Manchester Syntax for OWL 1.1*

Matthew Horridge' and Peter F. Patel-Schneider?

! University of Manchester
Email: matthew.horridge@cs.man.ac.uk
2 Bell Labs Research, Alcatel-Lucent
Email: pfps@research.bell-labs.com

Abstract. The Manchester OWL syntax is a user-friendly syntax for
OWL DL, fundamentally based on collecting all information about a
particular class, property, or individual into a single construct, called a
frame. The Manchester OWL syntax has been revised to be a syntax for
OWL 1.1, involving adding the new OWL 1.1 description constructs and
the new axioms allowed in OWL 1.1 ontologies.

1 Introduction

The original OWL Web Ontology Language as defined by W3C has several
syntaxes:

— the normative exchange syntax in RDF/XML [2],
— the so-called abstract syntax for OWL DL [7], and
— an XML syntax [6].

The new version of OWL, OWL 1.1, currently being developed by the W3C OWL
working group (http://www.w3.0org/2007/OWL/wiki/OWL_Working_Group), is
likely to also have several different syntaxes:

— RDF /XML, as before,
— a functional-style syntax, replacing the abstract syntax [1], and
— a revised XML syntax [3].

These syntaxes have differing purposes; for transfer within the Semantic
Web, to assist in formal definition of the semantics, for transfer as XML. None
of them, however, are designed for ease of use by humans when building or
analyzing ontologies. Instead, it was thought that these vital tasks would be
performed using tools that provide a graphical interface for human users. In-
deed there are tools that provide such a graphical interface, including Protégé
(http://protege.stanford.edu/overview/) and Swoop (http://code.google.com/
p/swoop/). However, it was soon understood that some parts of creating an
ontology require the creation and entry of complex descriptions, for example
when creating a class. A useful way of creating such complex descriptions is via

* Alan Rector, Nick Drummond, John Goodwin, Robert Stevens, and Hai W. Wang
were heavily involved in the development of the initial Manchester OWL syntax.

a linear syntax. Similarly presenting these complex descriptions can usefully be
done by using a linear syntax (generally with nice indentation).

The original Manchester OWL syntax [4] was created to meet this need. It
was designed mainly as a syntax for OWL descriptions that would be easier
to write and understand, particularly for non-logicians. The Manchester OWL
syntax is not, however, a natural language syntax for OWL. The Protégé OWL
plugin used the Manchester OWL syntax both when entering and displaying
complex descriptions. The syntax could also be used to dump and read OWL
DL ontologies.

2 Syntax Philosophy

The Manchester OWL syntax tries to minimize syntactic constructs that are
difficult to enter or understand, particularly in description. Complex descrip-
tions use short, intuitive English words instead of logical symbols and the usual
precedence rules to minimize parentheses.

For example,

Student or Person that hasAge all xsd:integer[<= 25]
corresponds to

ObjectUnionOf (Student
ObjectIntersection0f (Person
DataAllValuesFrom(hasAge
Datarange(xsd:integer minInclusive "25'

'"~xsd:integer))))
The Manchester OWL syntax is much more compact and more readable.

The new functional-style syntax for OWL 1.1 has moved from the frame-
like abstract syntax for OWL DL and is, instead, based on axioms. This move
was taken because of problems encountered with the original abstract syntax
having to do with performing operations on OWL ontologies, such as removing
axioms. The functional-style syntax thus corresponds very closely to a potential
mechanism for storing ontologies in tools, the structural specification of OWL
1.1 ontologies [1].

The Manchester OWL syntax, purposefully, retains a object-centered frame-
like organization for ontologies, as a frame organization supports a very natural
way of creating, editing, and viewing ontologies, similar to the presentation of
ontologies in most ontology-building tools, e.g., Protégé 4. IN this organization,
all the information about an object (a class or property or individual) is col-
lected together, both to aid in perusal of ontology documents and to mirror the
way graphical user interfaces like Protégé present information about parts of
ontologies.

Frames and the parts of a frame are uniformly introduced by keywords that
end in colons, allowing for their easy recognition. It is suggested that when
printing ontologies that indentation be used to help with readability, as follows:

Class: Person
SubClass0f: hasAge exactly 1
and hasGender exactly 1
and hasGender only {female , male}

Individual: John

Types: Person

Facts: hasWife Mary,
hasSon Bill,
hasDaughter Susan,
hasAge 33,
hasGender male

SameAs: Jack

3 OWL 1.1

The advent of OWL 1.1 required some changes to the Manchester OWL syntax.

The new constructs in descriptions, qualitative cardinality restrictions and
self restrictions, were easy to handle, just requiring additional syntax, similar to
the existing syntax. Allowing CURIES [5] simply was a matter of extending the
syntax of what used to be local names. Punning mostly required no changes, but
see below for one problem with punning.

OWL 1.1 allows annotations in many more places than were allowed previ-
ously. These annotations are allowed in the Manchester OWL syntax. They are
introduced by an Annotations: keyword, in a way consistent with the other
constructs in the syntax.

The following example shows a class frame with two annotations (a label and
a comment) on the frame itself, one annotation on the subclass axiom to Person
and two annotations on the subclass axiom to owl:Thing.

Class: Student
Annotations: rdfs:label "Student"Qen
rdfs:comment "The class of students"
SubClassOf:
Annotations: dc:creator "Peter"
Person,
Annotations: dc:creator "Matthew"
dc:date "12 May 2007"
owl:Thing

Because annotations break up the flow of information, they can be harmful to
readability.

The syntax here allows for annotations on annotations which are not (yet)
part of OWL 1.1. Extending annotations in this way is one of the issues that the
OWL working group is considering.

Some constructs in OWL 1.1, such as the axioms for n-way disjointness of
classes and properties and n-way difference and sameness of individuals, are not
obviously part of any particular object. In fact, they are equally about each of
the n classes, properties, or individuals involved. Attaching these constructss to
any one frame would be misleading. The Manchester OWL syntax thus breaks
from its general object-centricity with specific syntax for these axioms, as in the
following example.

DifferentIndividuals: f:Jeff f:Emily f:Jack f:Ellen f:Susan

4 Issues

OWL 1.1 does pose a few problems for the Manchester OWL syntax.

The frames for classes, properties, and individuals play a similar role to
declarations in OWL 1.1, and thus the syntax does not have a separate construct
for declarations. However, it can be the case that an ontology adds information
to an imported class, property, or individual. In this case the frame for that class,
property, or individual is not a declaration. Global analysis is thus required to
determine which declarations are required in an ontology.

Moving between the Manchester OWL syntax and the functional-style syntax
and structural specification for OWL 1.1 requires moving between frames and
axioms. This is actually not difficult at all, as each frame construct has a number
of top-level pieces that each correspond directly to an axiom.

For example, the frame

Individual: John
Types: Person
Facts: hasWife Mary,

hasSon Bill,
hasDaughter Susan,
hasAge 33,
hasGender male
SameAs: Jack

corresponds to seven axioms (and possibly one declaration) in the functional-
style syntax, as follows:

Declaration(Individual (John))

ClassAssertion(Person John)
ObjectPropertyAssertion(hasWife John Mary)
ObjectPropertyAssertion(hasSon John Bill)
ObjectPropertyAssertion(hasDaughter John Susan)
DataPropertyAssertion(hasAge John "33"""xsd:integer)
ObjectPropertyAssertion(hasGender John male)
SameIndividuals(John Jack)

Punning between object and data properties (i.e., an object property and a
data property with the same name) could cause ambiguity between object and
data property restrictions. Overcoming this ambiguity would require much extra
vocabulary, resulting in lessened readability. Therefore the Manchester OWL
syntax does not support dumping of ontologies with punned object and data
properties. Duplicating the syntax, as in the OWL 1.1 functional-style syntax,
was another possible solution, but it would have interfered with readability too
much.

5 The Manchester OWL Syntax

Here is a grammar for the Manchester OWL Syntax, with some low-level produc-
tions (e.g., digits) removed. In the grammar, terminals are enclosed in single
quotes () and non-terminals are in bold. Optional parts are in brackets ([])
and repeated parts are in braces (). Some productions are given informally or
by references, indicated with italics.

5.1 CURIES, Names, and Constants

NCName = as defined in XML Namespaces

prefix = NCName

irelative-ref = as defined in RFC-3987

reference = irelative-ref

curie =] [prefix | ;"] reference
Abbreviated-IRI = curie

Full-IRI = ‘<" IRI as defined in RFC-3987 <>’
URI = Full-IRI | Abbreviated-IRI
datatypeURI == URI | ‘integer’ | ‘decimal’ | ‘float’ | ‘string’
owlClassURI m=URI

objectPropertyURI ::= URI

dataPropertyURI := URI

individualURI = URI

annotationURI m=URI

ontologyURI == URI

stringLiteral =" string with \ and " \-escaped ‘"’
integerLiteral = [‘+7|*~] digits

decimalLiteral =[]0] digits ‘.7 digits

exponent = (e’ | B [+ | =) digits
floatingPointLiteral ::= [‘+’|‘-’] (digits [‘.‘digits] [exponent]

| <.’ digits] exponent]) (‘£’ | ‘F’)
typedLiteral = stringLiteral ‘~~’ datatype

typedConstant = stringLiteral | integerLiteral | decimalLiteral
| floatingPointLiteral | typedLiteral

languageTag = a language tag as specified in RFC-4646
untypedConstant ::= stringLiteral | ‘@’ languageTag]
constant = typedConstant | untypedConstant

5.2 Lists, Entities, and Annotations

Because comma-separated lists occur in very many places in the syntax, to save
space the grammar here has two meta-productions, one for lists and one for lists
with annotations in them.
NTList s=NT{*‘, NT}
NTAnnotatedList ::= [annotations] NT { ¢,’ [annotations] NT }

The non-terminal descriptionlList is thus a comma-separated list of de-
scriptions, such as

Person, Student, hasChild exactly 1 Person

and the non-terminal descriptionAnnotationList is thus a comma-separated
list of descriptions each possibly proceeed by annotations, such as

Annotations: dc:creator "Peter"

Person,

Annotations: dc:creator "Matthew"
dc:date "12 May 2007"

owl:Thing
Annotations and entities are formed as follows:
annotation := annotationURI (constant | individualURI | entity)
annotations ::= ‘Annotations:’ annotationAnnotatedList
entity == ‘Datatype’ ‘C datatypeURI)’

| ‘OWLCLass’ ‘(C OWLClassURI *)’

| ‘ObjectProperty’ ‘(" objectPropertyURI)’

| ‘DataProperty’ ‘CC dataPropertyURI °)’

| ‘Individual’ ‘C individualURI)’

| ‘AnnotationProperty’ ‘(" annotationPropertyURI ‘)’

This grammar allows annotations on annotations, which are not (yet) in

OWL 1.1. The current state of annotations in OWL 1.1 corresponds to replacing
the production for annotations with
annotations ::= ‘Annotations:’ annotationList

5.3 Ontology Documents

namespace ::= ‘Namespace:’ [prefix | ‘=" Full-IRI

ontologyDoc ::= { namespace } ontology

ontology = ‘Ontology:’ ontologyURI { import }
{ annotations } { frame }

import n= ‘Import:” URI

frame ::= classFrame | objectPropertyFrame

| dataPropertyFrame | individualFrame | misc

5.4 Property Expressions and Datatypes

inverseObjectProperty = ‘inverse0f’ objectPropertyExpression
objectPropertyExpression ::= objectPropertyURI
| inverseObjectProperty

dataPropertyExpression ::= dataPropertyURI
dataComplementOf ::= ‘not’ dataRange
dataOneOf = ‘{’ constant { ‘,’ constant } ‘}’
datatypeFacet = ‘length’ | ‘minLength’ | ‘maxLength’
| ‘pattern’ | ‘<=7 | <7 | >="|
| ‘digits’ | ‘fraction’
restrictionValue ::= constant

datatypeRestriction ::= datatypeURI
‘[’ datatypeFacet restrictionValue
{ , datatypeFacet restrictionValue } ‘]’
dataRange = datatypeURI | dataComplementOf
| dataOneOf | datatypeRestriction
Note: If the datatypeURI involved is an XML Schema datatype then the
datatypeFacets and restrictionValues have to be valid for that datatype.

5.5 Descriptions

atomic ::= OWLClassURI

| ‘{’ individualURI { ‘,’ individualURI } ‘}’

| ‘C description)’
restriction ::= objectPropertyExpression ‘some’ primary

| objectPropertyExpression ‘only’ primary

| objectPropertyExpression ‘value’ individualURI

| objectPropertyExpression ‘min’ nonNegativeInteger | primary |

| objectPropertyExpression ‘exactly’ nonNegativeInteger [primary]

| objectPropertyExpression ‘max’ nonNegativeInteger [primary |
objectPropertyExpression ‘Self’
dataPropertyExpression ‘some’ dataRange
dataPropertyExpression ‘only’ dataRange
dataPropertyExpression ‘value’ constant
dataPropertyExpression ‘min’ nonNegativeInteger [dataRange]
dataPropertyExpression ‘exactly’ nonNegativeInteger [dataRange]
dataPropertyExpression ‘max’ nonNegativeInteger [dataRange]

primary ::= [‘not’] (restriction | atomic)

conjunction ::= | primary ‘and’ primary { ‘and’ primary }
OWLClassURI ‘that’ [‘not’ | restriction { ‘and’ [‘not’ | restriction }
| primary

description ::= conjunction ‘or’ conjunction { ‘or’ conjunction }

| conjunction

5.6 Class, Property, and Individual Frames

classFrame ::= ‘Class:’ OWLClassURI
{ ‘Annotations:’ annotationAnnotatedList
| ‘SubClass0f:’ descriptionAnnotatedList
| ‘EquivalentTo:’ descriptionAnnotatedList
| ‘DisjointWith:’ descriptionAnnotatedList
| ‘DisjointUnion0f:’ annotations descriptionList }

objectPropertyFrame ::= ‘ObjectProperty:’ objectPropertyURI
{ ‘Annotations:’ annotationAnnotatedList
| ‘Domain:’ descriptionAnnotatedList
| ‘Range:’ descriptionAnnotatedList
| ‘Characteristics:’ objectPropertyCharacter AnnotatedList
| ‘SubProperty0f:’ objectPropertyExpressionAnnotatedList
| ‘EquivalentTo:’ objectPropertyExpressionAnnotatedList
| ‘DisjointWith:’ objectPropertyExpressionAnnotatedList
| ‘Inverses:’ objectPropertyExpressionAnnotatedList
| ‘SubPropertyChain:’ annotations objectPropertyExpression
‘o’ objectPropertyExpression {‘o’ objectPropertyExpression} }

objectPropertyCharacter ::= ‘Functional’ | ‘InverseFunctional’
| ‘Reflexive’ | ‘Irreflexive’
| ‘Symmetric’ | ‘Asymmetric’ | ‘Transitive’

dataPropertyFrame ::= ‘DataProperty:’ dataPropertyURI
{ ‘Annotations:’ annotationAnnotatedList
| ‘Domain:’ descriptionAnnotatedList
| ‘Range:’ dataRangeAnnotatedList
| ‘Characteristics:’ annotations ‘Functional’
| ‘SubProperty0f:’ dataPropertyExpressionAnnotatedList
| ‘EquivalentTo:’ dataPropertyExpressionAnnotatedList
| ‘DisjointWith:’ dataPropertyExpressionAnnotatedList }

objectPropertyFact ::= objectPropertyURI individualURI
dataPropertyFact ::= dataPropertyURI constant
fact ::= [‘not’ | (objectPropertyFact | dataPropertyFact)

individualFrame ::= ‘Individual:’ individualURI
{ ‘Annotations:’ annotationAnnotatedList
| ‘Types:’ descriptionAnnotatedList
| ‘Facts:’ factAnnotatedList
| ‘SameAs:’ individualURIAnnotatedList
| ‘DifferentFrom:’ individualURIAnnotatedList }

5.7 Non-Frame Axioms

misc ::= ‘EquivalentClasses:’ annotations descriptionList
| ‘DisjointClasses:’ annotations descriptionList
| ‘EquivalentObjectProperties:’ annotations objectPropertyList
| ‘DisjointObjectProperties:’ annotations objectPropertyList
| ‘EquivalentDataProperties:’ annotations dataPropertyList
| ‘DisjointDataProperties:’ annotations dataPropertyList
| ‘SameIndividual:’ annotations individualURIList
| ‘DifferentIndividuals:’ annotations individualURIList

6 Example

Here is a portion of an ontology (from the OWL Primer).

Class: Person
Annotations: rdfs:label "Person'"@en
SubClass0f: hasAge exactly 1
and hasGender exactly 1
and hasGender only {female , male}

Class: Man SubClassOf: Person
EquivalentTo: Person that hasGender value male

Class: Parent SubClassOf: Person
EquivalentTo: Person that hasChild min 1 Person

Class: Teenager
EquivalentTo: Person that hasAge some integer[>= 13 , < 20]

Class: Narcissist EquivalentTo: Person that loves Self

ObjectProperty: hasWife
Characteristics: Functional, InverseFunctional,
Irreflexive, Asymmetric
Domain: Person, Man
Range: Person, Woman
SubProperty0f: hasSpouse, loves

Individual: Jeff
Annotations: rdfs:comment "Jeff is a narcissist"
Types: hasChild exactly 2
Facts: hasWife Emily,
hasChild Ellen,
hasAge 77,
loves Jeff

Individual: Jack
Facts: not hasAge "53"""integer

7 Status and Future Work

The Manchester OWL syntax is used in the Protégé 4 ontology development
tool (http://www.co-ode.org/downloads/protege-x/). Protégé 4 can dump and
load OWL 1.1 ontologies in the Manchester OWL syntax. As well, complex
descriptions can be entered using the Manchester OWL syntax. Most of the
examples in this paper were generated using Protégé 4. Although the Manchester
OWL syntax was initially developed to be more human-readable than other
OWL syntaxes, there has as yet been no formal user studies to support this
aspect of the current language.

The OWL Primer (http://www.w3.0rg/2007/OWL/wiki/Primer), under con-
sideration in the W3C OWL Working Group, currently uses the Manchester
OWL syntax as its primary syntax because this syntax is the most readable
OWL syntax. The OWL Working Group may also decide to produce a Working
Group note on the Manchester OWL syntax.

The OWL 1.1 language is still under development. The syntax in this paper
attempts to track the current version of OWL 1.1 with a bit of anticipation
related to annotations. The Manchester OWL syntax will be updated as OWL
1.1 is updated. Protégé 4 currently implements a slightly older version of the
syntax (and has a couple of bugs in this area as well).

References

1. OWL 1.1 web ontology language: Structural specification and functional-style syn-
tax. W3C Working Draft, http://www.w3.org/TR/owll1l-syntax/, 2008.

2. RDF/XML syntax specification (revised). W3C Recommendation,
http://www.w3.org/TR/rdf-syntax-grammar/, 2004.

3. Bernardto Cuenca Grau, Boris Motik, and Peter F. Patel-Schneider. OWL
1.1 web ontology language: XML syntax. W3C Member Submission,
http://www.w3.org/Submission /2006 /SUBM-owl11-xml_syntax-20061219/, 2006.

4. Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, Robert Stevens,
and Hai H. Wang. The Manchester OWL syntax. In OWL Ezxperiences and Direc-
tions Workshop, 2006.

5. CURIE syntax 1.0: A syntax for expressing compact URIs. W3C Working Draft,
http://www.w3.org/TR/2007/WD-curie-20071126/, 2007.

6. OWL web ontology language: XML presentation syntax. W3C Note,
http://www.w3.org/TR/owl-xmlsyntax/, 2003.

7. Peter F. Patel-Schneider, Patrick Hayes, and lan Horrocks. nOWL web on-
tology language: Semantics and abstract syntax. W3C Recommendation,
http://www.w3.org/TR/owl-semantics/, 2004.

