
J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 1–20, 2009.
© IFIP International Federation for Information Processing 2009

MANETKit: Supporting the Dynamic Deployment
and Reconfiguration of Ad-Hoc Routing Protocols

Rajiv Ramdhany, Paul Grace, Geoff Coulson, and David Hutchison

Computing Department,
Lancaster University,

South Drive,
Lancaster, LA1 4WA, UK

{r.ramdhany,gracep,geoff,dh}@comp.lancs.ac.uk

Abstract. The innate dynamicity and complexity of mobile ad-hoc networks
(MANETs) has resulted in numerous ad-hoc routing protocols being proposed.
Furthermore, numerous variants and hybrids continue to be reported in the lit-
erature. This diversity appears to be inherent to the field—it seems unlikely that
there will ever be a ‘one-size-fits-all’ solution to the ad-hoc routing problem.
However, typical deployment environments for ad-hoc routing protocols still
force the choice of a single fixed protocol; and the resultant compromise can
easily lead to sub-optimal performance, depending on current operating condi-
tions. In this paper we address this problem by exploring a framework approach
to the construction and deployment of ad-hoc routing protocols. Our framework
supports the simultaneous deployment of multiple protocols so that MANET
nodes can switch protocols to optimise to current operating conditions. The
framework also supports finer-grained dynamic reconfiguration in terms of pro-
tocol variation and hybridisation. We evaluate our framework by using it to
construct and (simultaneously) deploy two popular ad-hoc routing protocols
(DYMO and OLSR), and also to derive fine-grained variants of these. We
measure the performance and resource overhead of these implementations com-
pared to monolithic ones, and find the comparison to be favourable to our
approach.

Keywords: Ad-hoc routing, protocol frameworks.

1 Introduction

Mobile ad-hoc networks (MANETs) employ routing protocols so that out-of-range
nodes can communicate with each other via intermediate nodes. Unfortunately, it is
hard to design generically-applicable routing protocols in the MANET environment.
This is for two main reasons: First, MANETs are inherently characterised by dynamic
variations in network conditions—for example in terms of network size, topology,
density or mobility. Second, MANETs are subject to a diverse and dynamic set of
application requirements in terms of quality of service (QoS) demands and traffic
patterns (i.e. in terms of messaging, request-reply, multicast, publish-subscribe,
streaming, etc.). In response to these two types of pressures—from both ‘below’ and

2 R. Ramdhany et al.

‘above’—MANET researchers have been proposing an ever-proliferating range of
routing protocols: e.g. AODV [23], DYMO [5], OLSR [8], ZRP [14], TORA [22] and
GPSR [17] to name but a few. However, none of these proposals comes close to pro-
viding optimal routing under the full range of operating conditions encountered in
MANET environments; and it is becoming ever clearer that the ‘one-size-fits-all’ ad-
hoc routing protocol is an impossibility.

We therefore believe that future MANET systems will need to employ multiple ad-
hoc routing protocols and to support switching between these as runtime conditions
dictate. Our view is that this is best achieved through a runtime framework based
approach in which different ad-hoc routing protocols can be dynamically deployed—
both serially and simultaneously—depending on current operating conditions. In our
view, such a framework should further employ a fine-grained compositional approach
so that ad-hoc routing functionality can be built by composing fine-grained building
blocks at runtime. Such an approach would support the creation of variants and hy-
brids of protocols at run-time so that we can adapt to changing runtime conditions in a
finer-grained manner than switching protocols. Such an approach would also support
the sharing of common functionality between protocols (thus reducing both develop-
ment effort and resource overhead), and ease the task of deploying and porting newly-
designed protocols and protocol updates.

In this paper we propose such a framework. The specific goals of the framework,
which is called MANETKit, are:

1. To support the dynamic deployment of ad-hoc routing protocols, both serially

and simultaneously, and also to support their fine-grained dynamic reconfigura-
tion.

2. To do this while achieving comparable performance and resource overhead to
equivalently-functioning monolithic implementations.

3. To further support protocol diversity by shortening the protocol development
cycle and the time to port protocols to different operating systems.

This paper is an in-depth motivation, description and evaluation of MANETKit. The
remainder of the paper is structured as follows. Section 2 makes the case for
MANETKit in more detail, based on an analysis of the design space of ad-hoc routing
protocols and a survey of existing protocol construction frameworks. Section 3 then
provides brief background on the key technologies and concepts underpinning our
framework, Section 4 presents the framework itself, and Section 5 illustrates its use
by means of case study implementations of some popular ad-hoc routing protocols
(OLSR and DYMO). Section 6 then provides an empirical evaluation against the three
goals specified above, and Section 7 offers our conclusions.

2 Related Work

Ad-hoc Routing Protocols. The design space of ad-hoc routing protocols can be
divided into three broad categories:

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 3

• Proactive (or table-driven) protocols (e.g. [8]) continuously evaluate routes from
each node to all other nodes reachable from that node.

• Reactive (or on-demand) protocols (e.g. [5]), on the other hand, discover routes to
destinations only when there is an immediate need for it.

• Hybrid protocols (e.g. [14]) combine aspects of both proactive and reactive
types—e.g. by employing proactive routing within scoped domains and reactive
routing across domains.

As mentioned in the introduction, the pressures that are driving the proliferation of
ad-hoc routing protocols are coming from both ‘below’ and ‘above’. From ‘below’,
the biggest determining factor in which protocol is the most appropriate is the size of
the network: generally, proactive protocols are better suited to smaller networks, reac-
tive ones to larger networks, and hybrid protocols to networks that can structured
hierarchically. But where the network varies in size (e.g. grows), an initial choice of
protocol (e.g. proactive) can become sub-optimal. As another example, a reactive
protocol will do well where pairs of interacting source-destination nodes (i.e. an in-
fluence from ‘above’) tend to be stable, while proactive protocols are typically better
where interaction patterns are more dynamic (although only where the network is not
too big). In addition, peer-to-peer services running over MANETs tend to prefer pro-
active protocols [3]; and applications requiring QoS differentiation can benefit from
intelligent path selection as enabled by multipath routing algorithms like TORA [22]
or Multipath DYMO [10]—although these carry overhead that is unnecessary for
other applications (or application use-cases).

As well as proposing many new protocols in each of the above categories, re-
searchers have since investigated numerous variations on already-existing protocols.
For example, path accumulation [5], pre-emptive routing [12], multi-path routing
[10], power-efficient routing [33], fish-eye routing [34], and numerous styles of
flooding [8, 26, 1, 15] are examples of techniques that can be ‘switched on’ to im-
prove a particular property of an underlying base protocol under certain operating
conditions, but which may be counter-productive under other conditions. Flooding
(which is typically used to propagate control information) is a particularly rich area in
this respect. For example, Multipoint Relaying [8] is good at reducing control over-
head in denser networks, whereas Hazy-Sighted Link State [26] provides better per-
formance as the network grows in diameter. Various epidemic/ gossip algorithms (e.g.
[1] [15]) can also be applied in this context.

The key conclusion is that no single protocol or class of protocols is well suited to
more than a subset of the operating conditions to be found in any given MANET envi-
ronment at any given time.

Protocol Frameworks. We are not alone in recognising the benefits of the frame-
work approach for ad-hoc routing protocols: MANET researchers have recently de-
veloped a number of such frameworks, prominent among which are ASL [18] and
PICA [4]. ASL, for example, enhances underlying system services and provides
MANET-specific APIs such that routing protocols can be developed in user-space.
PICA alternatively provides multi-platform functionality for threading, packet queue
management, socket-event notifications to waiting threads, and network device list-
ing, as well as minimising platform-related differences in socket APIs, and kernel

4 R. Ramdhany et al.

route table manipulation. We have therefore found these useful inspiration for the
design of analogous functionality in MANETKit. In addition, the popular Unik-olsrd
[32] implementation of OLSR supports a plug-in framework which has been well
used by researchers [33, 34]. However, unlike MANETKit, all of these frameworks
offer purely design-time and implementation-time facilities; they do not address the
run-time configuration/ reconfiguration support which we argue is key to the support
of future MANET environments.

As well as MANET-specific frameworks, a range of more general protocol compo-
sition frameworks have been proposed. These fall mainly into two lineages: the
x-kernel [30] to Cactus [2] lineage, and the Ensemble [27] to Appia [24] lineage.
Unfortunately, all such frameworks are of limited relevance to our ad-hoc routing
domain. This is for two main reasons. Firstly, general purpose frameworks do not
address the resource scarcity inherent to MANET environments. Cactus, for example,
is significantly more resource hungry than MANETKit: the C version of Cactus occu-
pies 466KB empty, whereas MANETKit supporting two ad-hoc routing protocols
occupies only 236.6KB (see Section 6.2). Secondly, they focus on traditional end-to-
end protocols such as TCP/IP and do not support or emphasise routing-specific func-
tionality such as that supported by, say, PICA (see above). In addition, they offer poor
support for the fact that application execution and packet forwarding are inherently
concurrent in ad-hoc routing protocol deployments: Appia supports only a single-
threaded concurrency model, and Cactus, while it supports multi-threading, leaves
concurrency control entirely up to the developer. Furthermore, Appia’s strictly lay-
ered model is problematic in the ad-hoc routing protocol domain where cross layer
optimisation is important.

3 Background Concepts Underpinning MANETKit

Before introducing MANETKit, this Section briefly covers essential background that
underpins our framework. This mainly consists of the OpenCom software component
model [9] and its associated notion of ‘component frameworks’ which we use as the
basis of modularisation, composition and dynamic reconfiguration in MANETKit. We
also introduce the ‘CFS pattern’ [31] that we use to structure the implementation of
ad-hoc routing protocols.

OpenCom and Component Frameworks. OpenCom is a run-time component model
that uses a small runtime kernel to support the dynamic loading, unloading, instantia-
tion/destruction, composition/decomposition of lightweight programming language
independent software components. Components have interfaces and receptacles that
describe their points of interaction with other components. OpenCom also supports
so-called reflective meta-models to facilitate the dynamic inspection and reconfigura-
tion of component configurations. In particular, it employs (i) an interface meta-
model to provide runtime information on the interfaces and receptacles supported by a
component; and (ii) an architecture meta-model that offers a generic API through
which the interconnections in a composed set of components can be inspected and
reconfigured. Component frameworks [16] (hereafter, CFs) are domain tailored com-
posite components that accept ‘plug-in’ components that modify or augment the CF’s

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 5

behaviour. Plug-ins are inserted and manipulated by means of an ‘architecture’ reflec-
tive meta-model that is exported by each CF. Crucially, CFs actively maintain their
integrity to avoid ‘illegal’ configurations of plug-ins—attempts to insert and manipu-
late plug-ins are policed by sets of integrity rules registered with the CF. As CFs are
themselves components, they can easily be nested: i.e. more complex CFs can be built
by composing simpler ones; and they can be loaded and unloaded dynamically so that
only functionality that is actually instantiated needs to be paid for. Full detail on
OpenCom and CFs is available in the literature [9].

Fig. 1. MANETKit’s Control-Forward-State (CFS) pattern (interfaces are shown as dots and
receptacles as cups)

The Control-Forward-State Pattern. We have identified an architectural pattern
called Control-Forward-State (‘CFS’ for short; see Fig. 1) that we have found useful in
the structuring of protocol implementations in MANETKit. We first used the pattern in
a different context in our GRIDKIT platform [31]. In the CFS pattern, the Control (C)
element encapsulates the algorithm used to establish and maintain a virtual network
topology (as often maintained by ad-hoc routing protocols); the Forward (F) element
encapsulates a forwarding strategy over this topology; and the State (S) element gives
access to protocol state (such as the neighbour list that embodies the virtual topology).
The key benefit of the CFS pattern is that it naturally captures the typical elements of an
ad-hoc routing protocol and thus allows the diversity such protocols to be treated in a
consistent manner. Furthermore, when protocols are reconfigured it lets the C and F
elements be replaced independently (e.g. maintaining the same overlay but changing the
forwarding strategy, or vice versa). Additionally, the pattern naturally supports vertical
stacking—e.g. for piggybacking data on the packets of a lower CFS element. Such
stacking can be at a finer-grained level than that of entire CFS units: for example, the C
element of a higher level CFS unit may use (and therefore be stacked on) the F element
of a lower level unit. Finally, because a CFS instance is a composition of components, it
is naturally realised as a CF and thus benefits from the above-mentioned integrity main-
tenance machinery that is available to all CFs.

4 The Design of MANETKit

4.1 Overview

MANETKit is an OpenCom CF that supports the development, deployment and
dynamic reconfiguration of ad-hoc routing protocols. It provides the developer with
an extensible set of common ad-hoc routing protocol functionality (encapsulated in

Forward

StateControl

6 R. Ramdhany et al.

components), and tools to configure and reconfigure protocol graphs implemented as
nested CFs. It builds heavily on OpenCom’s support for the dynamic reconfiguration
of component topologies (i.e. the architecture reflective meta-model), and on the
support for nested composition and structural integrity provided by CFs (via integrity
rules). In addition, thanks to OpenCom’s inherent programming language independ-
ence, MANETKit supports the development of protocols in different programming
languages.

The below presentation is structured by first describing and motivating, in Section
4.2, MANETKit’s main CF types and its approach to protocol composition at two
granularity levels: coarse and fine. Section 4.3 then discusses further built-in CFs that
provide library-like functionality for ad-hoc routing protocols, Section 4.4 focuses on
the important issue of concurrency, and Section 4.5 discusses MANETKit’s approach to
dynamic reconfiguration.

4.2 Protocol Composition

Our approach to protocol composition builds directly on the CFS architectural pattern
outlined in Section 3. This naturally leads to a two-level composition model involving
coarse-grained compositions of CFS units (i.e. protocol implementations); and fine-
grained compositions of elements within CFS units. We now discuss these two levels.

Fig. 2. Coarse-grained protocol composition in MANETKit

Coarse-grained Composition. At the coarse-grained level, MANETKit offers two key
(sub)CFs: a so-called ‘System CF’ that encapsulates common system-related functions;
and a generic ‘ManetProtocol CF’ that is instantiated and tailored for each ad-hoc rout-
ing protocol developed in MANETKit. As shown in Fig. 2, a MANETKit deployment
running on a node typically comprises a number of composed ManetProtocol instances
atop a single System instance. ManetProtocol instances may be placed at the same level
or stacked on top of each other.

Manet
Control

CF

Forward State

Forward State

Manet
Control

CF

Forward State

Manet
Control

CF

Forward State Event propa-
gation &
direct calls

ManetProtocol
CFs

System CF

Frame-
workMan-

ager CF

Sys
Control CF

MANETKit CF

ICFMeta
Interface

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 7

Communication between CFS units within a MANETKit deployment—e.g. the flow
of packets or context information—is carried out using events1. The set of events sup-
ported in a given MANETKit deployment is based on an extensible polymorphic ontol-
ogy. To leverage existing efforts in the direction of consolidation of ad-hoc routing
protocols, we employ the increasingly-used PacketBB packet format [7] as the basis of
our event structure.

Rather than being built explicitly, the organisation of a stacking topology of CFS
units is derived automatically based on declarative statements of the types of event
provided by and required by each CFS unit. More specifically, each unit defines a tuple:
<required-events, provided-events> in which ‘required-events’ is the set of event types
that the CF instance is interested in receiving, and ‘provided-events’ is the set it can
generate. On the basis of these event tuples, the Framework Manager (see Fig. 2) auto-
matically generates and maintains an appropriate set of receptacle-to-interface bindings
between protocols such that, if an event e is in the provided-event set of protocol P, and
the required-event set of protocol Q, the Framework Manager creates an OpenCom
binding between interfaces/receptacles on P and Q to enable the passage of events of
type e2. Overall, the resulting loosely hierarchical organisation yields the following
benefits:

• Changes in topology can be automatically updated when the event tuples on CFS
units are changed at run-time (declarative automatic dynamic reconfiguration).

• The scheme naturally supports ‘broadcast’ event propagation (i.e. because multiple
CF instances can ‘require’ an event of a single lower layer instance, or a lower layer
instance can require an event of multiple higher-layer instances).

• It also naturally supports cross-layer interaction that omits layers, and minimises
overhead where events need to pass directly between non-adjacent CF instances
(avoids the need for strict layering).

• The inherent decoupling of protocols enables us to support different concurrency
models without changing protocol implementations (see Section 4.4).

Finally, because it is an OpenCom CF, MANETKit can use the CF notion of integrity
rules to sanity check the configuration defined by the provided-event / required-event
mechanism. For example, we might use this mechanism to ensure that only one instance
of a reactive routing protocol exists in a given MANETKit deployment.

Fine-grained Composition. At the fine-grained level, we structure the individual C, F
and S elements of ManetProtocol instances in terms of component compositions (see
Fig. 3). For the C element, we provide a generic sub-CF called ManetControl which
encapsulates a number of areas of functionality (especially event management) that are

1 As well as using events as discussed in this section, it is possible to make direct calls from one

CFS unit to another. Such calls are typically used for ‘out of band’ purposes such as obtaining
state from another’s S element. Direct calls typically benefit from OpenCom’s ‘interface
meta-model’ to dynamically discover interfaces at runtime.

2 This is a simplification. The design is slightly more complex—for example, to allow compo-
nents to exclusively receive (require) a given event, meaning that other components would not
receive the event even if it were in their required set. A mechanism to avoid loops is included
for cases where a component provides and requires the same event type.

8 R. Ramdhany et al.

expected to be common across a range of ad-hoc routing protocols. For example,
ManetControl’s C component provides generic operations to initialise, start or stop a
protocol’s execution, maintains an Event Registry that supports the above-mentioned
automatic event binding mechanism, and offers operations to push/pop events. The F
and S areas are much more specific to individual protocol implementations; therefore
there is less value in providing richly configurable sub-CFs in those areas.

Fig. 3. Fine-grain protocol composition (i.e. within a ManetProtocol CF instance)

In general, each new ManetProtocol instance comes with default machinery and
settings that can be modified or replaced depending on the developer’s specific re-
quirements. As at the coarse-grained level, subsequent tailoring of a new instance is a
relatively safe process because the integrity rules (architectural constraints) built into all
the generic CFs ensure that attempts to compose them do not violate per-CF structural
invariants: for example, ManetControl rejects attempts to add more than one C element.
Aside from this common functionality, the core logic of a routing protocol implementa-
tion is embodied as a set of Event Source and Event Handler components within the
ManetControl CF (Event Sources only emit events—typically driven by a timer—
whereas Event Handlers process events, and may emit further events in response.) In
general, interaction among these fine-grained components follows the same approach as
interaction at the coarse-grained level: individual CFS elements and sub-elements com-
municate both either via events or via direct calls.

4.3 Other Key Frameworks

We now briefly introduce two further key CFs supported by MANETKit. These are
the above-mentioned System CF, a singleton CF that abstracts over low level systems
oriented functionality; and the Neighbour Detection CF, which provides generic sup-
port for network topology management. Aside from these, MANETKit provides a
wide range of other utility components/CFs such as timers, threadpools, routing tables
and queues.

The System CF. As we have seen, the System CF (see Fig. 4) is a base layer CFS
unit on top of which ManetProtocol instances are stacked. Thanks to MANETKit’s

Control Event-EventSource

IEventSink

IEventSource

EventHandler

EventHandler
IState

IEventSink

IEvent
Source

Forward

State

ManetControl CF

ICFMeta
Interface

Configurator

ContextSensor IContext

Configurator

Context
Sensor

IThreadPool

IScheduler

Demux

IEventIPush

Demux

IPop

IPush IPop
IForward

IQueue

IForward I<Proto>State

IForward IState
.

I<Proto>State dynamic
receptacles

ManetProtocol
CF

IControl

Event
Registry

MsgGenerator

MsgParser

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 9

abstraction of inter-component communication, the System CF itself and ManetProto-
col instances above it, need not be aware of the kernel-user boundary or whether the
System CF itself is implemented as a kernel or a user-space module. The main role of
the System CF is to facilitate portability by acting as a surrogate for OS-specific func-
tionality such as thread management and routing environment initialisation. Its C
component provides OS-independent operations to initialise the host’s routing envi-
ronment (e.g. IP forwarding, ICMP redirects) and provide access to system-oriented
context information to inform dynamic reconfiguration. Its S component provides
operations to manipulate the kernel routing table, and query/list network devices. Its F
component provides send/receive primitives for the exchange of protocol messages
that abstract over the use of multiple network technologies. Both the C and F elements
provide and require events which higher-level ManetProtocol instances can specify in
their event tuples. The raising and capturing of events is ultimately grounded in
mechanisms such as network sockets, packet capture libraries (such as libpcap), and
packet filters (like Netfilter in Linux or the NDIS intermediate driver in Windows).

Fig. 4. The System CF

Neighbour Detection CF. This is a generally-useful ManetProtocol instance that
maintains information on neighbouring nodes that are one or two hops away. Based
on this information, it generates events to notify ManetProtocol instances about link
breaks with lost neighbours for purposes of route invalidation. The information main-
tained by the CF is also useful as a means of optimising flooding approaches such as
Multipoint Relaying. It is designed to be pluggable so that alternative mechanisms can
be applied where appropriate (e.g. HELLO message based, or link layer feedback
based). The CF additionally offers a useful means of disseminating information peri-
odically to neighbours via piggybacking. For instance, AODV implementation might
piggyback routing table entries so that neighbours can learn new routes.

4.4 Concurrency

MANETKit’s concurrency provision is strictly orthogonal to the basic structure of the
framework. This allows the use of alternative concurrency models within the frame-
work, which in turn enables us easily to adapt the framework to different deployment
environments. Regardless of which concurrency model is selected, the user-provided
parts of a ManetProtocol instance can always be assumed to run as a single critical

Forward

IPop ISysState IEvent

Control

 Event

Registry

 Event
Handlers

Event
Sources

State

IForward

FromDevice

IPush IControl

SysControl

IScheduler

IThreadpool
Demux

Configurator

ContextSensor

Queue ICFMeta
Interface

IContext

10 R. Ramdhany et al.

section. This has the beneficial effect that Event Handlers can always be assumed to
run atomically.

In more detail, MANETKit supports the following concurrency models: single-
threaded, thread-per-message or thread-per-ManetProtocol. Note that these designa-
tions apply only to the handling of events originating from ‘below’ the selected
MANETKit instance (i.e. originating from the System CF): regardless of the concur-
rency model in use, it is always possible to use multiple threads to call MANETKit
from above. In the single-threaded model, all ManetProtocol instances rely on a sin-
gle thread hosted by the System CF. In cases where an event needs to be passed to
more than one higher-layer ManetProtocol instance, the same thread is used to call
each ManetProtocol instance in turn. Besides the obvious benefit of the absence of
race conditions, this model potentially allows MANETKit to be applied in primitive
low-resource environments such as sensor motes.

In the thread-per-message model (a slight variant of this, called the thread-per-n-
messages model, is midway between single-threaded and thread-per-message) distinct
threads are used to shepherd individual events up the protocol graph. Where an event
needs to be passed to more than one ManetProtocol instance in the layer above, a new
thread is created for each, thus providing more concurrency than the single threaded
model. Regardless, events are always processed in the same FIFO order so that
ManetProtocol instances sharing the same interest in a set of events all process them
in the same order.

Finally, in the thread-per-ManetProtocol model the ManetProtocol instance instan-
tiates its own dedicated thread and an associated FIFO queue in which to store wait-
ing events. A thread passing an event from a ManetProtocol instance in the layer
below will immediately return, with the event being handed off to the higher-layer
ManetProtocol’s dedicated thread/queue. The thread-per-ManetProtocol model repre-
sents an intermediate point in terms of protocol throughput and resource overhead
between the single-threaded model (low resource overhead and low protocol through-
put) and the thread-per-message model (high resource overhead and high protocol
throughput).

To select either of the single-threaded or thread-per-message model it is only nec-
essary to ask the System CF to use one or other model, and the selected model is
applied throughout the MANETKit instance. The thread-per-ManetProtocol model,
on the other hand, can be selected on a per-ManetProtocol instance basis, and will
function the same regardless of whether the System CF uses one or more threads.

4.5 Reconfiguration Management

The focus of MANETKit is on enabling the dynamic reconfiguration of ad-hoc rout-
ing protocols. A fully comprehensive dynamic reconfiguration solution for ad-hoc
routing protocols would involve a closed-loop control system that comprises: (i) con-
text monitoring, (ii) decision making (based, e.g., on feeding context information to
event-condition-action rules), and (iii) reconfiguration enactment. MANETKit pro-
vides the first and last of these elements (as described next) but leaves the decision
making to higher-level software. For example, a complete reconfigurable system
could be built by combining MANETKit with the decision-making machinery
proposed in [13].

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 11

Context Monitoring. The System CF provides a range of event types relating to
context information such as link quality, signal strength, signal-to-noise ratio, avail-
able bandwidth, CPU utilisation, memory consumption and battery levels.. In addi-
tion, individual ManetProtocol instances can choose to provide protocol-specific
context events. For example, our DYMO implementation provides events relating to
packet loss, and the number of route discoveries initiated per unit time. MANETKit
also provides a ‘concentrator’ for context events in the Framework Manager CF (see
Fig. 2). This acts as a façade for higher-level software and also hides the fact that
some low level context information might be obtained by polling rather than by wait-
ing for events.

Reconfiguration enactment. We support two complementary methods of reconfigu-
ration enactment. The first is by updating the <required-events, provided-events>
tuples of ManetProtocol instances. This enables protocol configurations to be rewired
in a very straightforward, declarative, manner, although only at the coarse granularity
level. The second method is more general and supports the fine granularity level: it
follows the standard OpenCom approach of manipulating component compositions—
i.e. by adding/removing/ replacing components and/or the bindings between them.
This is carried out through standard OpenCom and CF facilities—especially the archi-
tecture reflective model outlined in Section 3. This method of reconfiguration enact-
ment is considerably simplified by the fact that ManetProtocol instances are critical
sections which only a single thread can enter at a time (see above), thus avoiding the
possibility of race conditions between a reconfiguration thread and a protocol process-
ing thread. By ensuring that any current processing of protocol events is completed
before reconfiguration operations are run and further event-shepherding threads are
blocked, the critical section enables the ManetProtocol instance to be in a stable state
in which reconfiguration changes can be safely made. To date our experience has
been that the integrity of almost all reconfiguration operations can be ensured with
this critical section mechanism alone. For very complex reconfigurations (e.g. involv-
ing transactional changes across multiple ManetProtocol instances), we can fall back
on OpenCom’s general-purpose ‘quiescence’ mechanism as described in [25].

The other commonly-cited problematic issue in dynamic reconfiguration is state
management. We have found that the CFS pattern is of considerable help here as it
encourages designers to factor out the state from their protocol designs and put it into
distinct S components. Given this, if it is required to replace one ManetProtocol in-
stance with another while maintaining state it is often enough simply to carry over an
S component from the old ManetProtocol instance to the new one.

5 Implementation Case Studies

To evaluate MANETKit, we have used the framework to implement a number of
popular ad-hoc routing protocols. In the first instance, as a proof of concept, we used
an initial Java-based implementation of MANETKit [35] to build the well-known
AODV protocol. Thereafter, to investigate the feasibility of the framework in more
memory-constrained devices, we developed a C version of MANETKit (based on the
C version of OpenCom) and used this to implement RFC-complaint versions of the

12 R. Ramdhany et al.

popular OLSR and DYMO protocols. In the remainder of this Section, we describe
these implementations. In doing so, we illustrate how MANETKit makes it straight-
forward to develop and deploy ad-hoc routing protocols, and also how variants of
protocols can easily to created via dynamic reconfiguration when current operating
conditions call for them.

5.1 OLSR

MANETKit’s OLSR implementation is built using two separate ManetProtocol in-
stances: one for OLSR proper and the other for an underlying implementation of Mul-
tipoint Relaying (MPR) [8] that is used by OLSR. MPR is responsible for link sensing
and relay selection; and maintains state in its S component to underpin these. The
OLSR ManetProtocol itself uses topology information garnered by MPR and uses the
latter’s forwarding services to flood topology information.

Fig. 5. The composition of OLSR in MANETKit; hatched boxes represent protocol-specific
components (the rest are reusable generic components)

We have found that MANETKit simplifies the process of writing protocols such as
OLSR. This is first manifested in the separation of concerns enabled by software
components in general and the CFS pattern in particular. At a finer granularity than
the OLSR/MPR split we have already seen, reifying protocol state into a distinct S
component clarifies thinking about protocol design (as well as easing dynamic recon-
figuration), and the ManetProtocol CF’s plug-in Event Handlers naturally correspond
to the way designers think about protocols. It is also useful to be able to call
on MANETKit’s range of generic tools such as routing table templates and timers

Forward

IPop

Control

IForwardIPush

IForward

IOLSRState

OLSR State TC Handler

Route Table

IPop

Forward

State Control

Power
Status

IPush

 OLSR CF

System
CF

ISysState

ISysState

IEventSrc

ManetControl CF
Topology Set

SysControl
CF

Forward

Control

IForward

IPush

IMPRState

MPR State

MPR Calcula-
tor

Neigh Table

IForward

ISysState

ManetControl CF
2Hop Neigh

IForward

Hello Handler

TC Generator

Fish Eye

Hysteresis

Link Set

IPop

MPR CF

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 13

(e.g. the latter are needed to drive the OLSR Event Source components that periodi-
cally diffuse link state information across the network).

Having written the elements of the protocol, installing it in a running MANETKit
deployment mainly involves defining the <required-events, provided-events> event
tuples of each ManetProtocol instance. The OLSR instance provides a TC_OUT event
(this corresponds to an outgoing OLSR ‘Topology Change’ message); and it requires
TC_IN, NHOOD_CHANGE (which notifies a change in the underlying network
neighbourhood) and MPR_CHANGE (which notifies a change in relay selection).
The latter two event types are provided by the MPR instance. The MPR instance also
provides and requires, respectively, HELLO_OUT and HELLO_IN events used for
neighbour detection. Finally, the MPR instance requires POWER_STATUS events.
These are context events that report the node’s current battery levels; they are used to
dynamically determine the willingness of a node acting as a relay to forward mes-
sages on behalf of its neighbours, this ‘willingness’ metric being factored into the
relay selection process.

Protocol installation also typically entails reconfiguring some existing MANETKit
CFs and if necessary, loading additional components to satisfy specific requirements.
In the OLSR case, the System CF is instructed to load a ‘NetworkDriver’ component
that requires and provides HELLO_OUT/TC_OUT and HELLO_IN/TC_IN respec-
tively, and a ‘PowerStatus’ component that generates POWER_STATUS events. Fig.
5 illustrates the final protocol composition for our OLSR implementation; only the
major inter-layer bindings are shown in the figure for the sake of clarity.

Protocol Variations. It is straightforward to dynamically reconfigure our OLSR
implementation to better suit new operating conditions it may encounter. We describe
here two such variations: power-aware routing and fish-eye routing. The power-aware
routing variant is based on the algorithm described in [33], and aims to maximise the
lifetime of a route between selected source-sink pairs within the MANET. It operates
by trying to find and maintain the route between such a pair that has the least energy
consumption of all possible routes. It is interesting to consider this as an OLSR varia-
tion because it is only beneficial when an application requires this particular QoS
emphasis (i.e. long lifetime connectivity between particular node pairs). If there is no
such requirement, or the requirement goes away because the application no longer
needs it, the variation becomes a hindrance (and therefore should be removed) be-
cause it incurs significantly more overhead than standard OLSR routing. To imple-
ment and deploy the power-aware routing variation, the MPR ManetProtocol’s Hello
Event Handler and MPR Calculator components (see Fig. 5) are replaced by power-
aware versions (the new Hello Handler determines link costs in terms of transmission
power; and this is then used by the new MPR Calculator to determine relay selection).
In addition, a new ‘ResidualPower’ component is plugged into the OLSR CF to de-
termine the node’s residual battery level and to disseminate this to other nodes in the
network via MPR’s flooding service. Both adding and removing the variant behaviour
is straightforward and incurs only a small number of operations on the OLSR CF’s
architecture reflective meta-model.

The purpose of the fish-eye routing variant [34] is to aid scalability when networks
grow large, albeit at the cost of sub-optimal routing to distant nodes. It basically
works by refreshing topology information more frequently for nearby nodes than for

14 R. Ramdhany et al.

distant nodes. This variant is straightforwardly implemented as a component that
modifies TC_OUT events according to the fish eye strategy outlined above (in fact it
works by modifying the TTL and timing of OLSR Topology Change messages). The
component is specified to both require and provide TC_OUT events; and so all that is
required to insert it into the protocol graph is to request re-evaluation of the automatic
event-tuple-based binding process. This automatically results in the component being
interposed in the path of TC_OUT events passing between the OSLR and MPR CFs.

5.2 DYMO

The MANETKit configuration for DYMO consists of one new ManetProtocol in-
stance atop the System CF. It also uses the Neighbour Detection CF that was dis-
cussed in Section 4.3. The three CF instances are configured using <required-events,
provided-events> tuples is a similar manner to that already described for OLSR. For
example, in order to be kept abreast of network neighbourhood changes, the DYMO
instance requires a NHOOD_CHANGE event from the Neighbour Detection instance
for route invalidation upon link breaks.

Fig. 6. The composition of DYMO in MANETKit; hatched boxes represent protocol-specific
components (the rest are reusable generic components)

As a reactive protocol, DYMO requires additional machinery to ensure that route
discoveries are triggered, and route lifetime updates are performed correctly. To
achieve this, DYMO additionally requires the deployment of a ‘NetLink’ component
in the System CF that is responsible for packet filtering. In implementation, this com-
ponent encapsulates the loading of a kernel module that employs Linux Netfilter
hooks to examine, hold, drop, etc. packets. It provides NO_ROUTE,
ROUTE_UPDATE and SEND_ROUTE_ERR events which are used by the DYMO

Forward

IPop

Control

RE Handler

IForwardIPush

IPush IPop

IForward

IDYMOState

State

Pending RREQ
RERR Handler

UERR Handler
Route Table

ForwardControl

IPop

State
Hello

Handler Neighbour
Table

Forward

State Control

IPush

INeighbour
State ISysStateIForward

IForward

DYMO
ManetProtocol

CF

Neighbour
Detection CF

System
CF

IState

IPop

ISysState

IEventSink

ICFMeta
Interface

ManetControl

Netlink SysControl
CF

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 15

ManetProtocol instance for the purposes of (respectively): route discovery (i.e. when
no route is found for an outgoing data packet), extending existing route lifetimes, and
initiating route invalidations. On successful route discovery, the DYMO ManetProto-
col instance sends a ROUTE_FOUND event to the Netlink component to trigger the
re-injection of buffered packets into the network.

Protocol Variations. The variations we describe for DYMO are optimised flooding
and multi-path DYMO. In the optimised flooding variant, DYMO, like OLSR, uses
Multipoint Relaying as a flooding optimisation. As with OLSR, this curbs the over-
head associated with broadcasting control messages when a network topology is
dense, although at the expense of maintaining additional state. To apply this variation,
the Neighbour Detection CF is simply replaced with the MPR ManetProtocol instance
discussed in the previous Section. If a co-existing OLSR ManetProtocol instance is
already deployed in the framework, then the MPR CF is directly shareable between
the reactive and proactive protocols, thus leading to a leaner deployment.

The goal of the multi-path DYMO variant is to reduce the overhead of frequent
flooding for route discovery, although at the expense of additional route discovery
latency. It works by computing multiple link-disjoint paths within a single route dis-
covery attempt, based on the algorithm described in [10]—with the notable difference
that our implementation is real rather than merely simulator based. To configure
multi-path DYMO, three components need be replaced (please refer to Fig. 6). Firstly,
the S component is replaced with a new version that accommodates the new formats
of protocol messages and routing table entries (a path list now exists for each route).
Secondly, the RE (Routing Element) Event Handler is replaced with a new version
that contains the logic to compute link-disjoint paths. Atomic execution of this Han-
dler (as guaranteed by MANETKit) is essential since duplicate route requests are no
longer systematically discarded but rather processed to find alternative paths. Lastly,
the RERR Event Handler is replaced with a new version that handles route error
events/ messages differently. For instance, on receiving a SEND_ROUTE_ERROR
event, the new Handler only sends a route error message when an alternative path is
not available; otherwise, it installs the new path in the OS’s kernel routing table.

6 Evaluation

Section 5 has illustrated the feasibility of supporting the dynamic deployment of mul-
tiple ad-hoc routing protocols in MANETKit, and also of supporting their fine-
grained dynamic reconfiguration—i.e. the satisfaction of the first of the three goals set
out in the introduction has already been demonstrated. In this Section, we evaluate the
remaining two goals: i.e. Goal 2: to compare favourably with equivalent monolithic
implementations of ad-hoc routing protocols in terms of performance (Section 6.1)
and resource overhead (Section 6.2); and Goal 3: to shorten the protocol development
cycle and time to port protocols (Section 6.3).

All measurements in this Section are based our C/Linux implementation of
MANETKit and use the OLSR and DYMO implementations described above. These
were deployed on a testbed consisted of an 802.11b/g ad-hoc network of 5 nodes (3.2
GHz CPU with 2 GB of RAM) running Ubuntu 7.10, with an Ethernet backplane for

16 R. Ramdhany et al.

testbed management. The 5 nodes are arranged in a linear topology: we used a combi-
nation of MAC-level filtering and the MobiEmu emulator [28] to emulate the required
multi-hop connectivity. We used Unik-olsrd [32] as a comparator for our OLSR im-
plementation, and DYMOUM v0.3 [29] for our DYMO implementation. These were
chosen because they are the two most popular public domain implementations of
these protocols. For comparability we configured our MANETKit implementations
with the single threaded concurrency model and with identical configuration parame-
ters to the comparator implementations (e.g. identical HELLO and Topology Change
intervals, and route hold times).

6.1 Performance

Our metrics for performance are (i) Time to Process Message—i.e. the time taken to
process a protocol message from receipt to completion within an MANETKit de-
ployment (for OLSR this is a Topology Change message; and for DYMO it is a
RREQ message); and (ii) Route Establishment Delay—i.e. the time taken to establish
a route in our testbed environment (for OLSR this is the time taken for a newly-
arrived node arriving at one end of the existing linear network topology to compute a
fully-populated routing table; and for DYMO it is the time taken to perform a route
discovery operation under similar circumstances). The former metric is a ‘micro’
level indicator of the overhead of MANETKit’s componentisation of the protocol
processing path, while the latter is a ‘macro’ measure of control plane performance.

Table 1. Comparative Performance of MANETKit Protocols

 Unik-olrsd MKit-OLSR DYMOUM-0.3 MKit-DYMO

Time to Process Message (ms) 0.045 0.096 0.135 0.122

Route Establishment Delay (ms) 995 1026 37 27.3

Referring to Table 1, we can see that on the Time to Process Message metric, the
measurements are very small in absolute terms and, as such, probably insignificant in
practice. The Route Establishment Delay metric puts them in perspective, and shows
that comparable real-world performance levels are attained by the MANETKit im-
plementations: MANETKit-OLSR is 3% slower than Unik-olrsd in establishing a
route in our experimental set-up, whereas MANETKit-DYMO is actually 35% faster
than DYMOUM-0.3. (Overall, our implementation of OLSR is slower on both met-
rics than the comparator, but our implementation of DYMO is faster on both.) We can
conclude that that MANETKit achieves broadly comparable performance to typical
monolithic implementations.

6.2 Resource Overhead

To assess the relative resource overhead of the MANETKit-implemented protocols
we again compared these implementations with their monolithic counterparts—this
time in terms of the memory footprints incurred. Memory footprint is the most direct
measure of MANETKit’s applicability for resource-constrained mobile nodes.

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 17

As can be deduced from in Table 2, MANETKit-OLSR incurs an 31% memory
overhead over its monolithic competitor, and MANETKit-DYMO incurs an 48%
overhead. These overheads are not surprising and are mainly due, of course, to the
(necessary) inclusion of the generic MANETKit machinery and the OpenCom run-
time (the latter occupies 22KB)3. However, as soon as we accept the premise that it is
important to be able to deploy multiple ad-hoc routing protocols, as argued in this
paper, we can see the benefits of MANETKit: the footprint of deploying the two pro-
tocols together in MANETKit is 8% smaller than the sum of the two monolithic pro-
tocol implementations; and the difference will clearly become more significant still as
more protocols (plus variants) are added and the fixed MANETKit/ OpenCom over-
heads are further amortised. The key conclusion is that the overhead/flexibility trade-
off is already in MANETKit’s favour with only two protocols deployed.

Table 2. Comparative Resource Overhead of MANETKit Protocols

 Unik-olsrd MKit-
OLSR

DYMOUM-
0.3

MKit-
DYMO

Unik-olsrd +
DYMOUM-0.3

MKit OLSR+
MKit-DYMO

Memory Footprint (KB) 136.3 179.0 120.4 178.1 256.7 236.6

6.3 Time Taken to Develop and Port Protocols

We now evaluate the extent to which the MANETKit approach can minimise the time
needed to develop and port protocols. We do this in an indirect manner—specifically,
by measuring the degree of code reuse achieved across the MANETKit implementa-
tions of OLSR and DYMO.

Table 3. Reused generic components in MANET protocol compositions

 Lines of Code OLSR DYMO
System CF Forward 1276 X X
System CF State 702 X X
Netlink (+ Kernel Module) 734 X
Queue 60 X X
Threadpool 591 X X
Timer 228 X X
PacketGenerator 950 X X
PacketParser 795 X X
RouteTable 1046 X X
ManetControl CF 827 X X
NeighbourDetection CF 1684 X
MPRCalculator 745 X

MPRState 3876
4
 X

Configurator 405 X X

Reused Generic Components - 12 12
Protocol-specific Components - 4 5

3 Once a desired configuration has been achieved (which possibly includes multiple protocols)

it is possible to unload the OpenCom kernel to free up memory space. The overheads would
drop in such a case to 15% for OLSR and 30% for DYMO.

4 The reason that this component is so large is that there are several different types of table
involved for the various types of data stored. There remains significant scope for optimising
this figure by coalescing table handling routines.

18 R. Ramdhany et al.

Table 3 gives a coarse-grained indication of the degree of code reuse by listing the
generic components used in the implementation of these protocols (we also show the
size of each component in terms of lines of code). In both cases, the generic compo-
nents outnumber the specific ones (shown at the bottom of Table 3) by a factor of at
least 2. This is especially significant because OLSR and DYMO are considered to be
very different protocols.

Fig. 7 takes a finer-grained perspective by showing the number of lines of code in
the generic, as well as the protocol-specific, components used by each protocol. The
proportion contributed by the reusable components to each protocol’s codebase is
57% for OLSR and 66% for DYMO, indicating a substantial saving in developer
effort. Overall we can see that the structure of MANETKit fosters a significant degree
of code reuse across protocols. Based on these measures and our knowledge of other
ad hoc routing protocols we fully expect to see similar levels of reuse when we add
further protocols to the framework.

0

2000

4000

6000

8000

10000

12000

14000

16000

OLSR DYMO

Protocol-Specific

Reused

Fig. 7. The proportion of reusable code in each protocol

7 Conclusions and Future Work

This paper has proposed a run-time component framework for the implementation,
deployment and dynamic reconfiguration of ad-hoc routing protocols. It is motivated
by the fact that the range of operating conditions under which ad-hoc routing proto-
cols must operate is so diverse and dynamic that it is infeasible for a single protocol to
be optimal under all such conditions. MANETKit therefore supports the serial and
simultaneous deployment of multiple protocols, plus the generation of protocol vari-
ants and hybrids via fine-grained dynamic reconfiguration. It uses the ‘CFS’ pattern
and <required-events, provided-events> tuples to allow protocols to be easily stacked
or composed in a variety of ways and to be straightforwardly dynamically reconfig-
ured. Another novel feature of MANETKit is its use of pluggable concurrency mod-
els, which enables it to be used in a variety of deployment environments with varying
performance/resource trade-offs. MANETKit also helps protocol developers in the
traditional way by providing a rich set of tools specifically tailored to the ad-hoc rout-
ing environment, and by isolating developers from OS specificities (including
whether protocols are implemented in kernel or user space). And it also enables re-
searchers to experiment with protocol optimisation techniques.

Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols 19

We have evaluated MANETKit by showing how it can be used to straightfor-
wardly build and dynamically deploy two major ad-hoc routing protocols (i.e. OLSR
and DYMO) and how these deployments can be variegated in a number of ways to
suit different operating conditions. Furthermore, our empirical evaluation shows that
MANETKit meets our stated goals by achieving comparable performance to mono-
lithic implementations of the same protocols, achieving smaller resource overheads
when more than one protocol is implemented in comparison to the monolithic ap-
proach, and also achieving significant code reuse across protocols (the latter being a
strong indicator that the MANETKit approach should generally shorten protocol de-
velopment and porting time).

In the future, our immediate plans are to integrate MANETKit into a wider dy-
namic reconfiguration environment by incorporating policy-driven decision making.
This will be based on existing work [13], and will also include coordinated distributed
dynamic reconfiguration as well as merely per-node reconfiguration. We also plan to
further explore reconfiguration strategies in real-world application scenarios, to fur-
ther investigate the hybridisation of protocols, and to generally gain more experience
of implementing protocols in the MANETKit environment.

A version of the MANETKit software is available for download from
http://www.comp.lancs.ac.uk/~ramdhany/.

References

1. Bani-Yassein, M., Ould-Khaoua, M.: Applications of probabilistic flooding in MANETs.
International Journal of Ubiquitous Computing and Communication (January 2007)

2. Bhatti, N.T., Schlichting, R.D.: A system for constructing configurable high-level proto-
cols. SIGCOMM Comput. Commun. Rev. 25(4) (October 1995)

3. Borgia, E., Conti, M., Delmastro, F.: Experimental comparison of routing and middleware
solutions for mobile ad-hoc networks: legacy vs cross-layer approach. In: E-WIND 2005
(2005)

4. Calafate, C.M.T., Manzoni, P.: A multi-platform programming interface for protocol de-
velopment. In: 11th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (2003)

5. Chakeres, I., Perkins, C.: Dynamic MANET on-demand (DYMO) routing, draft-ietf-
manet-dymo-11, IETF’s MANET WG (November 2007)

6. Chiang, C.: Routing in clustered multihop, mobile wireless networks with fading channel.
In: IEEE SICON 1997 (October 1997)

7. Clausen, T., Dearlove, C., Jacquet, P.: Generalized MANET message format, draft-ietf-
manet-packetbb-07 internet draft (2007)

8. Clausen, T., Dearlove, C.: Optimized link state routing protocol, v2, draft-ietf-manet-
olsrv2-03.txt

9. Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A., Lee, K., Ueyama, J., Sivaharan, T.:
A generic component model for building systems software. ACM Trans. Comput.
Syst. 26(1) (February 2008)

10. Galvez, J.J., Ruiz, P.M.: Design and performance evaluation of multipath extensions for the
DYMO protocol. In: 32nd IEEE Conference on Local Computer Networks, October 15 (2007)

11. Garlan, D., Monroe, R., Wile, D.: Acme: an architecture description interchange language.
In: Conference of the Centre for Advanced Studies on Collaborative Research, Toronto,
Ontario, Canada (November 1997)

12. Goff, T., Abu-Ghazaleh, N.B., Phatak, D.S., Kahvecioglu, R.: Preemptive routing in ad-
hoc networks. In: MobiCom 2001 (2001)

20 R. Ramdhany et al.

13. Grace, P., Coulson, G., Blair, G.S., Porter, B.: A distributed architecture meta-model for
self-managed middleware. In: ARM 2006 (2006)

14. Haas, Z.J., Pearlman, M.R., Samar, P.: The zone routing protocol (ZRP) for ad-hoc net-
works, Internet Draft, draft-ietf-manet-zone-zrp-04.txt (July 2002)

15. Haas, Z.J., Halpern, J.Y., Li, L.: Gossip-based ad-hoc routing. In: INFOCOM 2002 (2002)
16. Joolia, A., Batista, T., Coulson, G., Gomes, A.T.: Mapping ADL specifications to a recon-

figurable runtime component platform. In: WICSA 2005 (2005)
17. Karp, B., Kung, H.T.: Greedy perimeter stateless routing for wireless networks. In: Proc.

6th Annual ACM/IEEE International Conference on Mobile Computing and Networking,
MobiCom 2000 (2000)

18. Kawadia, V., Zhang, Y., Gupta, B.: System services for ad-hoc routing: architecture, im-
plementation and experiences. In: MobiSys 2003 (2003)

19. Kon, F.: Automatic configuration of component-based distributed systems. PhD Thesis.
University of Illinois at Urbana-Champaign (May 2000)

20. Kuladinithi, K.: University of Bremen Java-AODV implementation,
http://www.aodv.org

21. Marina, M.K., Das, S.R.: On-demand multipath distance vector routing in ad-hoc net-
works. In: Proc. International Conference for Network Procotols (2001)

22. Park, V.D., Corson, M.S.: A highly adaptive distributed routing algorithm for mobile wire-
less networks. In: INFOCOM 1997 (1997)

23. Perkins, C., Royer, E.: Ad-hoc on demand distance vector routing, Internet Draft rfc3561
(2003)

24. Pinto, A.: Appia: A flexible protocol kernel supporting multiple coordinated channels. In:
ICDCS. IEEE, Los Alamitos (2001)

25. Pissias, P., Coulson, G.: Framework for quiescence management in support of reconfigur-
able multi-threaded component-based systems. IET Software 2(4), 348–361 (2008)

26. Santiváñez, C.A., Ramanathan, R., Stavrakakis, I.: Making link-state routing scale for ad-
hoc networks. In: Proc. 2nd ACM international Symposium on Mobile Ad-Hoc Networking
(October 2001)

27. van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D.: Building adaptive sys-
tems using Ensemble. Technical Report. UMI Order Number: TR97-1638, Cornell Univer-
sity (1997)

28. Zhang, Y.: An integrated environment for testing mobile ad-doc networks. In: MobiHoc
2002 (2002)

29. Implementation of the dymo routing protocol dymoum-0.3,
http://masimum.inf.um.es/?Software:DYMOUM

30. Hutchinson, N.C., Peterson, L.L.: The X-Kernel: An Architecture for Implementing Net-
work Protocols. IEEE Trans. Softw. Eng. 17(1) (January 1991)

31. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W., Duce, D., Cooper, C.:
GRIDKIT: Pluggable Overlay Networks for Grid Computing. In: Meersman, R., Tari, Z.
(eds.) OTM 2004. LNCS, vol. 3291, pp. 1463–1481. Springer, Heidelberg (2004)

32. Implementation of the OLSR routing protocol, Unik-olsrd website:
http://www.olsr.org/

33. Mahfoudh, S., Minet, P.: An energy efficient routing based on OLSR in wireless ad hoc
and sensor networks. In: Proc. 22nd International Conference on Advanced Information
Networking and Applications – Workshops (2008)

34. Gerla, M., Hong, X., Pei, G., Fisheye State Routing Protocol (FSR) for Ad Hoc Networks.
IETF MANET Working Group Internet Draft (2002)

35. Ramdhany, R., Coulson, G.: ManetKit: A Framework for MANET Routing Protocols. In:
Proc. 5th Workshop on Wireless Ad hoc and Sensor Networks (WWASN 2008), workshop
attached to the International Conference on Distributed Computing Systems (ICDCS), Bei-
jing, China (June 2008)

	MANETKit: Supporting the Dynamic Deployment and Reconfiguration of Ad-Hoc Routing Protocols
	Introduction
	Related Work
	Background Concepts Underpinning MANETKit
	The Design of MANETKit
	Overview
	Protocol Composition
	Other Key Frameworks
	Concurrency
	Reconfiguration Management

	Implementation Case Studies
	OLSR
	DYMO

	Evaluation
	Performance
	Resource Overhead
	Time Taken to Develop and Port Protocols

	Conclusions and Future Work
	References

