
SUPE568_source.tex; 2/02/2011; 10:23 p. 1Noname manuscript No.
(will be inserted by the editor)

Mandi: A Market Exchange for Trading Utility Computing

Services

Saurabh Kumar Garg, Christian Vecchiola, ·

Rajkumar Buyya

Received: date / Accepted: date

Abstract The recent development in Cloud computing has enabled the realization of

delivering computing as an utility. Many industries such as Amazon and Google have

started offering Cloud services on a “pay as you go” basis. These advances have led

to the evolution of the market infrastructure in the form of a Market Exchange (ME)

that facilitates the trading between consumers and Cloud providers. Such market envi-

ronment eases the trading process by aggregating IT services from a variety of sources,

and allows consumers to easily select them. In this paper we propose a light weight

and platform independent ME framework called “Mandi”, which allows consumers and

providers to trade computing resources according to their requirements. The novelty

of Mandi is that it not only gives its users the flexibility in terms of negotiation pro-

tocol, but also allows the simultaneous co-existence of multiple trading negotiations.

In this paper, we first present the requirements that motivated our design and discuss

how these facilitate the trading of compute resources using multiple market models

(also called negotiation protocols). Finally, we evaluate the performance of the first

prototype of “Mandi” in terms of its scalability.

Keywords Cloud Computing, Utility Computing, Market Exchange, Market Model

1 Introduction

Utility computing paradigms such as Clouds and Grids promise to deliver a highly scal-

able and efficient infrastructure for running IT applications. As a result, the scientific

and industrial communities have started using commercially available infrastructures

to run their applications that can scale up based on demand, rather than maintaining

their own expensive HPC infrastructure.

To ease and control the buying and selling process, there are other players in the

utility grid such as the Cloud market place or the Cloud market exchange [1] [2] which

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Australia
{sgarg, csve, raj}@csse.unimelb.edu.au

SUPE568_source.tex; 2/02/2011; 10:23 p. 2

allow consumers and providers to publish their requirements and goods (compute power

or storage) respectively. The market exchange service provides a shared trading infras-

tructure designed to support different market-oriented systems. It provides transparent

message routing among participants, authenticated messages and logging of messages

for auditing. The market exchange can coordinate the users and lower the delay in ac-

quiring resources. Moreover, the market exchange can help in price control and reduces

the chances of the market being monopolized.

In addition, with the maturity of utility computing in the form of Clouds, both

consumers and providers have to consider complex parameters for trading compute

resources. For instance, users may have sophisticated Quality of Service requirements

such as deadline, resource availability, and security. Moreover, the providers can trade

using multiple negotiation protocol (auction, commodity market, and one-to-one) and

pricing (fixed, variable), since each of them can enormously affect their utility depend-

ing on the current demand and supply. Thus, today’s market exchange needs to support

multiple and concurrent market models to provide flexibility for Cloud consumers and

providers to choose negotiation protocols (market models such as commodity market,

auction) according to their requirements.

Thus, in this paper we propose the design of a market exchange framework called

‘Mandi’1 which specifically addresses the needs of computing consumers and providers.

It support diverse market exchange services [3] including (a) registration, buying and

selling; (b) advertisement of free resources; (c) coexistence of multiple market mod-

els or negotiation protocols such as auctions; and (d) resource brokers and Resource

Management Systems (RMSs) to discover resources/services and their attributes (e.g.,

access price and usage constraints) that meet user QoS requirements.

Currently, there is no real service available for trading resources on a market basis.

The common usage pattern of Cloud Computing resources is to directly rent them

from the provider by using a pay as you go model and a fixed price. Just recently,

Amazon EC2 introduced the spot pricing market, which allow users to utilize a vir-

tual machine as long as its hourly price does not exceed a predefined bid. This new

opportunity, demonstrates the interest from the current providers in using more flex-

ible market models for selling their service, but still does not fully implement the

features envisioned by Mandi, where providers can advertise their services and offer

different models for trading them. Other solutions, such as RightScale, provide sup-

port for transparently using multiple Cloud providers and simplifying the process for

deploying application on different Cloud platforms. This support is mostly concerned

with providing an infrastructure enabling the portability of applications without any

automation for selecting a specific provider on a market basis. Times are mature then,

both from an infrastructure and a market point of view, to establish a global market

where resources providers can advertise their offerings and provide access to them with

flexible negotiation models. In such a market, users should be able to publish their

preferences and also actively initiate processes aimed at comparing and selecting the

best offering suiting their needs, by means of, for example, auctions. Current market

exchange solutions [4][1][2] provide very limited support in this direction especially for

what concerns the selection of models that can be used to trade resources. In many

cases [2][4], a single type of auction is available. Mandi, is a step towards this global

vision and specifically designed to act as a flexible market supporting multiple nego-

tiation protocols (such as auctions and commodity market) and pricing models. It is

1 Mandi is a colloquial term for marketplace in Indian languages

SUPE568_source.tex; 2/02/2011; 10:23 p. 3

a virtual market place where users and resource providers can trade to optimize their

revenue.

In addition, Mandi is developed as a light weight and platform independent ser-

vice oriented market architecture whose features can be easily accessed by current

Grid/Cloud systems without many infrastructural changes. Our proposed architecture

distinguishes itself from other meta-scheduling systems by separating job submission

and monitoring (done by the user brokers such as Nimrod/G [5], GridBus Broker [6]

and GridWay [7]) from resource allocation (done by the market exchange). It also

overcomes some of the short-comings of existing systems by allowing co-existence of

multiple negotiations of different types.

In the next section, we discuss requirements for a market exchange. Then in the sub-

sequent sections, we describe the design and implementation of Mandi with evaluation

and results. Then, we discuss related work on market exchange and their comparison

with architecture of Mandi. Finally, we present the conclusions and future directions.

2 Market Exchange Requirements

The market exchange framework requirements can be divided into two categories: in-

frastructural requirements and market requirements.

2.1 Infrastructural Requirements

1. Scalability: Since the increase in the number of resource requests can effect

the performance of the ME, thus the scalability of the exchange is an issue. The

exchange architecture should be designed such that access to market services can

be least effected by the number of service requests. In addition, it should guarantee

the best efficiency in matching the consumer’s demand and provider’s supply.

2. Interface Requirements and Grid Heterogeneity: The user interface plays

an important role in making the usage of any system easy for a wide variety of

users. Depending on how a user wants to access the market, different types of

interfaces should be provided. In Grids, many market based brokers [7] [6] ease the

process of accessing the Cloud resources. Similarly, on the resource provider side,

heterogeneous resource brokers [8] with market based capabilities are available.

Thus, these brokers should seamlessly access ME’s services whenever required by

invoking simple platform independent exchange APIs.

3. Fault Tolerance: As failure can occur anytime, the ME should be able to resume

its services from the closest point before the failure.

4. Security: To avoid spamming, there should be a security system for user registra-

tion. All the services of the exchange must be accessed by authorized users.

2.2 Market Requirements

1. Multiple Application Models and Compute Services: The user resource

requirements can vary according to their application model. For example, to run

an MPI application, users may want to lease all the compute resources from the

same resource provider, which gives much better bandwidth for communicating

SUPE568_source.tex; 2/02/2011; 10:23 p. 4

processes. Thus, users can have different types of compute resource demands de-

pending on their applications. Similarly, resource providers can advertise different

types of resources such as storage and Virtual Machines (VMs). Thus, the ME

should be generic enough to allow the submission of different types of compute

resource requests and services.

2. Multiple User Objectives: Users may wish to satisfy different objectives at the

same time. Some possible objectives include receiving the results in the minimum

possible time or within a set deadline, reducing the amount of data transfer and

duplication, or ensuring minimum expense for an execution or minimum usage of

allocated quota of resources. Different tasks within an application may be associ-

ated with different objectives and different Quality of Service(QoS) requirements.

The exchange should, therefore, ensure that different matching strategies meeting

different objectives can be employed whenever required.

3. Resource Discovery: As discussed earlier, users may have different resource re-

quirements depending on their application model and Quality of Service needs.

Thus, the exchange should be able to aggregate different compute resources and

should allow users to access and discover them on demand.

4. Support for Multiple Market Models: In Grids, many market based mecha-

nisms have been proposed on different trading or market models such as auctions

and commodity market [9]. Each mechanism, such as the English auction and the

Vickery auction, has different matching and pricing strategies and has their own

advantages and disadvantages. Thus, the exchange should be generic enough to

support as many market models as possible.

5. Coexistence/Isolation of Market Models: Similar to real world markets, the

ME should support concurrent trading of compute services by different negotiation

protocols such as auction. For example, double auction and Vickery auction can

coexist simultaneously and users can participate in each of them.

6. Support for Holding, Joining and Discoverying Auctions: Users can have

requirements that may not be fulfilled by currently available compute resources,

and thus, may want to hold their own auctions and invite bids. Moreover, any user

can discover these auctions and join them if necessary.

The following sections present the architecture, design and implementation of Mandi

market exchange that takes into account the challenges mentioned so far, and abstracts

the heterogeneity of the environment at all levels from the end-user.

3 Mandi Architecture and Design

3.1 Design Considerations based on Requirements

The primary aim of Mandi is to provide a marketplace where the consumer’s resource

requests and the provider’s compute resources can be aggregated and, matched using

different market models. We have summarized how each market exchange’ requirement

is considered in Mandi’s design in the Table 1. The details of some of the main issues

addressed in the design of Mandi are following:

1. Flexibility in Choosing Market Model based on User Objectives: As al-

ready discussed, various market models or negotiation protocols can be used by

users to trade compute resources. Each market model has different requirements [9].

SUPE568_source.tex; 2/02/2011; 10:23 p. 5

For example, in the commodity market model, consumers search the current state of

the market and immediately buy some compute services. This requires synchronous

access to those instances of compute resource. In the case of an auction, there is a

clearing time when the winner selection is done. In addition, any user can request to

hold auctions which require the separation of each auction. Thus, the components

within the Mandi are designed to be modular and cleanly separated on the basis of

functionality. Each of them communicates through the persistence database that

constitutes a synchronization point in the entire system. Different auction proto-

cols are abstracted as “one-sided auction” and “two- sided auction” which can be

extended to add new auction mechanism. Each auction type is characterized by the

winner selection mechanism. The reservation of matched services is separated from

the trading mechanisms to allow the flexibility and coexistence of different trading

models such as commodity market and auction.

2. Handling Heterogeneity in Interaction with Compute Resources and

User Brokers: To allow various Resource Management Systems and brokers to

access market exchange services, Mandi’s architecture needs to provide simple plat-

form independent APIs. Current market exchanges such as Sorma [2] handle the

heterogeneity by implementing a plug-in for each resource management system to

allow resource reservation, job submission, execution and monitoring. These spe-

cial plug-ins can restrict the adoption of exchange since APIs of different resource

providers for job submission, execution and monitoring may get updated with time.

Thus, Mandi is designed to handle mainly the allocation of resources to user appli-

cations, while the job submission, monitoring and execution are left to user brokers.

Mandi’s services are available through platform independent APIs implemented us-

ing Web Services.

3. Fault Tolerance: Mandi can handle failures at two stages: during trading, and

during reservation. To avoid failures during trading, the resources are not reserved,

unless all the tasks of an application are mapped. To avoid allocation of one resource

to multiple applications, one compute resource is allowed to be traded only in one

negotiation.

In addition, the persistence database protects Mandi against failures during trading.

The state of Mandi is periodically saved in the database. Thus, Mandi can resume

its work from the point of failure. he failure during reservation can occur due

to network problems, and over subscription of resources. In the case of network

problem, the failed resource requests will be considered in the next scheduling cycle.

The reservation failure due to resource oversubscription is handled by consumers

and providers.

4. Scalability: To address the scalability issue, most of Mandi’s components work

independently and interact through the database. This facilitates the scalable im-

plementation of Mandi as each component can be distributed across different servers

accessing a shared database. Since, Mandi handles only the resource allocation and

delegates the management of job submission and execution to the participating

brokers and providers’ RMS, thus most of the threads in Mandi are light weight

and short lived.

SUPE568_source.tex; 2/02/2011; 10:23 p. 6

Table 1 Mapping of Market Exchange Requirements to Mandi’s Architectural
Design

Requirements Design Consideration Components

Scalability Each auction thread is short lived and
all information is maintained within
database which can be distributed

Database and Auc-
tion Service

Handling hetero-
geneity

Web Service interface is enable Mandi
to interact with heterogeneous user
schedulers/brokers, Mandi itself is im-
plemented with Java to handle plat-
form heterogeneity

Core implementa-
tion

Fault Tolerance Persistence database for fast recovery Database Service
Security Regular auditing of system, with

authorization and authentication to
check spam users

Accounting Ser-
vice, Authoriza-
tion/Authentication
Service

Coexistence/Isolation
of Market Models

Abstraction of Two-sided and One-
side auction, API’s are available to
users to define new auctions

Metabroker service

Multiple User Ob-
jectives

Auction service allows holding of two
types of objective i.e. response time
and cost

Resource Discovery Information and resource repository Resource and
Database service

Support for Holding,
Joining and Discov-
ering Auctions

APIs are provided for users to allow
such functionalities

Auction, Database
and Metabroker
service

4 Trading Scenario

Figure 1 shows a typical scenario of trading conducted within Mandi. In the example

shown, Mandi conducted a double auction to match bids of multiple resource requests

to the providers’ ask. First, the providers advertise their resources with their price (aka

asks). Consumers submit their bids to show their interest in leasing the advertised

resources. All the bids and asks are stored in the database which will be accessed at

the end of the auction for calculating the winning bids.

The Meta-Broker, which is the main agent of Mandi, coordinates the matching of

asks and bids, and trading between auction participants. At the end of the auction, the

Meta-Broker decides the winners and sends the reservation requests to the Reservation

Service of Mandi. Then, the Reservation Service informs the resource providers and

consumers about the auction result. The information about reservations is stored within

Mandi using the Accounting service.

4.1 Architectural Components (Services)

The architecture of Mandi is inspired by the concepts of the ‘Open Market’ where

any user can join, sell and buy their compute services. Figure 2 shows the service

oriented architecture design of the Mandi and its main services. Mandi is organized

into two main services i.e. the user services, and the core services. The core services

consist of the Meta-Broker Service, the Reservation Service, Accounting service and

the Database Service. Each of the services can run on different machines independently

SUPE568_source.tex; 2/02/2011; 10:23 p. 7

Fig. 1 Trading Scenario of Mandi

Fig. 2 Mandi Architecture

by communicating through the database service. The functionality of each service is

described in the following sections.

SUPE568_source.tex; 2/02/2011; 10:23 p. 8

4.1.1 User Services

The user services hide all the internal components of Mandi and implement all the

services visible to market participants. It is implemented using Web Services which

provide the consumers and resource providers platform independent access to the mar-

ket exchange services. The following market services are provided to users:

1. Registration Service: The users need to register before they can access the ex-

change’s services. The users’ details are maintained in the storage layer, and are

used for authentication and authorization.

2. Auction Service: This service allows a user to join any auction and bid for the

items. The Hold Auction Service allows users to specify the auction types which

they are allowed to initiate. Mandi can conduct two classes of auctions, i.e., one-

sided auction and two-sided auction. In the case of two-sided auctions, multiple

consumers and providers can choose to participate and get matched.

3. Resource Services: Resource Discovery and Reservation Service allow consumers

to find services of their requirements and reserve them. This feature is added to

integrate the commodity market model within Mandi. Advertisement Service allows

resource providers to advertise their cloud resources (number of CPUs and time at

which they will be available).

4. Authentication and Authorization Service: This service allows users to login

into the market exchange and authorized them to access other Mandi services.

4.1.2 Core Services

These services consist of the internal services of the market exchange.

1. Meta-Broker Service: The initiation of any auction is managed by the Meta-

Broker Service. It conducts the auction and announces the auction winner through

Reservation Service. The auction can either be one-sided or two-sided. Thus, two

components i.e. Two-Sided Auction and One-Sided Auction are provided to add

customised auction protocols within Mandi.

2. Reservation Service: It informs the resource providers about the match, reserves

the advertised (matched) service, and gets the reservation ID that is used by con-

sumer to submit his application.

3. Accounting Service: stores the trading information of each user. It also stores

the information about the failed and successful transactions.

4. Database Service: This service is the interface between the persistence database

and other services such as the web interface, the advance reservation and the meta-

broker. Its main objective is to maintain all the trading information such as trans-

action history, users’ details, auctions, compute resources for leasing, and user re-

quests. This enables the recovery of Mandi in the case of unexpected failures, and

is also useful in synchronizing various components of Mandi.

4.2 User Interaction Phases

To understand the interrelationships between Mandi’s services, it is necessary to see

how they interact in different use cases. There are several important use-cases of inter-

action with Mandi. There are two types of users trading in Mandi: a) consumers who

SUPE568_source.tex; 2/02/2011; 10:23 p. 9

Registration

Service

Register

and

Provide

Details

Store

information in

User Catalogue

<<include>>

Reservation

Service

Lease

Resources

user
(user)

provider

Discovery

Service

<<include>>

Resource

Catalogue

Service

Lookup

Service

Advertise

Resources

Mandi System

Meta-broker

Service

Fig. 3 Use Cases of Mandi

need compute resources to execute their applications, and b) resource providers who

are providing their infrastructure as service. The figure 3 gives a comprehensive view

of the uses cases addressed by Mandi. In particular it shows the operations that are

performed by the users by differentiating their double role of consumers and providers

of resources. The figure also shows which are the specific components of Mandi that are

in charge of managing the requests associated to the specific operation displayed. Only

the “Initiate an Auction” use case has been reported briefly due to its interactions with

other components. A complete description of each of these use cases follows.

1. Registration: Every user needs to register and submit their personal details such

as name, organization address, credit card details and contact phone number. After

registration, users are issued a login id and password to access Mandi’s services.

The user details are stored in the persistence database and used mostly for the

accounting and logging purposes. These details can be accessed by other entities

through the User Catalogue component of the Database Service.

2. Resource Advertisement: Any user can advertise the compute resource available

for leasing. Each resource is assigned a unique identifier that is registered in the

Catalogue Service for discovery purposes. The user is required to give information

such as how many CPUs/VMs are available for processing and what are their

configurations. The user also needs to inform Mandi about the trading model to

use for the these resources. If the user selects the commodity market model, then

the leasing price of the resource should be given while advertising the resource. If

the user selects the auction model, then the auction type is needed to be specified by

the user. All the information is stored in the storage layer that is accessed by other

components of Mandi using Resource Catalogue Service for allocation purposes.

3. Service Discovery: To discover resources that are advertised in Mandi for lease,

users can use the Service Discovery Service. To find the resource of their choice,

users just need to give the configuration of compute resources they are interested in

and when they want to lease. Mandi will search the Resource Catalogue Service for

SUPE568_source.tex; 2/02/2011; 10:23 p. 10

the required resources, and send the matched resources with their trading protocol

information to users. Users can then select the resources of their choice and use

either service reservation or join auction for leasing the resource.

4. Leasing Resources in Commodity Market: To allow the integration of com-

modity market model in the Mandi market exchange, the Reservation Service is

added to allow users to directly lease the available resources. A user provides the

identifier of the resources to be leased through Mandi. The Reservation Service

adds the user’s lease request in the Lease Request Catalogue Service which is reg-

ularly accessed by the Reservation Service. The reservation service does the final

allocation of resources by informing the resource provider and adding the infor-

mation in the persistence database for accounting purposes. After allocation, the

leased resource and request are removed from the respective catalogues.

5. Conducting an Auction: To hold an auction, first a user needs to get the types

of auctions currently supported by the market exchange. Then, the user can send

a request to hold the particular type of auction with the relevant details such

as auction item, minimum bid, and auction end time. If the auction item is a

compute resource, the user is required to specify the time that the CPU/VM will

be leased. All the auction requests are stored in the database. Depending on the

chosen auction protocol, an auction thread (with a unique identifier) is initiated

by the Meta-Broker Service. After the initiation of the auction thread, the unique

identifier (AuctionID) is sent back to the user (auction holder). The auction thread

waits till the auction end time is reached. Users who want to bid in the auction

need to provide the AuctionID that can be discovered using Join Auction Service.

Depending on the auction rules, the user is also allowed to resubmit updated bids.

At the end of the auction, the auction thread collects the bids, executes the winner

selection algorithm and sends the reservation request to the Reservation Service.

The Reservation Service creates a contract for accounting purposes, and informs

the participants about the auction outcome.

4.3 Implementation Details

The Class diagram which illustrates the relationship between Mandi’s Objects is de-

picted in Figure 4. The objects in Mandi can be broadly classified into two categories -

entities and workers. This terminology is derived from standard business modelling

processes [10]. Entities exist as information containers representing the properties,

functions and instantaneous states of the various architectural elements. The entities

are stored in the database and updated periodically. Workers represent the internal

functionality of Mandi, that is, they implement the actual logic and manipulate the

entities in order to allocate resources to applications. Therefore, workers can be con-

sidered as active objects and the entities as passive objects. The next sections (Sec-

tion 4.3.1and 4.3.2) take a closer look at the majore entities and workers within Mandi.

4.3.1 Entities

1. User: The User class is used to store information about the participants (con-

sumers and providers) of Mandi. This information is used for authentication and

authorization. From the point of view of the exchange, any user can act as con-

sumer or provider. Thus there is no special need to differentiate between them in

SUPE568_source.tex; 2/02/2011; 10:23 p. 11

Fig. 4 Mandi Class Design Diagram

Mandi. Each user can advertise multiple compute resources, and submit multiple

lease and auction requests.

2. TimeSlot and ComputeResource: The TimeSlot class is used to represent com-

pute resources available for leasing by indicating how many CPUs are available for

how much time. Each “TimeSlot” is associated with one compute resource that is

a representation of a set of CPUs or VM advertised by the resource provider. If a

resource provider has conducted an auction for inviting bids for the Time-Slot, then

the AuctionType and the AuctionID attributes will be used to store the auction’s

information. Each “TimeSlot” can be associated with only one auction.

3. Auction Request: All the information for holding an auction for any commodity

advertised by a user is represented using the AuctionRequest class. Every auction

is identified by a unique identifier i.e. auctionID. In economics, generally bids in

auctions are considered in the form of monetary value. But in the case of computing

service, a bid can be a more generalized form depending on the requirements of an

auction holder. For example, a user holds an auction to find a resource provider

who can lease the compute resource with minimum delay and within the specified

budget. Thus, the user can invite bids in terms of the start time of the resource

lease. Mandi provides facilities to define different types of auctions which can be

implemented by extending the TwoSidedAuction and OneSidedAuction classes.

Each auction mechanism is specified by its winner selection algorithm.

To enable the co-existence of multiple auction based negotiation with different

matching and pricing strategies, the AuctionRequest class contains the “auction-

Type” attribute informing Mandi which auction the user wants to hold.

4. Application: The Application class abstracts the resource requests of the user’s

application that consists of the total number of CPUs required, QoS requirements,

deadline, and budget. The “deadline” attribute represents the urgency of the user to

complete his/her application. The “QoS” is an abstract class that can be extended

SUPE568_source.tex; 2/02/2011; 10:23 p. 12

to codify special application requirements such as bandwidth. Each application

can consist of several jobs that may differ in their resource requirements such as

execution time. To allow users to submit different application model requirements

such as parameter sweep and parallel application, in Mandi, each application is

associated with the “appType” attribute that will be considered while matching

an application with a resource. The Application object also stores the information

about the auction, in which the user (consumer) has opted to participate in leasing

resources for its application. Each application is allowed to participate in only one

auction.

4.3.2 Workers

1. MetaBroker: The MetaBroker is the first component in Mandi to be started that

instantiates other worker components, and manages their life cycles such as Sched-

uler and Monitor. The BrokerStorage is the front end to the persistence system

and implements interfaces used to interact with the database. Another function of

the MetaBroker is to periodically get the list of current auction requests from the

database and start a scheduling thread for clearing each auction.

Fig. 5 Registration Process

2. GridExchangeService: The GridExchangeService is a Web Service interface that

enables users to access various services of Mandi. The services that are available

to users are registration, submission of application and time slots, holding and

joining auctions, and discovering services and getting service reservations. The

GridExchange Service interacts with the BrokerStorage class to access the persis-

tence database. The example sequence of operations for user registration is shown

in Figure 5. The UserBroker sends a registration request to the exchange using

the GridExchange web service with the preferred login name and password. The

GridExchangeService gets the registered user list from the database and checks

whether the user is registered or not. If the user is not registered, it sends a reply

back to the UserBroker with “registration success” message.

SUPE568_source.tex; 2/02/2011; 10:23 p. 13

Fig. 6 Scheduling Sequence

3. Scheduler: For each market model, the Scheduler matches the user application

to the advertised compute resources and decides the price for executing the appli-

cation. Figure 6 shows the basic steps that are performed by the Scheduler. The

Scheduler gets the auction object (in the form of a time-slot or an application) from

the persistent database and the list of all the bids submitted for the auction. Then,

the Scheduler sets the auction status to “closed” to prevent any further bid sub-

mission to the auction. Depending on the auction type and objective, the winning

bid is chosen and the trading price is calculated. The status of the winning bid is

changed to “matched” from “unmatched”. The match is saved to the database in

the form a reservation request which will be used by the Monitor to inform and

reserve resources on the compute resource. The function of the Monitor is described

in detail below.

4. Monitor (aka advance reservation): The Monitor keeps track of all the reser-

vation requests in the database, as shown in the Figure 7. The Monitor periodically

requests all the reservation requests from the persistent database. It uses Web Ser-

vices to send SOAP messages for the resource provider to inform them about the

matching of the user application to the advertised time-slot (compute resource).

In the return, the Monitor gets the reservationID from the provider. The reser-

vationID is used by the consumer to access the compute services offered by the

resource provider. It represents the time-slot reserved and acts as the security key

for accessing the resource. After getting the reservationID, the Monitor will set

all the reservation details in the user application object stored in the persistent

SUPE568_source.tex; 2/02/2011; 10:23 p. 14

database. The consumers (using brokers) can access the reservation information by

using the GridExchangeService.

Fig. 7 Reservation Process

5 Prototype Details

In order to evaluate the performance of Mandi and provide a proof of concept of

its architecture, we implemented a prototype and tested it by using Aneka [11] as a

service provider. In this section, we describe the prototype implementation and discuss

its performance results.

5.1 Mandi

Mandi has been implemented in Java in order to be portable over different platforms

such as the Windows and Unix operative systems. From the implementation point of

view, Mandi is composed of a collection of services that interact by means of a persis-

tence layer represented by the HSQL database. The system is accessible from external

components through a Web Service that has been deployed by using Apache Axis2

on a TOMCAT web server (v.5.5). The Web Service interface makes the interaction

with Mandi platform independent. The current prototype support three types of trad-

ing mechanisms: i)First Bid Sealed Auction; ii) Double Auction, and iii) Commodity

market.

5.2 Aneka (for Automated Advertisement and Reservation of Resources)

On the provider side, Aneka [11] has been used and extended to support the reserva-

tion and advertisement of slots on Mandi. Aneka is a service-oriented middleware for

building Enterprise Clouds. The core component of an Aneka Cloud is the Aneka con-

tainer that represents the runtime environment of distributed applications on Aneka.

SUPE568_source.tex; 2/02/2011; 10:23 p. 15

The container hosts a collection of services through which all the tasks are performed:

scheduling and execution of jobs, security, accounting, and resource reservation. In or-

der to support the requirements of Mandi, a specific and lightweight implementation of

the reservation infrastructure has been integrated into the system. This infrastructure

is composed of a central reservation service that provides global view of the allocation

map of the Cloud and manages the reservation of execution slots, and a collection

of allocation services on each node that keep the track of local map and ensure the

exclusive execution on reserved slots. The reservation service is accessible to external

applications by means of a specific Web Service that exposes the common operations

for obtaining the advertised execution slots and reserving them.

5.3 Client Components

The client are constituted by a simple Web Service client that generates all the resource

requests to Mandi.

Reservation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Mandi
Market Exchange

User

Aneka

Master Node

Slave Node

Allocation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Slave Node

Allocation Service

Scheduling Services

Web Service

Reservation Client

(Dynamically Downloaded)

User

User

Fig. 8 The Topology of Testbed

6 Performance Evaluation

To evaluate the performance of Mandi, two sets of experiments are conducted:

1. Comparison of Mandi with other approaches discussed in the related

works: We compared Mandi with two approaches used in other market exchanges:

– Continous Double Auction (CDA): In this market model, the market place

matches the bids and asks from users continuously. If any bid or ask is un-

matched it is queued up unless matched. This market model is a core part of

many Grid market places such as Sorma project [2].

SUPE568_source.tex; 2/02/2011; 10:23 p. 16

– Commodity Market: In this market model, prices are considered to be fixed.

This model is more reliable since users can know more quickly whether he

will get resources or not. GridEcon [1] is based on the commodity market. To

compare the above approaches with ours, we use three metrics: a) number of

successful scheduling b) delay in scheduling per user, and c) cost incurred per

consumer.

2. Stress Analysis of the Mandi Prototype: In these experiments, we evaluated

the overhead generated by the interaction between the internal components, and

Mandi’s interaction with users requests and provider’s middleware. As discussed

previously, Mandi is designed to handle multiple market models concurrently and

exposes a service oriented interface to handle users’ requests and reservations of

resources. Thus, to evaluate the scalability of Mandi, the first set of experiments

examines CPU and memory load generaged by Mandi as the number of simultane-

ous negotiation increases. However, the performance of Mandi is also determined

by how quickly and how many simultaneous user requests can be handled. Hence,

the second set of experiments evaluates the delay in resource request submission

(which is initiated from the client machine) and resource reservation (which involve

the negotiation of Mandi with providers).

The experimental setup for this evaluation is characterized as follows:

– An instance of Mandi has been deployed on 2.4 GHZ Intel Core Duo CPU and 2 GB

of memory running Windows operating system and Java 1.5. The HSQL Database

was configured to run on the same machine. The performance of Mandi evaluated

using the JProfiler [12] profiling tool.

– The Aneka setup was characterized by one master node and 5 slave nodes. The

reservation infrastructure was configured as follows: the master node hosted the

reservation service while each of the slave nodes contained an instance of the allo-

cation service. Each container has been deployed on a DELL OPTIPLEX GX270

Intel Core 2 CPU 6600 @2.40GHz, with 2 GB of RAM and Microsoft Windows XP

Professional Version 2002 (Service Pack 3). As a result, the reservation infrastruc-

ture can support ten concurrent VMs (one per core). The topology of resources is

given in Figure 8.

6.1 Comparison of Mandi with other Market Exchange Approaches

In this experiment, since our aim is not to evaluate a particular trading protocol but

to evaluate why Mandi like market exchange is much more beneficial, we have used

simple configurations. We consider 5000 consumers who requests market exchange for

scheduling their jobs. Each job has a deadline constraint. Each user is assumed to

submit their jobs with a delay between one to two seconds. We consider 5 resource

providers to advertise their resources to market exchange. For simplicity, it is assumed

that each provider advertises similar resources; each of which is assumed to be capable

of all the submitted jobs. The fixed price asked by provider for their resources is

assumed to $2 per second. Since in general, the commodity prices are higher than

auction prices, it is assumed that both consumer and provider’s bids and asks are

uniformly distributed between ($1,$2). The delay incurred in submitting the request

with resource reservation and accounting to market exchange is considered to be 10

seconds. In Mandi, we gave each consumer and provider three options: a) participate

SUPE568_source.tex; 2/02/2011; 10:23 p. 17

in CDA conducted by Mandi b) buy or sell in the commodity market or c) start a

new first sealed price auction and invite bids from other market participants. Thus,

several experiments are conducted with varied percentage of jobs with tight deadline.

The results of these experiments are presented in Table 2, 3, and 4. From these tables,

we can clearly observe that Mandi resulted in minimum cost to its participants with

minimum delay in comparison to other approaches. CDA resulted in second best cost

for consumers, but due to delay in finding appropriate match many jobs missed their

deadline. The commodity market provides access to resources immediately but does

not guarantee the best price for consumers. Thus, this experiment clearly shows that

when users has complex QoS of service requirement such as deadline or budget, then

a market exchange which provide multiple choices to them is much more viable.

Table 2 Cost incurred to consumers per job ($)

% of Tight Job
Deadlines

Mandi Only CDA Only Commodity
Market

10% 1.285364838 1.36785296 2
30% 1.293125863 1.37674317 2
50% 1.290176674 1.372885465 2
70% 1.293281083 1.377506229 2
90% 1.290952776 1.373555695 2

Table 3 Delay incurred to each consumer in job scheduling(sec)

% of Tight Job
Deadlines

Mandi Only CDA Only Commodity
Market

10% 10 10.8694786 10
30% 10 10.93667214 10
50% 10 10.89998991 10
70% 10 10.94208023 10
90% 10 10.90817005 10

Table 4 Jobs missed their deadline

% of Tight Job
Deadlines

Mandi Only CDA Only Commodity
Market

10% 0 396 0
30% 0 446 0
50% 0 427 0
70% 0 447 0
90% 0 437 0

6.2 Stress Analysis of Mandi Prototype

In order to provide a global evaluation of our system we also conducted a stress analysis.

The analysis of the prototype is aimed at investigating the impact on handling multiple

SUPE568_source.tex; 2/02/2011; 10:23 p. 18

concurrent market models in terms of overhead incurred in terms of memory and CPU

usage, and the communication of Mandi components with user brokers.

6.2.1 Memory Usage and CPU Load

60

50

40

(M
B

)

30

 S
iz

e
 (

M

20H
e

a
p

 S

20H

10

0

10 100 1000 10000

Number of Auctions

(a) Memory Required

60%

50%

40%

a
d

30%

U
 L

o
a

d

20%

C
P

U

20%

10%

0%

10 100 1000 10000

Number of AuctionsNumber of Auctions

(b) CPU Usage

Fig. 9 Performance of Mandi for 50,000 clearance requests

The main threads running in Mandi are: i) MetaBroker, which initiates other

threads and controls the overall execution of Mandi, ii) Monitoring Thread, and iii)

Scheduler Threads, which dynamically vary based on the number of auctions. Since,

the performance of Mandi is highly dependent on the number of auctions conducted

concurrently, we varied the number of auctions from 10 to 10,000 that are conducted

over a period of 5 seconds. For this experiment, we generated 50,000 resource requests

for matching. Each resource request is mapped to an auction using uniform distri-

bution. Figure 9 shows the heap size (memory usage) and CPU usage by the broker

over a period of 5 Second run. In Figure 9(b), the variation in CPU usage (load) is

about 10% with the increase in number of auctions. This is because scheduler threads

conducting auctions are short lived and has comparable CPU needs. The little higher

value of CPU usage registered for the case of 10 auctions is due to the large number

of resource request per auction (50,000/10) needed to be matched.

In Figure 9(a), we can see how the memory usage of Mandi is increasing with the

number of auctions. For instance, the memory usage increases from 32 MB to 56 MB

when the number of auctions increases from 1000 to 10000. Therefore, there is only a 2

times increase in memory usage for 10 times increase in the number of auctions. This is

due to the fact that the auction thread loads resource requests from the database only

when a decision for the auction winner needs to be taken. In addition, the memory

is freed for all resource requests participating in the auction as soon as auction is

completed. This reduces the memory occupied by resource request objects waiting to

be matched.

6.2.2 Overhead in Interaction with Resource Provider and Consumer

Two experiments were performed; one for measuring the resource request submission

time and the other for free slot advertisement and reservation time by the provider mid-

dleware. All interactions between different entities, i.e Mandi, consumer, and provider

SUPE568_source.tex; 2/02/2011; 10:23 p. 19

middleware are using web service interfaces. We used JMeter to generate SOAP mes-

sages for testing the performance of web services. SOAP messages are generated until

no more connection can be initiated with the web service located at Mandi and re-

source provider’s site. To stress test the Mandi’s web service, about 750 concurrent

resource submission requests were generated, while in case of interaction with Aneka

reservation web service about 100 concurrent requests were generated. Table 5 shows

the time taken to serve a request by web service in milliseconds. The time overhead

due to resource request submission is only 11.75 ms. The time taken by Aneka web

service to locate free resource and confirm the reservation is much longer because each

reservation request can trigger the interaction between the reservation service on the

master node and the allocation service on the slave node where the reservation is al-

located. This interaction involves the communication between two different containers

and varies sensibly depending on the network topology.

6.3 Discussion

The performance results indicate good scalability for the current prototype of Mandi

which is able to clear about 50,000 resource requests and 10,000 auctions in about 5

seconds. The major bottleneck in the scalability of Mandi’s architecture is the shared

database. The database constraints the number of multiple and concurrent accesses

which is also the reason that experiments over 50,000 resource requests are not con-

ducted. In addition, the database can be the cause of single point failure of whole

system. Distributed databases which use replication and load balancing techniques can

be helpful in increasing the scalability of the system.

Table 5 Overhead due to Interactions of Mandi

Web Service Re-
quest

Service
Time/request
(ms)

Resource Request
Submission

11.75

Locating Free Re-
sources

30

Resource Reserva-
tion

240

7 Related Work

As discussed earlier, there are many market solutions proposed for trading grid and

cloud resources both from academia and industries. Various industrial solutions from

companies such as Cloud Market and Rightscale more or less act as information and

deployment systems allowing users to search their appropriate resources. While Mandi

is a market place which allow any provider or user to trade using the negotiation

protocol of his/her own choice.

Many research projects focussed on building a market exchange for Grid and Cloud

infrastructures. Among them, the most prominent, which are related to our work,

SUPE568_source.tex; 2/02/2011; 10:23 p. 20

are GridEcon [1], SORMA [2], Ocean Exchange [13], Tycoon [8], Bellagio [14], and

CatNet [4].

Table 6 Comparison between Mandi and Other market exchanges

Characteristics GridEcon Sorma Ocean-
Exchange

Catnet Bellagio Mandi

Negotiation
Protocol

Commodity
Market
and Double
Auction

Combinatorial
Auction

Bilateral
Negotia-
tion

Bargaining Combinatorial
Auction

Commodity
market,
One-sided
auction, and
Two-sided
auction

Pricing Static
and spot
pricing

K-Pricing Static Static and
dynamic
pricing

K-pricing Static and dy-
namic pricing
such as spot
pricing

User/Provider
Role

Bidding Bidding Discover
and negoti-
ate

Bidding Bidding Discover, ini-
tiate or bid
in an auction,
buy in com-
modity mar-
ket

Job Sub-
mission and
Monitoring

yes yes yes yes yes no

Flexibility of
Market Model

no no no no no yes

Many existing systems (such as Bellagio [14] and Tycoon [8]) have restrictive pric-

ing and negotiation policies. Auctions are held at fixed intervals, and only one type

of auction is allowed (e.g. First Price, Second Price [3]). More generic market archi-

tectures such as CatNet, Ocean Exchange, GridEcon and SORMA also support only

one or two market models such as bilateral negotiation and combinatorial auctions.

In SORMA, automated bidding is provided to participate in an auction or to bargain

with a resource provider that may lead to increased delays for consumers who urgently

need resources. The GridEcon project started with a vision to research into a viable

business model for trading services in an open market. The current implementation

of GridEcon only supports the commodity market model. Ocean Exchange currently

supports the commodity market model, while CatNet supports only the bargaining

and contract/net models. Thus, in the previous work, the choice of market model is

decided by the market itself. On the other hand, in Mandi, we leave the choice of ne-

gotiation and pricing protocols to the consumers and providers in the system. This is

crucial as the choice of the market model (such as the auction and commodity model)

and pricing (fixed, variable) can vary from participant to participant depending on

the utility gained. Even major cloud companies such as Amazon [15] currently offer

multiple services based on commodity using different pricing. Thus, Mandi acts as a

neutral entity or middleman giving the flexibility to participants to use any market

model or negotiation protocol for trading their service. Mandi also allows concurrent

and multiple negotiations between market participants.

Moreover, these systems also handle the management of job execution after match-

ing it to appropriate resource. Thus, if a new resource provider wants to participate in

the market, a special plugin is required to be implemented to allow the management

of job submission and execution. In Mandi, the responsibility of actual job submission

and execution is delegated to the user brokers and provider’s resource management

system. In addition, consumers and providers can access Mandi’s services using a plat-

form independent Web Service interface. Thus, our main contribution in this paper

is to propose a novel market-exchange architecture which reflects real-world markets

SUPE568_source.tex; 2/02/2011; 10:23 p. 21

where different participants interact with each other using a trading mechanism of their

choice. The comparison with related work is summarized in Table 6.

8 Conclusion and Future Directions

The presence of IT demand and supply in utility oriented Clouds and Grids led to the

need of a market exchange that can ease the trading process by providing the required

infrastructure for interaction. In this paper, we introduced a novel market exchange

framework named “Mandi” for facilitating such trading. We identified the various tech-

nical and market requirements and challenges in designing such an exchange. We de-

scribed the architecture and the implementation of Mandi and evaluated it with two

experiments: measuring the effect of design choices on the performance of Mandi and

measuring the overhead time incurred in the interaction between the consumer and

the provider through Mandi. The experiments show that Mandi can scale well and

can handle many concurrent trading models and resource requests. We can thus con-

clude that the overhead generated for matching a large number of resource requests in

concurrent auctions is minimal. The only limit to the scalability of the system is the

persistence layer. In order to address this issue, a more efficient database server and a

solid replication infrastructure has to be put in place.

In the current implementation, the accounting and the banking services are not

implemented, thus we aim to implement them in next version of Mandi. In future,

we will like to consider large scale setups using Mandi. We plan to extend the Grid-

bus Broker [6] and integrate various resource providers such as Amazon. In addition,

since in reality there will be multiple exchanges, we will research how they will inter-

communicate and trade with one another.

References

1. J. Altmann, C. Courcoubetis, J. Darlington, and J. Cohen, “GridEcon-The Economic-
Enhanced Next-Generation Internet,” in Proceedings of the 4th International Workshop

on Grid Economics and Business Models, Rennes, France, 2007.
2. D. Neumann, J. Stoesser, A. Anandasivam, and N. Borissov, “Sorma-Building an Apen

Grid Market for Grid Resource Allocation,” in Proceedings of the 4th International Work-

shop on Grid Economics and Business Models, France, 2007.
3. J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented Grids and Utility Computing:

The State-of-the-Art and Future Directions,” Journal of Grid Computing, vol. 6, no. 3,
pp. 255–276, 2008.

4. T. Eymann, M. Reinicke, O. Ardaiz, P. Artigas, F. Freitag, and L. Navarro, “Decentralized
Resource Allocation in Application Layer Networks,” in Proceedings of the 3rd Interna-

tional Symposium on Cluster Computing and the Grid, Tokyo, Japan, 2003.
5. D. Abramson, R. Buyya, and J. Giddy, “A Computational Economy for Grid Computing

and its Implementation in the Nimrod-G Resource Broker,” Future Generation Computing

System, vol. 18, no. 8, pp. 1061–1074, 2002.
6. S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya, “Designing a Resource Broker

for Heterogeneous Grids,” Software-Practice and Experience, vol. 38, no. 8, pp. 793–826,
2008.

7. E. Huedo, R. Montero, I. Llorente, D. Thain, M. Livny, R. van Nieuwpoort, J. Maassen,
T. Kielmann, H. Bal, G. Kola et al., “The GridWay Framework for Adaptive Scheduling
and Execution on Grids,” Software-Practice and Experience, vol. 6, no. 8, 2005.

8. K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. Huberman, “Tycoon: An Implementa-
tion of a Distributed, Market-based Resource Allocation System,” Multiagent and Grid

Systems, vol. 1, no. 3, pp. 169–182, 2005.

SUPE568_source.tex; 2/02/2011; 10:23 p. 22

9. J. Altmann, M. Ion, A. Adel, and B. Mohammed, “A Taxonomy of Grid Business Mod-
els,” in Proceedings of the 4th International Workshop on Grid Economics and Business

Models, Rennes, France, 2007.
10. H. Eriksson and M. Penker, “Business Modeling with UML: Business Patterns at Work,

John Wiley&Sons,” 2001.
11. X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R. Buyya, “Aneka: Next-Generation

Enterprise Grid Platform for e-Science and e-Business Applications,” in Proceedings of

the 3th IEEE International Conference on e-Science and Grid Computing, 2007, pp. 10–
13.

12. J. Shirazi, Java performance tuning. O’Reilly Media, Inc., 2003.
13. P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. Frank, and C. Chokkareddy, “OCEAN:

The Open Computation Exchange and Arbitration Network, A Market Approach to Meta
Computing,” in Proceedings of the 2nd International Symposium on Parallel and Dis-

tributed Computing, Ljubljana, Slovenia, 2003.
14. A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat, “Resource Allocation in Federated

Distributed Computing Infrastructures,” in Proceedings of the 1st Workshop on Operating

System and Architectural Support for the On-demand IT InfraStructure, NV, USA, 2004.
15. Amazon, “Amazon. Elastic Compute Cloud (EC2),” http://www.amazon.com/ec2/.,

2009.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Garg, SK;Vecchiola, C;Buyya, R

Title:
Mandi: a market exchange for trading utility and cloud computing services

Date:
2013-06-01

Citation:
Garg, S. K., Vecchiola, C. & Buyya, R. (2013). Mandi: a market exchange for trading utility
and cloud computing services. JOURNAL OF SUPERCOMPUTING, 64 (3), pp.1153-1174.
https://doi.org/10.1007/s11227-011-0568-6.

Persistent Link:
http://hdl.handle.net/11343/282919

http://hdl.handle.net/11343/282919

