The gamma distribution
fits are plotted as solid lines in Figure 5.

As in the previous example, we consider the consequence
of assuming that the data are normally distributed. Do
these two children have similar stride periods? To answer
this question, one may hastily apply a t-test, assuming
that the stride period distributions are gaussian. The
results of this test reveal no significant differences (p =
0.31), as reported in Table 2. To visualize the departure
from normality, the maximum likelihood normal proba-
bility distribution fits to the stride data are superimposed
on each histogram as a dashed curve. Note that the tails of
the distribution are overly broad, particularly in the bot-
tom graph. This diminishes the likelihood of detecting
genuine significant differences between the data sets.
Table 2 summarizes the maximum likelihood estimates of
the distribution parameters under the two different distri-
butional assumptions. Under the gamma distribution
assumption, the stride periods between the two children
are statistically different (p = 0.036) according to a Monte
Carlo simulation of differences between 104 similarly dis-
tributed gamma random variables, which contradicts the

previous conclusion. We have arbitrarily chosen the
gamma distribution in this example as it appears to
describe well the positively skewed data. However, there
are many other parametric forms that could be fit to gait
data in general. See for example [62,63].

In brief, the issue of non-normal distributions of meas-
ured gait variables or derived parameters, may lead to
inaccurate reports of population means and variability
and error-prone statistical testing. In fact, as the last exam-
ple has shown, different distributional assumptions may
lead to different statistical conclusions. Without a priori
knowledge about the form of the distribution, one possi-
ble solution is to use a general mixture distribution to
summarize the gait data. When we have some a priori
knowledge about the underlying distribution, we can
simply summarize the data using a known non-gaussian
distribution, such as the gamma distribution exemplified
above for the right-skewed stride period data. In either
case, it is generally advisable to routinely check for signif-
icant departure from normality using such tests for nor-
mality as Pearson's Chi-square [64] or Lilliefors [57].

We remark that mixture models typically have a larger
number of parameters than simple unimodal models. As
a general rule-of-thumb, one should thus consider that
mixture models generally require more data points for
their estimation [59]. In particular, note that in any
hypothesis test, the requisite sample size is dependent on
the anticipated effect size, the desired level of significance
and the specified level of statistical power [65]. For
specific guidelines and methodology relating to sample
size determination, the reader is referred to literature on
sample size considerations in general hypothesis testing
[66], normality testing [67], and other distributional test-
ing [68].

Single-cycle gait curves
Kinematic, kinetic and metabolic data are often presented
in the form of single-cycle curves, representing a time-var-
ying value over one complete gait cycle. Time is often nor-
malized such that the data vary over percentages of the
gait cycle rather than absolute time. Examples include

Table 2: Statistical comparison of stride periods under different distributional assumptions

Child No. strides Gaussian distribution Gamma distribution

uZ σZ a b

1 24 1.36 0.158 79.19 0.0171

2 23 1.74 0.734 7.513 0.232

p = 0.31 p = 0.036
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curves for joint angles, moments and powers, ground
reaction forces, and potential and kinetic energy. Due to
variability from stride-to-stride, these measurements do
not generate a single curve, but a family of curves, each
one slightly different from the other. We will consider a
family of gait curves as realizations of a random function
[69-71]. Let Xj (t) denote a discrete time function, i.e. a
gait curve, where for convenience and without loss of gen-
erality, t is a positive integer and t = 1,..., 100. We further
assume that the differences among curves at each point in
time are independently normally distributed. Each sam-
ple curve, Xj (t), can thus be represented as [70],

Xj (t) = f(t) + εj (t) j = 1,..., N t = 1,..., 100  (8)

where f(t) is the true underlying mean function, εj (t) ~ 

(0, σj (t)2) are independent, normally distributed, gaus-

sian random variables with variance σj (t)2 and N is the

number of curves observed. With this formulation in
mind, we now address four prevalent challenges in ana-
lyzing gait curves, namely, undesired phase variation,
robust estimation of spread, the difficulty with landmark
analysis and lastly, the comparison of curves as whole
objects rather than as disconnected points.

Phase variation

It has been recognized that within a sample of single-cycle
gait curves, there is both amplitude and phase variation
[71-73]. Typically, when we describe variability in gait
curves, we refer to amplitude variability. However,
unchecked phase variation, that is the temporal misalign-
ment of curves, can often lead to inflated amplitude vari-
ability estimates [72,73]. Computing cross-sectional
averages over a family of malaligned gait curves can lead
to the cancellation of critical shape characteristics and
landmarks [74]. This issue presents a significant challenge
when summarizing a series of curves for clinical interpre-
tation and treatment planning. On the one hand, the pres-
entation of a large number of different curves can be
overwhelmingly difficult to assimilate. On the other
hand, a prototypical average curve which does not reflect
the features of the individual curves is equally
uninformative.

Curve registration [71] is loosely the process of temporally
aligning a set of curves. More precisely, it is the alignment
of curves by minimizing discrepancies from an iteratively
estimated sample mean or by allineating specific curve
landmarks. Sadeghi et al. demonstrated the use of curve
registration, particularly to reduce intersubject variability
in angular displacement, moment and power curves
[72,73]. Additionally, they reported that curve characteris-
tics, namely, first and second derivatives and harmonic
content were preserved while peak hip angular

displacement and power increased upon registration [72].
This latter finding confirms that averaging unregistered
curves may eliminate useful information.

Judging by the few gait papers employing curve registra-
tion, the method appears largely unknown among the
quantitative gait analysis community. Here, we briefly
outline the the global registration criterion method
[71,75].

Since each gait curve is a discrete set of points, it is useful
to estimate a smooth sample function for each observed
sample curve. Given the periodic nature of gait curves, the
Fourier transform provides an adequate functional repre-
sentation of each curve. The basic principle is then to
repeatedly align a set of sample functions to an iteratively
estimated mean function. The agreement between a sam-
ple function and the mean function can be measured by a
sum-of-squared error criterion. The goal of registration is
to find a set of temporal shift functions such that the eval-
uation of each sample function at the transformed tempo-
ral values minimizes the sum-of-squared error criterion.
The sample mean is re-estimated at each iteration with the
current set of time-warped curves. As an optimization
problem, the curve registration procedure is the iterative
minimization of the sum-of-squared criterion J,

where N is the number of sample curves, T is the time
interval of relevance, wi(·) is the time-warping function

and  is the iteratively estimated mean based on the

current time-warped curves Xi (wi (s)). For greater method-

ological details, the reader is referred to [71,72,75]. This
global registration criterion method is only one of several
possibilities for curve alignment. Related methods which
are applicable to gait data include dynamic time warping
based on identified curve landmarks [41] and latency cor-
rected ensemble averaging [28].

We exemplify the impact of accounting for undesirable
phase variation using ankle angular displacement data
from a child with spastic diplegla. The top left graph of
Figure 6 depicts the unregistered curves, exhibiting exces-
sive dorsiflexion throughout the gait cycle and the
absence of the initial valley during loading response.
Below this graph are the aligned curves. Note particularly
the alignment of the large valley at pre-swing and the peak
in swing phase.

The right column of Figure 6 indicates that the differences
in the mean and standard deviation curves before and
after registration are non-trivial, with maximum changes
of +15% and -51%, respectively. The post-registration
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mean curve not only exhibits heightened but shifted
peaks (3 – 5% of the gait cycle). This observation suggests
that simple cross-sectional averaging without alignment
may not only diminish useful curve features but can also
inadvertently misrepresent the temporal position of key
landmarks. Inaccurate identification of these landmarks,
such as the minimum dorsiflexion at the onset of swing
phase in this example, could be problematic when
attempting to coordinate spatio-temporal and EMG
recordings with kinematic curves. The bottom right graph
shows a dramatic decrease in variability after registration,
particularly in terminal stance. This finding is in line with
the tendency towards variability reduction reported by
Sadeghi et al. [72].

While curve registration is useful for mitigating unwanted
phase variation in gait curves, there may be instances
where phase variability is itself of interest [3]. In such
instances, curve registration can still be useful in provid-
ing information about the relative temporal phase shifts
among curves. Because curve registration actually changes
the temporal location of data, it should not be applied in
studies concerned with temporal stride dynamic
characterizations, such as scaling exponents [21] or Lya-
punov exponents [44]. At present, only a few gait studies
have applied curve registration to manage undesired
phase variability. However, the evidence in those studies,
along with the example above, supports further research
and exploratory application of curve registration to fully

grasp its merits and limitations in quantitative gait data
analyses. For now, curve registration appears to be the
most viable solution to the challenge of summarizing a
family of temporally misaligned gait curves. In the
ensuing sections, we will demonstrate how curve registra-
tion can be used advantageously, in conjunction with
other methods to address other curve summary and com-
parison challenges.

Robustness of spread estimation

We have already seen that curve registration can mitigate
amplitude variability in a family of gait curves. The robust
measurement of variability in gait curves is itself a non-
trivial challenge. One may need to estimate the variability
in a group of curves for the purposes of classifying a new
observation as belonging to the same population, or not
[15]. Alternatively, knowledge of the variability among
curves can help in the statistical comparison of two popu-
lations of curves [16], say arising from two different sub-
ject groups or pre- and post-intervention.

As in gait variables, the challenge lies in robustly estimat-
ing the spread of a sample of gait curves and to avoid fal-
lacious under or overestimation. The intuitive and
perhaps most popular way of estimating curve variability
is the calculation of the standard deviation across the sam-
ple of curves, for each point in the gait cycle. This yields
upper, UX, and lower bands, LX, around the sample of
curves, i.e.

Accounting for phase variationFigure 6
Accounting for phase variation. On the left, we portray unregistered (top graph) and registered (bottom graph) ankle angle 
curves from a child with spastic diplegia. On the right are the mean (top) and standard deviation (bottom) curves before 
(dashed line) and after (solid line) curve registration.
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UX (t) = µX (t) + σX (t) t = 1,..., 100

LX (t) = µX (t) - σX (t)  (10)

where , for t = 1,..., 100, is the sample

mean curve. Lenhoff et al. argued, by way of empirical
examples and systematic cross-validation, that standard
deviation bands provide inadequate coverage of the sam-
ple curves [15]. They instead supported the use of boot-
strap prediction bands [76] which, in their study,
provided close to the targeted 90% coverage of the sample
curves. Two subsequent studies [16,17] have adopted the
90% bootstrap bands for the classification of new curves
and for the comparison between groups of curves. The
usefulness of bootstrap prediction bands for clinical iden-
tification of pathological deviations in kinematic curves
has also been demonstrated [77]. In this section, we pro-
vide further evidence to support the use of bootstrap pre-
diction bands and argue that they are more stable than
standard deviation bands.

The basic idea of the bootstrap method is to create a large
number of bootstrap subsets by resampling the curves Xj,
j = 1,..., N with replacement. For each subset, the boot-
strap mean and standard deviation are calculated. One
then checks how many of the sample curves are "covered"
by the bootstrap standard deviation bands. A curve is con-
sidered covered, if its maximum absolute standardized
difference from the bootstrap mean is less than the boot-
strap constant C. The number of covered curves averaged
over all the bootstrap subsets then yields the coverage
probability for the given bootstrap constant, C. The upper
and lower bootstrap prediction bands can then be written
as,

The reader is referred to [15] for details for practical com-
puter implementation of the above procedure.

To exemplify issues of robust spread estimation, we con-
sider knee angle curves from a child with spastic diplegia.
Initially standard deviation and bootstrap bands are com-
puted for the data prior to curve registration. The maxi-
mum absolute deviation from the sample mean curve is
reported in Table 3. For both methods, the maximum
spread decreases significantly upon registration, suggest-
ing that there is significant inflated variability in the una-
ligned curve sample. Once the curves are aligned, one
suspicious curve, plotted as a thin dashed line in Figure 7,
becomes evident. The standard deviation bands around
the sample with and without this outlying curve are
shown on the left side of Figure 7. The maximum spread,
that is maxt  and C , for standard deviation and
bootstrap bands, respectively, are labeled on each graph.
We see that by removing the outlying curve, both the
standard deviation and bootstrap bands become nar-
rower. In fact, as seen in Table 3, the maximum standard
deviation decreases by a dramatic 27%. Thus it appears
that the variability among a group of curves, as estimated
by both standard deviation and bootstrapping, can be
minimized by curve registration and further reduced by
the subsequent removal of outlying curves.

To further understand the robustness properties of the
two spread estimators, we generate sensitivity curves using
the 45 knee angle curves introduced in Figure 4. These
curves are first registered to minimize unwanted phase
variability. In the case of gait curves, the contaminant is
not a single point, but an entire curve. For convenience,
we choose the following contaminant,

where δ ∈ � and δmin ≤ δ ≤ δmax. In other words, the con-

taminant is just a shifted version of the sample mean

curve, . For simulating the sensitivity curve, we

choose δmin = -50 and δmax = 50, recognizing that in prac-

tice, we would never observe deviations of this magni-
tude. This large range does however, gives us a more

Table 3: Maximum spread estimates: registered and unregistered data

Bootstrap bands Standard deviation bands

Data set
max C

Change
max 

Change

unregistered data 12.5 - 4.7 -

registered data 9.5 -24% 3.96 -16%

registered data without outlier 8.0 -16% 2.91 -27%
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complete picture of the sensitivity curves. We proceed to
define the sensitivity curves for the standard deviation and
bootstrap estimates as follows,

where  is the variance

of the uncontaminated sample and

is the variance of the contaminated sample. In the above,

 is the mean curve of

Estimation of spread in a group of registered knee angle curves from a 13-year old child with spastic diplegiaFigure 7
Estimation of spread in a group of registered knee angle curves from a 13-year old child with spastic diplegia. The left column 
depicts the standard deviation bands with (top graph) and without (bottom graph) an apparent outlying curve (thin dashed 
line). The 90% bootstrap prediction bands are plotted on the right, again with (top graph) and without (bottom graph) the out-
lying curve.
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the contaminated sample. The notations CX and CX, z rep-

resent the bootstrap constants determined using the orig-
inal and contaminated data, respectively. In other words,
these sensitivity curves will reflect the influence of a con-
taminant curve, z(t), on the maximum estimated spread
across a group of curves, over the gait cycle. Figure 8
summarizes the results of evaluating (15) over the simu-
lated contaminants defined in (13).

We note that, as in the univariate case, the standard devi-
ation exhibits quadratic sensitivity with vertex at the zero
deviation curve. This parabolic sensitivity curve indicates
that the standard deviation bands are not locally robust to
contaminant curves. In contrast, the sensitivity curve for
the bootstrap bands is not smooth and quartic in nature.
The lack of smoothness is due to the random resampling
inherent in the bootstrap method, such that with each
contaminant curve, slightly different bootstrap samples
are used in estimating the 90% prediction bands. Initially,
as the contaminant curve deviates from the mean curve,
the sensitivity is negative, meaning that the width of the
estimated bands are smaller than those for the
uncontaminated data. Indeed, the actual value of the
bootstrap constant initially decreases, likely to counter the
accompanying sharp increase in the standard deviation
bands. In other words, as the standard deviation bands
widen, a smaller bootstrap constant is required to cover
90% of the sample curves. However, as the contaminant

curve deviates farther from the mean, the slope of stand-
ard deviation sensitivity increases in magnitude more
slowly. With a smaller change in standard deviation band
per unit of deviation of the contaminant curve, the boot-
strap constant necessarily increases to maintain 90%
coverage. This reasoning accounts for the subsequent
increase in the tails of the bootstrap sensitivity curve.
Finally, we note that overall, the bootstrap sensitivity
curve, although apparently unbounded, traverses a much
smaller range than the standard deviation curve. This
would suggest that with the kinematic data employed in
this example, the bootstrap coverage bands enjoy greater
stability than their highly sensitive standard deviation
cousins.

In brief, the foregoing discussion further supports the use
of bootstrap coverage bands in robustly summarizing the
variability within a family of gait curves. Moreover, curve
registration and outlier removal can further tighten the
location of the prediction bands.

Problems with simple parameterizations

It is common to compare specific landmarks or features of
gait curves to gauge the impact of an intervention or to
determine differences among different subject
populations. However, the identification of curve features
is inherently problematic. Indeed, the multiplicity of
peaks and valleys across two different groups of curves
may be inconsistent. As an example, Figure 9 portrays the
vertical ground reaction force of an able-bodied child on
the left with the typical loading response peak, mid-stance
valley and terminal stance peak [78]. On the right is the
vertical ground reaction force from the intact side of a
child with an above-knee amputation, walking with a
prosthetic lower limb. Note that there are at least three
distinct peaks in the mean curve (thin dotted line).
Attempts to compare the able-bodied and amputee force
profiles are encumbered by the unclear choice of corre-
sponding peaks. This is a common pitfall of comparing
gait curves on the basis of specific landmarks.

The wavelet transform has been touted as a useful method
for uncovering intrinsic trends in data [79,80]. Hence, it
may be possible to extract an underlying low frequency
trend from the amputee force curve for the sake of striking
a comparison with the able-bodied curve. To this end, we
decomposed the mean force curve for the child with
amputation using a 4 – level coiflet wavelet transform
[81]. We reconstructed the force curve using only the
approximation coefficients. The resulting trend line is
plotted on the right graph of Figure 9 as the thick dashed
line and more closely resembles the expected force profile.
Extraction of the extrema yields plausible peak locations
at 17% and 44% of the gait cycle and a valley at 30%.
These locations are comparable to those for the able-bod-

Sensitivity curves for the standard deviation bands and 90% bootstrap estimated prediction bandsFigure 8
Sensitivity curves for the standard deviation bands and 90% 
bootstrap estimated prediction bands. Here, each point on a 
sensitivity curve represents the difference between the 
maxima of the bands estimated with clean and contaminated 
data.
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ied child (peaks at 12% and 44% and valley at 26% of the
gait cycle), but suggest a slightly extended loading
response phase.

The extraction of the trend line in this example illustrates
that in some curves, the desired landmarks may be
concealed by the fluctuations of higher frequency signal
components and hence may be salvageable. However,
even when landmarks are clearly identifiable among
curves, they reflect only a very microscopic view of the
entire curve. For example, two curves could have identical
landmarks, but pronounced differences in shape
characteristics. We therefore do not advocate the isolated
use of simple parameterizations or landmarks for routine
comparison of curves. Rather, the comparison of two sets
of curves should be based on the entire curve and not iso-
lated parameterizations. We suggest however, that
landmark analysis and simple parameterizations can be
meaningful as a post-hoc procedure, i.e. investigating how
curves are similar or different, only after statistically signif-
icant differences among curves or lack thereof have been
established. We therefore suggest to first statistically com-
pare entire gait curves as unified objects, and reserve land-
marks for post-hoc analysis. In the following section, we
describe how such a statistical test may be carried out.

Comparison of gait curves as coherent entities

If gait curves were strictly deterministic, one could simply
define a distance measure between two curves and be

done. However, due to stride-to-stride variability, an
extension of the univariate statistical test is needed, to
determine if one set of curves could have arisen from the
same statistical distribution as another. Alternatively, one
could test whether the average difference between two sets
of curves is approximately zero, within the critical values
of an expected distribution of differences. The
fundamental challenge is to compare families of gait
curves as coherent entities rather than as unconnected,
independent points. One way to consider curves as a
whole rather than as disjoint points is to give them an
appropriate functional representation. One can then
compare the functional representations of the curves.
Exploiting this principle, Fan and Lin [70] proposed a
general method for comparing two sets of discrete time-
sampled curves. In their method, the discrete Fourier
transform of the standardized difference between the
mean curves of two families of curves is computed. Only
selected low frequency components of the transform,
which encompass the majority of signal energy, are
retained. These coefficients are then subjected to the adap-
tive Neyman test which yields the probability that the two
families of curves have similar means. To the best of our
knowledge, the adaptive Neyman statistic [69] has not yet
been applied in the gait literature for the comparison of
empirical gait curves. We therefore outline below, in some
detail, the proposed procedure that we have adapted from
Fan and Lin [70]. Suppose that we would like to compare
two families of gait curves, {Xj (t), j = 1,..., NX} and {Yj (t),

Inconsistency in multiplicity and location of local extremaFigure 9
Inconsistency in multiplicity and location of local extrema. Graphs portray registered vertical ground reaction force curves 
from an able-bodied child (left) and from a child with above-knee prosthesis (right). The dotted line on the right is the mean 
curve while dashed line is the wavelet reconstructed mean curve.
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j = 1,..., NY}, with t = 1,..., 100. The null hypothesis is that
the difference between the means of the two families of
curves is zero. In the random function formulation given
by Equation (8), we can write, H0 : fX (t) - fY (t) = 0, where
fX (t) and fY (t) are the true underlying mean curves. For
notational convenience, we will let t = 0,..., T - 1, where we
have chosen T = 100 in the previous examples. The main
steps of the test are as follows.

1. Compute the sample mean curves, µX (t) and µY (t),

where  and likewise for µY (t)

2. Compute the sample variance curves,  and

, where  and

likewise for .

3. Align the two mean curves using the global registration

criterion method. Denote the registered curves as  and

. This step does not appear in the original formulation

of Fan and Lin [70].

4. Compute the standardized difference Z(t) between the
registered means,

5. Compute the discrete Fourier decomposition, , of

the standardized difference,

where k = 0,..., T/2, Real(·) and Imag(·) denote the real
and imaginary components of the complex Fourier coeffi-

cient , respectively, and k denotes the Fourier

frequency.

6. Form a new vector of coefficients E, of length T + 1, by
pairing real and imaginary coefficients of the complex

Fourier coefficients, , as follows,

7. Estimate the adaptive Neyman statistic, TAN(E) for the
vector defined above. This proceeds in two steps.

(a) Determine the optimal the number of coefficients to

retain to maximize , where Ei are the

elements of the vector defined above and 1 <m <T + 1.

This optimal value of m, denoted , maximizes the
power of the adaptive Neyman statistic [70]. The maxi-
mum statistic value is written as,

where Var(E2), is the variance of the square of the ele-
ments of E obtained in step 6.

(b) Let K = ln(T ln T). Compute the following final trans-
formed test statistic value [70],

Here, we have explicited indicated that the statistic has
been computed for the vector E of Fourier coefficients.
Asymptotically, this statistic has an exponential of an
exponential distribution [69], that is, P(TAN ≤ x) → exp(-

exp(-x)), as T becomes arbitrarily large.

8. Estimate the p-value of the computed test statistic value,
TAN(E), by Monte Carlo simulation of a large number, say

106, of vectors, Yi, i = 1,..., 106, each of length T and whose

elements are drawn from a standard normal distribution,

i.e. Yi ~ (0, 1), ∀i. The rationale is that when two sets of

curves arise from the same random function, the stand-
ardized differences of their Fourier coefficients are nor-
mally distributed around 0. For each normal vector, Yi,

evaluate TAN(Yi) as in step 7 above. When the null hypoth-

esis of no differences is true, the probability of observing
an adpative neyman statistic as extreme as TAN(E) is esti-

mated as,

where H(·) is the heaviside function, where H(x) = 1 only
if x > 0 and is 0 otherwise. In the examples below, we sim-
ulated 106 such vectors to estimate the probability of
observing TAN.
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We exemplify the above procedure with two kinematic
data sets taken from a child with an above-knee amputa-
tion, wearing two different types of prosthetic devices. Of
interest is whether the use of a swing phase control mech-
anism within the prosthetic knee affects gait. Figure 10
depicts the ankle angular displacements with (dashed
line) and without (solid line) the swing phase control
mechanisms. By visual inspection, the curves look similar
in magnitude and exhibit a slight phase difference. We
would expect statistical testing to conclude that the curves
are not different. The top right graph is the standardized
difference between the registered mean curves. Note that
most values fluctuate around 0. The bottom right graph is
a stem plot of selected Fourier coefficients of the Fourier
transform of the standardized difference. Note the con-
centration of energy in the low frequencies and the distri-
bution of coefficients above and below 0. It is thus not
surprising that the result of the adaptive Neyman test sta-
tistic, yielded TAN = -9.01 which corresponds to p = 1 for

 = 2. In other words, it is very likely that the two groups
of curves came from the same distribution of random
functions. In the present context, the swing phase mecha-
nism had no effect on the ankle angular displacement.

To illustrate the statistical detection of differences, we
draw upon a second example involving kinematic curves
from an adult subject pre- and post-surgical replacement
of the ankle. In Figure 11, the pre-surgery curves do not
have well resolved peaks or valleys whereas post-surgi-

cally, distinct peaks and valleys emerge with substantial
magnitude. On the basis of this visual inspection, one
would anticipate that statistical testing should indicate
that the pre- and post-surgery curves are indeed different.
The standardized difference between the registered mean
curves exhibits relatively large fluctuations around 0 and
the retained Fourier coefficients are nearly all positive,
resulting in a positively skewed coefficient distribution.
The adaptive Neyman statistic value for these coefficients
is TAN = 5.99 corresponding to p = 2.6 × 10-5 with  = 6.
Hence, the statistical test indicates that there is strong evi-
dence for rejecting the null hypothesis. It appears that sur-
gery has significantly altered the gait curves. Once
significant statistical difference has been established, one
can then seek to identify specific characteristics which dif-
ferentiate the two sets of curves. For example, the post-sur-
gical curves exhibit a well-defined valley, towards plantar
flexion at toe-off and a strong first dorsiflexion peak in ter-
minal stance. Both of these extrema are absent in the pre-
surgery curves.

Note that we have not said anything about the requisite
sample sizes for the statistical comparison of gait curves.
Clearly, as in unidimensional power analysis [65], the
required sample size depends on the effect size, signifi-
cance level and specified power. To the best of our knowl-
edge, no power-sample size tables have been derived for
the adaptive Neyman statistic at the time of writing. For
insights on the topic, the interested reader can refer to

Comparison of ankle angle curves (left pane) from an above-knee amputee using a prosthetic knee without (solid line) and with (dashed line) a swing phase control mechanismFigure 10
Comparison of ankle angle curves (left pane) from an above-knee amputee using a prosthetic knee without (solid line) and with 
(dashed line) a swing phase control mechanism. The right pane depicts the standardized difference between the registered 
mean curves for the two groups (top graph) and the corresponding first 30 coefficients of its discrete Fourier transform.

m̂
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authoritative works [65,82] on power analysis in the uni-
variate case. The statistical testing demonstrated here can
be extended to compare more than two groups of curves,
using high-dimensional analysis of variance [70]. Further,
when the standardized difference curve is not smooth,
wavelet denoising can be used to identify the frequency
bands where the majority of signal energy is concentrated
[69]. The adaptive Neyman statistic introduced here is
only one of several possibilities for objectively and rigor-
ously testing differences among curves. Other alternatives
include an ANOVA test for functional data [83] and func-
tional canonical correlation analysis [84]. The procedure
outlined in this section formalizes the comparison of gait
curves as coherent entities. The method provides a means
of statistically confirming overall similarities and differ-
ences that we may detect by visual inspection, but may
have difficulty quantifying with conventional time and
frequency domain parameterizations.

Recommendations
We summarize the foregoing discussions by proposing
some heuristic guidelines for dealing with the
aforementioned variability issues in gait variables and
curves. For gait variables or parameters, the suggested
solution pathways are shown in Figure 12.

For gait curves, the suggested procedures for summary and
comparison are summarized in Figure 13. A few

comments beyond the above discussions are in order.
Note that robust estimation is suggested in the summary
of gait curves, as after registration, there may still be curves
which appear atypical, in amplitude or overall shape.
Location estimation of gait curves was only discussed in
the context of the adaptive Neyman test, but is included in
Figure 13 for completeness. In the comparison of curves,
post-hoc analysis would encompass the comparisons of
conventional curve parameterizations or landmarks (e.g.
peaks and valleys), as investigative procedures to explain
the formally established statistical differences or lack
thereof.

Future directions
This paper has only skimmed the tip of the iceberg in the
discussion and demonstration of several promising ana-
lytical approaches for practically addressing variability
issues in gait data summary and comparison. The topics of
curve registration and bootstrap estimates of curve varia-
bility, although not necessarily new to gait data analyses,
have been seldom studied and applied in the gait research
community. The handful of studies to date on these sub-
jects, have provided strong initial evidence for potentially
improving the rigor and objectivity of gait data interpreta-
tion. Examples in the present paper lend further credence
to these methods. Systematic comparisons of these
techniques with conventional parameterizations, sum-
mary statistics, and even expert interpretation of gait data,

Comparison of ankle angle curves (left pane) from one individual before and after total ankle replacement surgeryFigure 11
Comparison of ankle angle curves (left pane) from one individual before and after total ankle replacement surgery. The right 
pane portrays the standardized difference between the registered mean curves of each group (top graph) and the first 30 coef-
ficients of its discrete Fourier transform.
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would lead to a greater appreciation of their relative mer-
its and limitations in gait data analyses. For example,
would the use of registration and bootstrapping to consol-
idate gait data improve the consistency of clinical deci-

sion-making? Given the propensity for variability
inflation in gait data, the topic of robust estimation needs
to be studied in greater depth, in terms of contaminant
influences and possibly adaptive estimators [49].

Heuristic guidelines for summary of gait variables or parametersFigure 12
Heuristic guidelines for summary of gait variables or parameters.

Heuristic guidelines for the summary (on the left) and comparison (on the right) of gait curvesFigure 13
Heuristic guidelines for the summary (on the left) and comparison (on the right) of gait curves.
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Likewise, the rigorous statistical comparison of gait curves
as coherent entities rather than uncorrelated sets of
points, is a promising area of research in gait variability
analyses. This stream of study is only in the embryonic
stages but promises to strengthen the comparison of
quantitative gait data and to complement its subjective
interpretation, a pratice which has been debated in litera-
ture [85-87].
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