
 Open access Proceedings Article DOI:10.1109/AICCSA.2017.9

Managing Wireless Fog Networks using Software-Defined Networking
— Source link

Akram Hakiri, Bassem Sellami, Prithviraj Patil, Pascal Berthou ...+1 more authors

Institutions: École Normale Supérieure, MathWorks, Vanderbilt University

Published on: 31 Oct 2017 - ACS/IEEE International Conference on Computer Systems and Applications

Topics: Wireless network, Edge computing, Wireless mesh network, Wi-Fi array and OpenFlow

Related papers:

 SDFog: A Software Defined Computing Architecture for QoS Aware Service Orchestration over Edge Devices.

 Software defined networking-based vehicular Adhoc Network with Fog Computing

 Software-Defined Fog Network Architecture for IoT

 SDN enabled SPIN routing protocol for wireless sensor networks

 Software-defined QoS provisioning for fog computing advanced wireless sensor networks

Share this paper:

View more about this paper here: https://typeset.io/papers/managing-wireless-fog-networks-using-software-defined-
1sudrcf9jn

https://typeset.io/
https://www.doi.org/10.1109/AICCSA.2017.9
https://typeset.io/papers/managing-wireless-fog-networks-using-software-defined-1sudrcf9jn
https://typeset.io/authors/akram-hakiri-1hdkxibdo2
https://typeset.io/authors/bassem-sellami-1p49n3q0vm
https://typeset.io/authors/prithviraj-patil-1jkrrr12te
https://typeset.io/authors/pascal-berthou-1i5stswdv5
https://typeset.io/institutions/ecole-normale-superieure-2rhqzl2i
https://typeset.io/institutions/mathworks-37mtm1wl
https://typeset.io/institutions/vanderbilt-university-wtum4bdm
https://typeset.io/conferences/acs-ieee-international-conference-on-computer-systems-and-3jp1p9ch
https://typeset.io/topics/wireless-network-36z1b9ct
https://typeset.io/topics/edge-computing-3tx6ap0g
https://typeset.io/topics/wireless-mesh-network-13wnve1v
https://typeset.io/topics/wi-fi-array-3rdbjev5
https://typeset.io/topics/openflow-pvxry64h
https://typeset.io/papers/sdfog-a-software-defined-computing-architecture-for-qos-2ss5w55a0j
https://typeset.io/papers/software-defined-networking-based-vehicular-adhoc-network-2x6ue27788
https://typeset.io/papers/software-defined-fog-network-architecture-for-iot-10hw0as61o
https://typeset.io/papers/sdn-enabled-spin-routing-protocol-for-wireless-sensor-1sbuw85ln7
https://typeset.io/papers/software-defined-qos-provisioning-for-fog-computing-advanced-33d5w95br5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/managing-wireless-fog-networks-using-software-defined-1sudrcf9jn
https://twitter.com/intent/tweet?text=Managing%20Wireless%20Fog%20Networks%20using%20Software-Defined%20Networking&url=https://typeset.io/papers/managing-wireless-fog-networks-using-software-defined-1sudrcf9jn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/managing-wireless-fog-networks-using-software-defined-1sudrcf9jn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/managing-wireless-fog-networks-using-software-defined-1sudrcf9jn
https://typeset.io/papers/managing-wireless-fog-networks-using-software-defined-1sudrcf9jn

HAL Id: hal-01633337
https://hal.archives-ouvertes.fr/hal-01633337

Submitted on 13 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing Wireless Fog Networks using
Software-Defined Networking

Akram Hakiri, Bassem Sellami, Prithviraj Patil, Pascal Berthou, Aniruddha
Gokhale

To cite this version:
Akram Hakiri, Bassem Sellami, Prithviraj Patil, Pascal Berthou, Aniruddha Gokhale. Managing
Wireless Fog Networks using Software-Defined Networking. 2017 IEEE/ACS 14th International Con-
ference on Computer Systems and Applications (AICCSA), Oct 2017, Hammamet, Tunisia. 8p.,
฀10.1109/AICCSA.2017.9฀. ฀hal-01633337฀

https://hal.archives-ouvertes.fr/hal-01633337
https://hal.archives-ouvertes.fr

Managing Wireless Fog Networks using

Software-Defined Networking

Akram Hakiri∗, Bassem Sellami∗, Prithviraj Patil†, Pascal Berthou‡ and Aniruddha Gokhale§

∗University of Carthage, SYSCOM ENIT, ISSAT Mateur, Tunisia.
†The MathWorks Inc, Natick, MA, USA.

‡CNRS, LAAS, UPS, 7 Avenue du colonel Roche, F-31400 Toulouse, France.
§ISIS, Dept of EECS, Vanderbilt University, Nashville, TN, USA.

Corresponding author: akram.hakiri@gmail.com

Abstract—Fog computing has recently emerged as a new
cyber foraging technique to offload resource-intensive tasks from
mobile devices to mobile cloudlets in close proximity to end-
users. Since the one-hop communication in the network edge
is predominantly wireless, Wireless Mesh Networks (WMNs)
are being considered to build wireless fog networks. However,
WMNs use distributed hop-by-hop routing protocols to reflect a
partial visibility of the network, which limits their ability to
perform global network management and monitoring needed
by fog networks. Software Defined Networking (SDN) provides
a centralized control and management of the entire network,
which makes it a good candidate to support fog communication.
Unfortunately, the SDN OpenFlow protocol does not support
any functionalities for wireless fog networks as it is primarily
targeted to wired networks. To address these issues, this paper
presents a SDN-enabled wireless fog architecture that combines
both OpenFlow and distributed wireless protocols. The proposed
solution provides lower latency and efficient load balancing to
offload the network load by enabling programmable fog routers.

Index Terms—Wireless Fog Networks, SDN, Hybrid Control
Plane, Hybrid Routing, Load Balancing.

I. INTRODUCTION

Fog Computing [1] is an emerging technology to bring

cloud computing services, such as communication, computa-

tion, network control and storage, to the network edge. Fog

services can be hosted at users’ edge wireless devices to

improve network reliability and latency, and overcome the

issues stemming from geographically distributed locations in

cloud computing. Additionally, fog computing relies on dis-

coverable, generic, forward-deployed servers located in single-

hop proximity of mobile devices [2]. These servers should be

used to offload expensive computation at the network edge,

perform data filtering to remove unnecessary data from streams

intended for dismounted users, and serve as collection points

for data heading for enterprise repositories. Obviously, the

number of users in the fog network is typically bounded since

we can estimate in advance what the size of the network

is, how big a group of wireless users, similar to traditional

wireless access points in public environment such as airports,

cyber-coffee, etc.

An additional trend reveals that wireless fog devices are

increasingly used locally, e.g., for intra-vehicle communica-

tion [3], intra-sensor communication [4] and smart energy

management in intra-building [5], where data are generated

and consumed locally. To make such and future solutions, fog

computing architectures should enable real-time data sharing

across a range of platform such as mobile severs and embedded

sensor, wirelessly. In this setup, each fog node is envisioned to

act as a wireless router to its neighbors to provide a resilient

network with high capacity data transfer, fault tolerance as well

as higher availability. Meanwhile, Software Defined Network

(SDN) [6] has been envisioned as a new approach to enable

network programmability to test out new protocols. SDN al-

lows creating modular and declarative programming interfaces

across the wireless stack by refactoring the wireless protocols

into processing and decision planes. On one hand, an external

SDN controller that holds all the routing intelligence is used

to centralize the management and the control of the network.

On the other hand, the hardware pipelines in the traditional

routers are replaced by software pipelines holding abstracted

flow tables. The controller can program those flow tables to

enable a customized and fine-grained control of the traffic.

So far, the above two technologies, i.e. Fog computing

and SDN, have been studies separately. The wireless SDN

approaches predominantly focus on using only OpenFlow to

interconnect virtual public mesh network [7] and offloading

the router’s computation to the cloud [8]. Furthermore, SDN

has been used to maintain the session continuity from the

application perspective, ensure mobility management [9], and

maintain the network connectivity [10]. Similarly, fog com-

puting technologies are used to extend the capabilities of

mobile devices by enabling real-time analytics and performing

computational functions at the edge of a network. For example,

Datta et al. [11] introduced a Fog computing architecture

for connected vehicles to optimize data dissemination over

single-hop communication. Hong et al. [12] proposed a high

level programming model for data staging in geographically

distributed mobile devices. Elgendi et al. [13] proposed a SDN

architecture to interconnect distributed fog cloudlets.

Despite the promise, all these efforts used a centralized SDN

control plane to manage isolated islands of fog computing

infrastructure, which may result in adverse consequences to

the reliability and performance due to increased traffic and

can become a single point of failure. Conversely, a distributed

control plane is more responsive to handle network events

because its proximity to the fog island. However, managing

multiple independent distributed controllers can become a hard

task as i) it incur a different set of complexities to provide a

global optimal view of the whole network; and ii) developers

should take care of all the concerns that arise out of distributed

nature of the system including controller synchronization,

controller replication, controller logic partitioning and con-

troller placement. Furthermore, the aforementioned efforts use

OpenFlow protocol to statically establishes paths to every

SDN switch so that it can run centralized routing algorithms,

which is orthogonal to the fundamental distributed wireless

routing functionality. Despite some wireless routing protocols

(e.g. AODV [14], OLSR [15], etc.) can be used to perform

distributed routing, they however incur significant issue: their

routing decisions are taken based on local knowledge of each

router’s neighbors. Thus, this neighborhood reflects only a

partial visibility of the network without providing a global

view of the entire wireless backhaul. In other words, this

local visibility contracts the SDN requirements for centralized

management of the network, as it limits the ability to perform

network traffic engineering tasks and best path selection across

the available SDN-enabled Fog computing devices.

Consequently, we need an intelligent approach that can i)

provide an hybrid control plane across the distributed Fog

computing devices, ii) exploits the advantages of existing

routing protocols to perform flexible and fine-grained flow

control across the wireless fog infrastructure, and iii) selecting

the best forwarding path that increases the radio channel

transmission capacity. To realize such a capability, we present

in this paper an integrated architecture for software-defined

networking and virtualization for wireless fog computing. The

main contribution of this paper are:

• We present a novel architecture to mange wireless fog in-

frastructure using a hybrid SDN control plane to perform

a flexible deployment and management.

• We propose a hybrid SDN routing protocol that combines

the OLSR data forwarding and OpenFlow to perform

global and optimal path selection as well as monitoring

the entire network.

• We propose a network traffic engineering approach to

perform load balancing for offloading fog devices in the

edge network. It also allows transmitting the Signal-to-

Noise Ratio (SNR) to the controller to perform best path

selection based on the highest SNR values.

• We have implemented our solution on a SDN emulation

testbed and evaluated our approach for various QoS

metrics like latency, router overhead, and bandwidth

utilization.

The remainder of this paper is organized as follows: Sec-

tion II details the design rationale and the implementation for

our architectural decisions; Section III evaluates our solution to

validate its claim about flexible data delivery and low-latency

communication; Section IV compares our approach with the

related work; and finally Section V presents concluding re-

marks alluding to lessons learned and future work.

II. ENABLING SDN FOR WIRELESS FOG NETWORKS

In this section we describe the design principles and details

of our SDN-enabled solution for managing fog computing

infrastructure.

A. Architecture

Figure 1 depicts the architecture of the SDN-enabled Wire-

less Fog Network. At the core of this design is the SDN

controller, i.e., the control plane, which communicates with

the underlying fog routers using the OpenFlow protocol. The

controller includes several network modules:

OpenFlow

Wireless Router

OpenFlow

Wireless Router

OpenFlow

wireless router

OpenFlow

Wireless Router

Client

Client

SDN Controller

Client

Partitioning

Remote Access

Configuration

Routing

Traffic

Engineering

Monitoring

Synchronization

Network

Hypervisor

Topology &

Discovery

QoS

OpenFlow Channel

Fig. 1: Architecture of the SDN-enabled Wireless Fog Network

• Routing Module: which implements the shortest path

algorithm to build optimal routing strategy to route pack-

ets across the fog routers. It builds a network graph of

connected routers, removes a node from the graph when a

router leaves the network, and activates/deactivates links

to force packets to follow an optimal path.

• Monitoring module: which enables fine-grained control

and monitoring of the OpenFlow traffic. It also supervises

the path reservation and modification at run-time. This

module allows the controller to query a fog router to

gather individual statistics.

• Traffic engineering module: which supports load bal-

ancing to offload fog devices in case of traffic congestion.

It also performs traffic redirection based on the optimized

routing strategy used in the routing module.

• Partitioning Module: is responsible for slicing the

control plane logic. This module requires the controller

to expose an API to perform flow slicing, i.e, separating

data flow, control flow and meta-controller traffic.

• Host Remote Access: allows the access to remote hosts

to install or initialize remote distributed controllers. It

provides new API to the controller by combining SSH

and SCP through the Python command line tool Fabric.

• Synchronization Module: it used to specify the syn-

chronization mechanism to be used in the control plane,

e.g., how to synchronize the backup controller, i.e. using

Apache Zookeeper.

• Topology & Discovery module: which uses the Link

Layer Discovery Protocol (LLDP) to perform automatic

discovery of joining and leaving fog routers. The con-

troller broadcasts OpenFlow PACKET_OUT messages to

all connected routers, which in turn respond by sending

ARP messages to notify their liveliness.

• Network Hypervisor: it provides the access to the un-

derlying network hypervisors, which are used to slice the

network into control and data slice based on OpenVir-

tex [16].

On the data plane, each fog router forwards OpenFlow

messages using the OpenVSwitch soft router. OpenVSwitch

implements a software pipeline based on flow tables. These

flow tables are composed of simple rules to process packets,

forward them to another table and finally send them to an

output queue or port. Furthermore, the data plane includes

an IP-based forwarding daemon running the OLSR routing

protocol. OpenVSwitch bridges OpenFlow and OLSR using

virtual network interfaces, i.e., br0, br1, etc., to exploit the

capacity of IP networks to route packets via the shortest path.

Additionally, to enable multiple virtual routers inside the same

physical node, the data plane implements two virtual radio

interfaces, i.e. PHY1 and PHY2 shown in Figure 3. Using

virtual radio interfaces allows efficient sharing of the downlink

bandwidth between multiple fog clients and airtime fairness

scheduling with the help of channel sharing.

B. Hybrid SDN Control Plane

To address the limitation of both the centralized and dis-

tributed SDN controllers, we introduced a hybrid control plane

insofar as it helps to decouple the orthogonal distributed

systems concerns from the primary issues related to the

controller. The hybrid SDN approach, depicted in Figure 2, is

designed to make SDN more flexible, reliable, fault-tolerant

without adding complexity to the controllers. Specifically, we

introduces a meta-controller layer based on the bootstrapping

mechanism adopted by operating systems, so that a centralized

controller is deployed at the initialization phase to control and

manage the entire network. Then, in case of a controller failure

or overhead, additional controllers are added at runtime as

required to balance the network performance.

Indeed, our hybrid approach divides a single network into

two logical slides: a control slice that contains one or more

distributed SDN controllers; and ii) a data slice that contains

other clients and routers. Based on the network requirements,

i.e. traffic load and the availability of the other controllers,

it allocates the right number of clients and routers to each

controller, while offering a set of coordination mechanisms

to ensure the network consistency. In particular, these mecha-

nisms include an election process that allows electing the clos-

est controller as a master. Furthermore, this hybrid approach

can increase or decrease the size of the control plane, change

Backup

Controller

H
ie

r
a

rc
h

ic
a

l

c
o

n
tr

o
ll

e
r
s

Elected Controller

Slaves controllers

Meta-controller Layer

Centralized

Controller

Meta-control Traffic

Data Traffic

Control Traffic

Fig. 2: Hybrid Control Plane

the coordination mechanism among the controllers, i.e. using

Apache Zookeeper to adapt to network topology changes or

to dynamic network loads or simply as part of an upgrade.

In the large scale wireless fog infrastructure, SDN will need

to provide services for creating virtual SDNs (vSDN). In such

environments, individual vSDN will be managed by different

independent controllers and may require different control plane

topology. For example, client A and client B lease the one

vSDN each from the SDN service provider C. C hosts both

the vSDN on the same physical network hardware. The client

A wants hierarchical control-plane with POX controllers, while

B wants centralized control-plane with RYU controller. We can

accomplish such requirements easily as follows:

1) Case when vSDN is created before SDN bootstraps

i.e. statically. A network hypervisor first creates two

vSDNs on the data slice. It will then inform the meta-

control layer about switches and hosts used to create

these two vSDNs. It will also provide control-plane

topology requirements of these two vSDNs. The, the

meta-control layer can calculate the total number of

controllers needed to satisfy requirements of both vSDN.

This calculation depends upon the switches used by the

both vSDNs. It can optimize the number of hosts re-

quired for control plane based on switch sharing between

two, for example if vSDNs share a switch between them,

e.g. port 1 of switch S1 goes to first vSDN and port 2

of the same switch goes to other vSDN etc.

2) case when vSDN is created dynamically i.e. after the

SDN is booted. In this case, similar approach is used,

however the meta-control layer needs to use the existing

control plane or scale up if required. This decision

is based on whether control-plane requirement of new

vSDN is met by the existing control-plane. In this way,

the meta-control layer provides more flexibility to the

SDN control plane management.

C. The Routing Approach

The routing approach is shown in Figure 3 and is divided

into two sub logical layers: traditional OpenFlow-enabled SDN

data forwarding at the upper sublayer and the OLSR routing

protocol at the bottom layer. The former is responsible for

communicating OpenFlow policies with the controller in the

upper layer. The latter is responsible for handling IP routing

among the wireless interfaces. We use an in-band approach

to forward signaling packets across different fog routers. This

design decision is motivated by the desire to provide long

distance wireless connectivity among the wireless backhaul.

Additionally, the controller can implement its own routing

algorithms to select the best paths that packets should follow.

The advantages of this composite architecture are twofold:

(i) the IP forwarding using OLSR allows reporting of every

changes in the wireless routers’ topology graph, such as

addition/removal of a fog router and/or wireless link; and

(ii) OLSR routing increases the availability and dependability

of the fog network since even if a SDN controller fails or

becomes unavailable, the IP routing continues to manage the

network. Moreover, packets can be routed according to OLSR

routing tables under the instruction of the SDN controller

by using OpenFlow. The controller configures the wireless

OpenvSwitch

Flow Tables

IP forwarding

OLSR deamon

M
o
n

ito
r
in

g
 A

g
e
n

t

SDN

Controller

OpenFlow protocol

PHY1

CTRL

1

DATA

1

PHY2

CTRL

2

DATA

2

NS-3 MAC Layer

br0br1br3

wlan0

wlan1

tap

Gatway

IP

backbone

Wlan: wireless interface

Tap: network monitoring interface

PHY: Physical Interface

CTRL: Control Interface

DATA: Data interface

Br: Bridged Network Connections

Fig. 3: Hybrid Routing Algorithm

fog routers by adding, removing, and/or updating OpenFlow

rules and retrieves the current network states from the nearest

wireless router. Since OLSR is a proactive routing protocol,

each fog router acquires the topology information from other

nodes using multi-points relays (MPRs). The MPRs are used

to reduce the network overhead and provide the shortest path

routes for all fog routers selected as a destination in the

network. Each router keeps a list of its neighbors, which are

selected by the MPR using the MPR-selector list. Each node

can periodically refresh its routing table, i.e., after exchanging

HELLO messages periodically with other neighbors, and se-

lecting the new shortest path to all destinations. Subsequently,

the SDN controller can retrieve topology information from

its nearby router using the topology discovery service imple-

mented in the controller.

D. Monitoring Fog Devices with OpenFlow

After the startup phase, a client sends a request for a service

from the remote fog server, but there no end-to-end connection

between them. As depicted in circle 2© of Figure 4, the request

is redirected by the fog router towards the controller using

PACKET_IN message. Then, the controller responds to this

request to establish the path for data transfer between the

client and the server. The controller first examines the packet

header and checks whether a new flow entry needs to be

created and new actions should be applied on these packets.

The controller sends a Flow_Mod message (3© in Figure 4) to

the fog router that includes the new actions to perform on the

packets belonging to this entry. Each flow entry contains a set

of instructions to apply immediately to the packet or forward

them to the next match table in the pipeline. Each pipeline

consists of multiple OpenFlow tables which in turn contain

multiple flow entries. A “goto” instruction in the pipeline

indicates the next table where the lookup object is found and

match actions are performed at each stage.

P
a
c
k

e
tI

n

F
lo

w
M

o
d

P
a
c
k

e
tO

u
t

Packet Forward

1

2

3 4

5

SDN controller

Fog Router

Unmatched Packet

Fig. 4: Installation Procedure of a new flow

Meanwhile, the controller injects PACKET_OUT command

messages (4© in Figure 4) into the data plane of the fog

router. PACKET_OUT command messages are not processed

the same way as packets that arrive on standard ports. These

packets jump to the action sets application and instructions are

checked to determine how a packet and its associated data will

be processed. All subsequent packets in both directions, i.e.,

between the client and the server, are matched at the MAC

Ethernet port. At the client side, the data received from the

server are matched against the IP source-destination addresses

and ports.

E. Traffic Engineering

To illustrate traffic engineering, consider a scenario from

Figure 5 depicting four wireless fog routers connected in mesh

SDN

controller

Router 4

Fog server

a

b

c

dClient

Router 2

Router 1

Router 3

e

f

Fig. 5: Load Balancing Scenario

topology. Links a, b, c, d, e, and f establish the communication

paths across all the wireless fog routers.

Algorithm 1 shows the load balancing algorithm to select

the optimal path between the client and the fog server in

Figure 5. Assume that the first optimal path is across the

wireless link a between router 1 and router 4. The controller

has already installed the default parameters to establish the

path a, and periodically discovers the link states. Once the

bandwidth utilization reaches the threshold “Th” and the client

experiences traffic congestion, the load balancing algorithm

detects the network bottleneck and starts calculating new

OpenFlow rules to reroute the traffic across new links, i.e.,

links b, f or e, d. Thereafter, the controller floods all the

ports (i.e., using OpenFlow FlowMod packets) towards the

selected fog routers in the path to the server. The controller

calculates the new optimal path based on the graph topology,

which includes all available routers ℜ as well as the links

ℵ connecting them. Then, it installs new OpenFlow rules to

program the flow entries inside the software pipeline in each

router.

Algorithm 1: Load Balancing Algorithm

Data: Th, ℜ,ℵ

Result: Rerouting traffic to the optimal path

1 installDefaultFlowRules(ℜ);

2 while Listening to LLDP packets do

3 if TrafficCongestion(Th) then

4 calculateNewOFRules(ℜ,ℵ);

5 FloodPackets(ℜ);

6 calculateOptimalPath(source, destination,ℜ,ℵ);

7 if isBestPATH then

8 InstallnewOFRules(ℜ);

9 else

10 goto:

11 calculateNewOFRules(ℜ,ℵ);

12 end

13 else

14 monitoring();

15 end

16 end

Furthermore, we modified the MAC layer of the wireless

devices to allow them sending information about the inter-

ference towards the controller. Algorithm 2 depicts the SNR-

based route optimization approach, which calculates the best

path that has the highest SNR ratio. In particular, rather than

storing the SNR values in the MAC layer, we have modified

the "Maclow" and "MacRxMiddle" modules to allow them

forwarding the SDN radios to the "StaWifiMac" module of

each wireless fog router. Such an approach allows centralizing

information about the interference in the SDN controller side,

by modifying the "WifiNetDevice" and "TabBridge" modules

in the SDN emulator.

Algorithm 2: SNR-based routing optimization algorithm

Data: SNR

Result: Best_SNR_Path(ℜ,ℵ);

1 if ∃ path (SNR) then

2 path←− Find_Best_SNR (rules)

3 return path

4 else

5 rules←− calc_new_rules(SNR);
6 FlowMod_router();
7 best_path(rules);
8 end

Table I depicts the flow entries the controller can program

before traffic congestion and after triggering the load balancer

algorithm. At startup time, the controller has already installed

the data path between router 1 with ID dpID1 and router 4

with ID dpID4. When router 1 receives incoming packets in

its virtual port, i.e., ingress-Port: virtual port 1, the headers

of those packets are inspected to check whether they match

the OpenFlow rules in the flow entries. The action sets are

provided through the physical port of router 1, i.e., output:

To port router 4 and the destination of packets from router 1

is the next nearest hop, i.e., the router 4. Thus, packets from

router 1 should encapsulate in their headers the IP and MAC

destination addresses of router 4. Hence, the flow entries are

injected by the controller to allow forwarding data to router 4

using both its IP, i.e., SetDestIP: IP router 4, and its MAC,

i.e., SetDestMAC: MAC router 4, destination addresses.

OF Before After

OpenFlow router1: dpID1 router1: dpID1
rules router4: dpID4 router2: dpID2

ingress-Port: virtual port 1 router4: dpID4
ingressPort: virtual port 1
ingressPort: virtual port 2

OpenFlow SetDestIP: IP router 4 setDestIP: IP router 2
entries SetDestMAC: MAC router 4 SetDestMAC: MAC router2

output: To port router 4 output: To port router 2
setDestIP: IP router 4
SetDestMAC: MAC router4
output: Port router 4

TABLE I: OpenFlow entries the controller installs inside the

fog routers

Upon the failure of radio link a, the controller installs new

OpenFlow rules to redirect the flow from router 1 to router

4 through router 2 with ID dpID2. Since the new available

forwarding path should pass through router 2, the controller

should program both routers 2 and 4 with the new flow entries

as described in the "After" column of Table I. Since the

controller have a centralized view of the network, he can

easily decide the network bottleneck and switch data to the

best available new path. To do so, the controller calculates

the new rules, i.e., the MAC and IP addresses for the new

fog routers in the new path and send OpenFlow FlowMod

messages to select the new end-to-end path. Thereafter, it

floods all the ports towards the selected fog routers, open

the TCP connection to allow fog clients reach each other’s,

while it continue performing node discovery for monitoring

the network topology.

III. PERFORMANCE EVALUATION

In this section we show results of experiments that validate

our claims.

A. Experimental Setup

To evaluate the performance of our approach, we

implemented a software integration layer that combines

Mininet [17], the reference SDN emulator, along with the

NS3 [18] simulator. The main reason behind developing the

integration layer is to complete the lack of the wireless

routing capabilities in Mininet, which are only supported

by NS3. Conversely, NS3 does not support any feature for

emulating SDN networks natively. This integration layer uses

the NS3 TapBridge functionality to integrate real wireless fog

infrastructure nodes in the SDN environment. Additionally, the

integration layer offers new capabilities to integrate the SDN

controllers along with the OpenFlow-enabled switch, i.e., the

OpenVSwitch [19].

At the controller side, we enhanced the Ryu [20] SDN

controller. As described earlier in Section II-A, we developed

our networking modules with Ryu to perform network moni-

toring and debugging, discovering the topology changes in the

network, recovering the network from failure as well as traffic

engineering throughout the load balancing module.

B. Evaluating the Network Latency

We consider the Round Trip Time (RTT) as the time taken

by a data packet to be sent from a client to the fog server

and the time it takes to be received back by that client. We

report the RTT measurement in Figure 6 after conducting

the experiments multiple times. At the startup phase, the

controller is listening to OpenFlow PACKET_IN messages

from the router to learn about the MAC and IP addresses of

the incoming packets. Then, it sends PACKET_OUT messages

to open the path for those packets. The controller-router delay

during this procedure is close to 10 milliseconds. Once the

setup phase is finished and the traffic is being sent to the

destination, i.e., the controller has already installed OpenFlow

rules into the router, the controller latency decreases to about

3 milliseconds. The controller continues performing topology

discovery using the LLDP discovery protocol. Hence, only

the OpenFlow keep-alive messages are exchanged to check

whether an idle connection occurs to indicate a loss of

controller-router connectivity.

Fig. 6: Round Trip Time Between Client and a Fog Server

Once a new client joins the network, its forwarding rules are

yet unknown to the router. The router blocks the traffic sent

by that new client and queries the controller about the new

rules to apply for the incoming packets. Thereafter, the end-

to-end latency becomes close to 20ms. This latency does not

depend on increasing the number of clients, but due mainly

to the time required by the router to negotiate and process the

new OpenFlow rules with the controller.

These results underscore another benefit of our hybrid

routing approach: additional network processing delays are not

incurred since OpenFlow messages sent by the controller to

install new routing rules do not affect the performance of the

communication.

C. Evaluating the Router Performance

Figure 7 depicts the traffic rates generated by OLSR and

OpenFlow. At startup, the OpenFlow traffic is close to 2KB/s.

This is because the traffic exchanged includes the discovery

messages. At time 32 seconds, new OpenFlow messages are

exchanged between the fog router and the controller. Those

messages include new OpenFlow rules the controller has to

install for programming the flow entries in the fog router.

Hence, the OpenFlow traffic increases during this phase.

Meanwhile, the OLSR traffic remains constant as it does not

involve any message exchange with the controller. All the

fog routers exchange their routing information including the

routing tables and the neighbors tables. After programming

the flow entries that finished at time 46s, the OpenFlow traffic

decreases and the controller continues to listen to the LLDP

packets sent by the fog routers. That is, our hybrid routing

appraoch that uses OLSR for data forwarding performs lower

bandwidth utilization compared to the traditional OpenFlow

Fig. 7: Hybrid Routing Performance

only routing, which is used to exchange data between the SDN

controller and the SDN-enabled fog router. Thus, our hybrid

routing appraoch does not introduce a network overhead in the

fog routers.

D. Evaluating the Load Balancing

To evaluate the performance of the load balancing approach,

we inject a competing flow into router 4 to introduce network

congestion and introduce a performance degradation in this

node. Figure 8 shows the throughout observed in router 4.

Due to buffer overflow, router 4 starts dropping packets and

throughput decreases from 850 kB/s to 200 kB/s and a signif-

icant packet loss is observed as foreseen by our experiments.

At time 50 seconds, the load balancing algorithm at the

controller, which we programmed to be activated when the

bandwidth becomes 200 kB/s, is activated to redirect the

traffic from radio link a to radio links b and f of Figure 5.

The topology discovery module at the controller discovers the

disconnection of the wireless radio between routers 1 and 2,

checks the new available path based on the graph its has and

selects router 2 as new shortest path to the destination. The

new path is extracted from the routing table that is updated

regularly by OLSR protocol. Then, the controller needs to

remove the old OpenFlow rules in router 1, i.e., those used for

sending the traffic across link a, pushing down and installing

new forwarding rules as described in Column 3 of Table I.

The IP and MAC addresses of router 2 are added in the new

rules. The bow in Figure 5 shows the new path selected by

the controller by installing new OpenFlow rules in node 1.

A close inspection of Figure 8 shows that the controller

is able to make traffic adjustment using the load balancing

algorithm. The traffic is balanced among the new wireless

0

200

400

600

800

1000

10 50 90 130 170

T
h

ro
u

g
h

p
u

t
(K

b
/s

)

Time

Load Balancing

Fig. 8: TCP Throughput

links after establishing the new data path. The time delay

required by the controller for deciding the new available path

and forwarding data is close to 10ms. The redirection delay

is composed of the delay required to drop the old rules

from routers and pushing down the new rules in the flow

tables of each router. Our results show that our approach to

provide traffic engineering in wireless fog networks succeeds

in redirecting packets to the new selected path when multiple

wireless hops are available in the fog network.

IV. RELATED WORK

During the past few years, SDN has received unprecedented

attention from the research community for developing network

support for cloud and edge networks. The authors in [21]

proposed using SDN to improve data transfers between mobile

clients and the cloud, by temporarily staging data and transit

them on intermediate Fog computing infrastructure. Likewise,

Liang et al. [22] introduced OpenPipe framework that helps

in virtualizing the radio access with fog computing. Sun et

al. [23] introduced the edgeIoT framework which uses a cen-

tralized SDN controller to facilitate packet forwarding among

fog nodes. He et al. [24] used SDN for the Internet of Vehicles

(IoV) in which fog computing infrastructure is located the

road size to perform vehicle-to-vehicle (V2V), vehicle-to-

infrastructure (V2I), vehicle-to-base station communications.

Lazar et al. [25] and Truong [26] concluded that both SDN

and Fog computing wan work together to accommodate a large

variety of vehicular networks and the Internet of Vehicles

(IoV) as well. Besides, Authors in [27] modified the SDN

switch code to integrate a fog computing prototype and a

built-in controller that leverages the MQTT middleware to

interconnect distributed fog nodes.

Similarly, Bruschi et al. introduced in [28] a SDN-enabled

virtualization platform called OpenVolcano that exploits in-

network programmability capabilities to operate inside fog en-

vironments in a close proximity to end users. OpenVolcano al-

lows infrastructure virtualization and computation offloading,

data staging and forwarding as well as preforming QoS/QoE

provisioning and energy efficiency. Betzler et al. [29] proposes

a novel path forwarding scheme based on SDN with wireless

back-hauling and edge computing capabilities, which achieves

low balancing and external interference mitigation. Huang et

al. [30] studied the QoS provisioning of wireless sensor fog

devices. A fog layer is content-aware as it can collects data

from packet headers as well as the content of the sensing data

to allow a centralized SDN controller to perform define fine-

grained QoS provisioning policies.

All these approaches use a SDN controller to carry the

signaling messages as well as the data packets across the

wireless network. Unlike these efforts, our approach uses

the SDN controller for the control traffic and IP-based data

forwarding to transmit data in hop-by-hop fashion.

V. CONCLUSION

In this paper we presented a SDN-enabled solution to

manage wireless fog networks by blending the OpenFlow and

IP forwarding protocols. Our approach provides a flexible and

programmable wireless data plane for fog networks as well

as intelligent traffic engineering to offload the network. The

performance evaluation shows the efficiency of the proposed

solution to perform lower-latency communication, a flexible

load balancing to select the optimal shortest path, and a lower

network overhead.

Our future work will focus on unifying the radio resource

management and the network resource management by design-

ing a cross-layer architecture that can interoperate between

SDN and Software Defined Radio (SDR) for better spectrum

utilization and channel interactions.

ACKNOWLEDGMENTS

This work was partially funded by the Fulbright Visiting

Scholars Program, the NSF CNS US Ignite 1531079 and

the French National Research Agency (ANR), the French

Defense Agency (DGA) under the project ANR DGA ADN

(ANR-13-ASTR-0024) and the French Space Agency (CNES).

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do

not necessarily reflect the views of DGA, CNES or NSF.

REFERENCES

[1] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios
and security issues,” in Computer Science and Information Systems

(FedCSIS), 2014 Federated Conference on, Sept 2014, pp. 1–8.
[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,

applications and issues,” in Proceedings of the 2015 Workshop on Mobile

Big Data, ser. Mobidata ’15, 2015, pp. 37–42.
[3] K. Kai, W. Cong, and L. Tao, “Fog computing for vehicular ad-hoc

networks: paradigms, scenarios, and issues,” The Journal of China

Universities of Posts and Telecommunications, vol. 23, no. 2, pp. 56
– 96, 2016.

[4] S. Ivanov, S. Balasubramaniam, D. Botvich, and O. B. Akan, “Gravity
gradient routing for information delivery in fog wireless sensor net-
works,” Ad Hoc Networks, vol. 46, pp. 61 – 74, 2016.

[5] M. A. A. Faruque and K. Vatanparvar, “Energy management-as-a-service
over fog computing platform,” IEEE Internet of Things Journal, vol. 3,
no. 2, pp. 161–169, 2016.

[6] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future
of programmable networks,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, 2014.

[7] I. Ahmed, A. Mohammed, and H. Alnuweiri, “On the fairness of
resource allocation in wireless mesh networks: a survey,” Wirel. Netw.,
vol. 19, no. 6, pp. 1451–1468, Aug. 2013.

[8] P. Dely, J. Vestin, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo,
“Cloudmac: An openflow based architecture for 802.11 mac layer
processing in the cloud,” in Globecom Workshops (GC Wkshps), 2012

IEEE, Dec 2012, pp. 186–191.

[9] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise wlans with odin,” in Proceedings

of the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12, 2012, pp. 115–120.

[10] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “Openroads: empowering research in
mobile networks,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1,
pp. 125–126, 2010.

[11] S. Datta, C. Bonnet, and J. Haerri, “Fog computing architecture to enable
consumer centric internet of things services,” in Consumer Electronics

(ISCE), 2015 IEEE International Symposium on, June 2015, pp. 1–2.
[12] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kold-

ehofe, “Mobile fog: A programming model for large-scale applications
on the internet of things,” in Proceedings of the Second ACM SIGCOMM

Workshop on Mobile Cloud Computing, ser. MCC ’13, 2013, pp. 15–20.
[13] I. Elgendi, K. S. Munasinghe, and B. Mcgrath, “A heterogeneous

software defined networking architecture for the tactical edge,” in
2016 Military Communications and Information Systems Conference

(MilCIS), 2016, pp. 1–7.
[14] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance

Vector (AODV) Routing,” Jul. 2003.
[15] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol

(OLSR),” Oct. 2003.
[16] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow,

and G. Parulkar, “Openvirtex: A network hypervisor,” Open Networking

Summit, 2014.
[17] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid

prototyping for software-defined networks,” in Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX,
2010.

[18] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley, “Ns-3 project
goals,” in Proceeding from the 2006 Workshop on Ns-2: The IP Network

Simulator, ser. WNS2 ’06, 2006.
[19] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proceedings

of the 12th USENIX Conference on Networked Systems Design and

Implementation, ser. NSDI’15, 2015.
[20] R. project team, RYU SDN FRAMEWORK. [Online]. Available:

http://osrg.github.io/ryu/resources.html#books
[21] I. Ku, Y. Lu, and M. Gerla, “Software-defined mobile cloud: Architec-

ture, services and use cases,” in International Wireless Communications

and Mobile Computing Conference, IWCMC 2014, Nicosia, Cyprus,

August 4-8, 2014, 2014, pp. 1–6.
[22] K. Liang, L. Zhao, X. Chu, and H. H. Chen, “An integrated architecture

for software defined and virtualized radio access networks with fog
computing,” IEEE Network, vol. 31, no. 1, pp. 80–87, 2017.

[23] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22–29,
2016.

[24] X. He, Z. Ren, C. Shi, and J. Fang, “A novel load balancing strategy
of software-defined cloud/fog networking in the internet of vehicles,”
China Communications, vol. 13, no. Supplement2, pp. 140–149, 2016.

[25] S. A. Lazar and C. E. Stefan, “Future vehicular networks: What control
technologies?” in 2016 International Conference on Communications

(COMM), 2016, pp. 337–340.
[26] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined

networking-based vehicular adhoc network with fog computing,” in 2015

IFIP/IEEE International Symposium on Integrated Network Manage-

ment (IM), 2015, pp. 1202–1207.
[27] Y. Xu, V. Mahendran, and S. Radhakrishnan, “Towards sdn-based fog

computing: Mqtt broker virtualization for effective and reliable delivery,”
in 2016 8th International Conference on Communication Systems and

Networks (COMSNETS), 2016, pp. 1–6.
[28] R. Bruschi, P. Lago, G. Lamanna, C. Lombardo, and S. Mangialardi,

“Openvolcano: An open-source software platform for fog computing,”
in 2016 28th International Teletraffic Congress (ITC 28), vol. 02, 2016,
pp. 22–27.

[29] A. Betzler, F. Quer, D. Camps-Mur, I. Demirkol, and E. Garcia-Villegas,
“On the benefits of wireless sdn in networks of constrained edge de-
vices,” in 2016 European Conference on Networks and Communications

(EuCNC), 2016, pp. 37–41.
[30] L. Huang, G. Li, J. Wu, L. Li, J. Li, and R. Morello, “Software-defined

qos provisioning for fog computing advanced wireless sensor networks,”
in 2016 IEEE SENSORS, 2016, pp. 1–3.

