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Abstract. The innate dynamicity and complexity of mobile ad-hoc networks 
(MANETs) has resulted in numerous ad-hoc routing protocols being proposed. 
Furthermore, numerous variants and hybrids continue to be reported in the lit-
erature. This diversity appears to be inherent to the field—it seems unlikely that 
there will ever be a ‘one-size-fits-all’ solution to the ad-hoc routing problem. 
However, typical deployment environments for ad-hoc routing protocols still 
force the choice of a single fixed protocol; and the resultant compromise can 
easily lead to sub-optimal performance, depending on current operating condi-
tions. In this paper we address this problem by exploring a framework approach 
to the construction and deployment of ad-hoc routing protocols. Our framework 
supports the simultaneous deployment of multiple protocols so that MANET 
nodes can switch protocols to optimise to current operating conditions. The 
framework also supports finer-grained dynamic reconfiguration in terms of pro-
tocol variation and hybridisation. We evaluate our framework by using it to 
construct and (simultaneously) deploy two popular ad-hoc routing protocols 
(DYMO and OLSR), and also to derive fine-grained variants of these. We 
measure the performance and resource overhead of these implementations com-
pared to monolithic ones, and find the comparison to be favourable to our  
approach.  

Keywords: Ad-hoc routing, protocol frameworks. 

1   Introduction 

Mobile ad-hoc networks (MANETs) employ routing protocols so that out-of-range 
nodes can communicate with each other via intermediate nodes. Unfortunately, it is 
hard to design generically-applicable routing protocols in the MANET environment. 
This is for two main reasons: First, MANETs are inherently characterised by dynamic 
variations in network conditions—for example in terms of network size, topology, 
density or mobility. Second, MANETs are subject to a diverse and dynamic set of 
application requirements in terms of quality of service (QoS) demands and traffic 
patterns (i.e. in terms of messaging, request-reply, multicast, publish-subscribe, 
streaming, etc.). In response to these two types of pressures—from both ‘below’ and 
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‘above’—MANET researchers have been proposing an ever-proliferating range of 
routing protocols: e.g. AODV [23], DYMO [5], OLSR [8], ZRP [14], TORA [22] and 
GPSR [17] to name but a few. However, none of these proposals comes close to pro-
viding optimal routing under the full range of operating conditions encountered in 
MANET environments; and it is becoming ever clearer that the ‘one-size-fits-all’ ad-
hoc routing protocol is an impossibility.  

We therefore believe that future MANET systems will need to employ multiple ad-
hoc routing protocols and to support switching between these as runtime conditions 
dictate. Our view is that this is best achieved through a runtime framework based 
approach in which different ad-hoc routing protocols can be dynamically deployed—
both serially and simultaneously—depending on current operating conditions. In our 
view, such a framework should further employ a fine-grained compositional approach 
so that ad-hoc routing functionality can be built by composing fine-grained building 
blocks at runtime. Such an approach would support the creation of variants and hy-
brids of protocols at run-time so that we can adapt to changing runtime conditions in a 
finer-grained manner than switching protocols. Such an approach would also support 
the sharing of common functionality between protocols (thus reducing both develop-
ment effort and resource overhead), and ease the task of deploying and porting newly-
designed protocols and protocol updates.  

In this paper we propose such a framework. The specific goals of the framework, 
which is called MANETKit, are: 
 
1. To support the dynamic deployment of ad-hoc routing protocols, both serially 

and simultaneously, and also to support their fine-grained dynamic reconfigura-
tion. 

2. To do this while achieving comparable performance and resource overhead to 
equivalently-functioning monolithic implementations. 

3. To further support protocol diversity by shortening the protocol development 
cycle and the time to port protocols to different operating systems. 

 
This paper is an in-depth motivation, description and evaluation of MANETKit. The 
remainder of the paper is structured as follows. Section 2 makes the case for 
MANETKit in more detail, based on an analysis of the design space of ad-hoc routing 
protocols and a survey of existing protocol construction frameworks. Section 3 then 
provides brief background on the key technologies and concepts underpinning our 
framework, Section 4 presents the framework itself, and Section 5 illustrates its use 
by means of case study implementations of some popular ad-hoc routing protocols 
(OLSR and DYMO). Section 6 then provides an empirical evaluation against the three 
goals specified above, and Section 7 offers our conclusions. 

2   Related Work 

Ad-hoc Routing Protocols. The design space of ad-hoc routing protocols can be 
divided into three broad categories: 
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• Proactive (or table-driven) protocols (e.g. [8]) continuously evaluate routes from 
each node to all other nodes reachable from that node.  

• Reactive (or on-demand) protocols (e.g. [5]), on the other hand, discover routes to 
destinations only when there is an immediate need for it.  

• Hybrid protocols (e.g. [14]) combine aspects of both proactive and reactive 
types—e.g. by employing proactive routing within scoped domains and reactive 
routing across domains. 

 
As mentioned in the introduction, the pressures that are driving the proliferation of 
ad-hoc routing protocols are coming from both ‘below’ and ‘above’. From ‘below’, 
the biggest determining factor in which protocol is the most appropriate is the size of 
the network: generally, proactive protocols are better suited to smaller networks, reac-
tive ones to larger networks, and hybrid protocols to networks that can structured 
hierarchically. But where the network varies in size (e.g. grows), an initial choice of 
protocol (e.g. proactive) can become sub-optimal. As another example, a reactive 
protocol will do well where pairs of interacting source-destination nodes (i.e. an in-
fluence from ‘above’) tend to be stable, while proactive protocols are typically better 
where interaction patterns are more dynamic (although only where the network is not 
too big). In addition, peer-to-peer services running over MANETs tend to prefer pro-
active protocols [3]; and applications requiring QoS differentiation can benefit from 
intelligent path selection as enabled by multipath routing algorithms like TORA [22] 
or Multipath DYMO [10]—although these carry overhead that is unnecessary for 
other applications (or application use-cases).  

As well as proposing many new protocols in each of the above categories, re-
searchers have since investigated numerous variations on already-existing protocols. 
For example, path accumulation [5], pre-emptive routing [12], multi-path routing 
[10], power-efficient routing [33], fish-eye routing [34], and numerous styles of 
flooding [8, 26, 1, 15] are examples of techniques that can be ‘switched on’ to im-
prove a particular property of an underlying base protocol under certain operating 
conditions, but which may be counter-productive under other conditions. Flooding 
(which is typically used to propagate control information) is a particularly rich area in 
this respect. For example, Multipoint Relaying [8] is good at reducing control over-
head in denser networks, whereas Hazy-Sighted Link State [26] provides better per-
formance as the network grows in diameter. Various epidemic/ gossip algorithms (e.g. 
[1] [15]) can also be applied in this context. 

The key conclusion is that no single protocol or class of protocols is well suited to 
more than a subset of the operating conditions to be found in any given MANET envi-
ronment at any given time. 

 
Protocol Frameworks. We are not alone in recognising the benefits of the frame-
work approach for ad-hoc routing protocols: MANET researchers have recently de-
veloped a number of such frameworks, prominent among which are ASL [18] and 
PICA [4]. ASL, for example, enhances underlying system services and provides 
MANET-specific APIs such that routing protocols can be developed in user-space. 
PICA alternatively provides multi-platform functionality for threading, packet queue 
management, socket-event notifications to waiting threads, and network device list-
ing, as well as minimising platform-related differences in socket APIs, and kernel 
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route table manipulation. We have therefore found these useful inspiration for the 
design of analogous functionality in MANETKit. In addition, the popular Unik-olsrd 
[32] implementation of OLSR supports a plug-in framework which has been well 
used by researchers [33, 34]. However, unlike MANETKit, all of these frameworks 
offer purely design-time and implementation-time facilities; they do not address the 
run-time configuration/ reconfiguration support which we argue is key to the support 
of future MANET environments.  

As well as MANET-specific frameworks, a range of more general protocol compo-
sition frameworks have been proposed. These fall mainly into two lineages: the  
x-kernel [30] to Cactus [2] lineage, and the Ensemble [27] to Appia [24] lineage. 
Unfortunately, all such frameworks are of limited relevance to our ad-hoc routing 
domain. This is for two main reasons. Firstly, general purpose frameworks do not 
address the resource scarcity inherent to MANET environments. Cactus, for example, 
is significantly more resource hungry than MANETKit: the C version of Cactus occu-
pies 466KB empty, whereas MANETKit supporting two ad-hoc routing protocols 
occupies only 236.6KB (see Section 6.2). Secondly, they focus on traditional end-to-
end protocols such as TCP/IP and do not support or emphasise routing-specific func-
tionality such as that supported by, say, PICA (see above). In addition, they offer poor 
support for the fact that application execution and packet forwarding are inherently 
concurrent in ad-hoc routing protocol deployments: Appia supports only a single-
threaded concurrency model, and Cactus, while it supports multi-threading, leaves 
concurrency control entirely up to the developer. Furthermore, Appia’s strictly lay-
ered model is problematic in the ad-hoc routing protocol domain where cross layer 
optimisation is important.  

3   Background Concepts Underpinning MANETKit 

Before introducing MANETKit, this Section briefly covers essential background that 
underpins our framework. This mainly consists of the OpenCom software component 
model [9] and its associated notion of ‘component frameworks’ which we use as the 
basis of modularisation, composition and dynamic reconfiguration in MANETKit. We 
also introduce the ‘CFS pattern’ [31] that we use to structure the implementation of 
ad-hoc routing protocols. 
 
OpenCom and Component Frameworks. OpenCom is a run-time component model 
that uses a small runtime kernel to support the dynamic loading, unloading, instantia-
tion/destruction, composition/decomposition of lightweight programming language 
independent software components. Components have interfaces and receptacles that 
describe their points of interaction with other components. OpenCom also supports 
so-called reflective meta-models to facilitate the dynamic inspection and reconfigura-
tion of component configurations. In particular, it employs (i) an interface meta-
model to provide runtime information on the interfaces and receptacles supported by a 
component; and (ii) an architecture meta-model that offers a generic API through 
which the interconnections in a composed set of components can be inspected and 
reconfigured. Component frameworks [16] (hereafter, CFs) are domain tailored com-
posite components that accept ‘plug-in’ components that modify or augment the CF’s 
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behaviour. Plug-ins are inserted and manipulated by means of an ‘architecture’ reflec-
tive meta-model that is exported by each CF. Crucially, CFs actively maintain their 
integrity to avoid ‘illegal’ configurations of plug-ins—attempts to insert and manipu-
late plug-ins are policed by sets of integrity rules registered with the CF. As CFs are 
themselves components, they can easily be nested: i.e. more complex CFs can be built 
by composing simpler ones; and they can be loaded and unloaded dynamically so that 
only functionality that is actually instantiated needs to be paid for. Full detail on 
OpenCom and CFs is available in the literature [9]. 

 

 

Fig. 1. MANETKit’s Control-Forward-State (CFS) pattern (interfaces are shown as dots and 
receptacles as cups) 

 

The Control-Forward-State Pattern. We have identified an architectural pattern 
called Control-Forward-State (‘CFS’ for short; see Fig. 1) that we have found useful in 
the structuring of protocol implementations in MANETKit. We first used the pattern in 
a different context in our GRIDKIT platform [31]. In the CFS pattern, the Control (C) 
element encapsulates the algorithm used to establish and maintain a virtual network 
topology (as often maintained by ad-hoc routing protocols); the Forward (F) element 
encapsulates a forwarding strategy over this topology; and the State (S) element gives 
access to protocol state (such as the neighbour list that embodies the virtual topology). 
The key benefit of the CFS pattern is that it naturally captures the typical elements of an 
ad-hoc routing protocol and thus allows the diversity such protocols to be treated in a 
consistent manner. Furthermore, when protocols are reconfigured it lets the C and F 
elements be replaced independently (e.g. maintaining the same overlay but changing the 
forwarding strategy, or vice versa). Additionally, the pattern naturally supports vertical 
stacking—e.g. for piggybacking data on the packets of a lower CFS element. Such 
stacking can be at a finer-grained level than that of entire CFS units: for example, the C 
element of a higher level CFS unit may use (and therefore be stacked on) the F element 
of a lower level unit. Finally, because a CFS instance is a composition of components, it 
is naturally realised as a CF and thus benefits from the above-mentioned integrity main-
tenance machinery that is available to all CFs.  

4   The Design of MANETKit 

4.1   Overview 

MANETKit is an OpenCom CF that supports the development, deployment and  
dynamic reconfiguration of ad-hoc routing protocols. It provides the developer with 
an extensible set of common ad-hoc routing protocol functionality (encapsulated in 

Forward
 

StateControl
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components), and tools to configure and reconfigure protocol graphs implemented as 
nested CFs. It builds heavily on OpenCom’s support for the dynamic reconfiguration 
of component topologies (i.e. the architecture reflective meta-model), and on the 
support for nested composition and structural integrity provided by CFs (via integrity 
rules). In addition, thanks to OpenCom’s inherent programming language independ-
ence, MANETKit supports the development of protocols in different programming 
languages.  

The below presentation is structured by first describing and motivating, in Section 
4.2, MANETKit’s main CF types and its approach to protocol composition at two 
granularity levels: coarse and fine. Section 4.3 then discusses further built-in CFs that 
provide library-like functionality for ad-hoc routing protocols, Section 4.4 focuses on 
the important issue of concurrency, and Section 4.5 discusses MANETKit’s approach to 
dynamic reconfiguration. 

4.2   Protocol Composition 

Our approach to protocol composition builds directly on the CFS architectural pattern 
outlined in Section 3. This naturally leads to a two-level composition model involving 
coarse-grained compositions of CFS units (i.e. protocol implementations); and fine-
grained compositions of elements within CFS units. We now discuss these two levels. 

 

 

Fig. 2. Coarse-grained protocol composition in MANETKit 

 
Coarse-grained Composition. At the coarse-grained level, MANETKit offers two key 
(sub)CFs: a so-called ‘System CF’ that encapsulates common system-related functions; 
and a generic ‘ManetProtocol CF’ that is instantiated and tailored for each ad-hoc rout-
ing protocol developed in MANETKit. As shown in Fig. 2, a MANETKit deployment 
running on a node typically comprises a number of composed ManetProtocol instances 
atop a single System instance. ManetProtocol instances may be placed at the same level 
or stacked on top of each other.  
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Communication between CFS units within a MANETKit deployment—e.g. the flow 
of packets or context information—is carried out using events1. The set of events sup-
ported in a given MANETKit deployment is based on an extensible polymorphic ontol-
ogy. To leverage existing efforts in the direction of consolidation of ad-hoc routing 
protocols, we employ the increasingly-used PacketBB packet format [7] as the basis of 
our event structure. 

Rather than being built explicitly, the organisation of a stacking topology of CFS 
units is derived automatically based on declarative statements of the types of event 
provided by and required by each CFS unit. More specifically, each unit defines a tuple: 
<required-events, provided-events> in which ‘required-events’ is the set of event types 
that the CF instance is interested in receiving, and ‘provided-events’ is the set it can 
generate. On the basis of these event tuples, the Framework Manager (see Fig. 2) auto-
matically generates and maintains an appropriate set of receptacle-to-interface bindings 
between protocols such that, if an event e is in the provided-event set of protocol P, and 
the required-event set of protocol Q, the Framework Manager creates an OpenCom 
binding between interfaces/receptacles on P and Q to enable the passage of events of 
type e2. Overall, the resulting loosely hierarchical organisation yields the following 
benefits: 

• Changes in topology can be automatically updated when the event tuples on CFS 
units are changed at run-time (declarative automatic dynamic reconfiguration). 

• The scheme naturally supports ‘broadcast’ event propagation (i.e. because multiple 
CF instances can ‘require’ an event of a single lower layer instance, or a lower layer 
instance can require an event of multiple higher-layer instances). 

• It also naturally supports cross-layer interaction that omits layers, and minimises 
overhead where events need to pass directly between non-adjacent CF instances 
(avoids the need for strict layering).  

• The inherent decoupling of protocols enables us to support different concurrency 
models without changing protocol implementations (see Section 4.4). 

 
Finally, because it is an OpenCom CF, MANETKit can use the CF notion of integrity 
rules to sanity check the configuration defined by the provided-event / required-event 
mechanism. For example, we might use this mechanism to ensure that only one instance 
of a reactive routing protocol exists in a given MANETKit deployment. 
 
Fine-grained Composition. At the fine-grained level, we structure the individual C, F 
and S elements of ManetProtocol instances in terms of component compositions (see 
Fig. 3). For the C element, we provide a generic sub-CF called ManetControl which 
encapsulates a number of areas of functionality (especially event management) that are 

                                                           
1 As well as using events as discussed in this section, it is possible to make direct calls from one 

CFS unit to another. Such calls are typically used for ‘out of band’ purposes such as obtaining 
state from another’s S element. Direct calls typically benefit from OpenCom’s ‘interface 
meta-model’ to dynamically discover interfaces at runtime. 

2 This is a simplification. The design is slightly more complex—for example, to allow compo-
nents to exclusively receive (require) a given event, meaning that other components would not 
receive the event even if it were in their required set. A mechanism to avoid loops is included 
for cases where a component provides and requires the same event type. 
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expected to be common across a range of ad-hoc routing protocols. For example, 
ManetControl’s C component provides generic operations to initialise, start or stop a 
protocol’s execution, maintains an Event Registry that supports the above-mentioned 
automatic event binding mechanism, and offers operations to push/pop events. The F 
and S areas are much more specific to individual protocol implementations; therefore 
there is less value in providing richly configurable sub-CFs in those areas. 

 

 

Fig. 3. Fine-grain protocol composition (i.e. within a ManetProtocol CF instance) 

In general, each new ManetProtocol instance comes with default machinery and  
settings that can be modified or replaced depending on the developer’s specific re-
quirements. As at the coarse-grained level, subsequent tailoring of a new instance is a 
relatively safe process because the integrity rules (architectural constraints) built into all 
the generic CFs ensure that attempts to compose them do not violate per-CF structural 
invariants: for example, ManetControl rejects attempts to add more than one C element. 
Aside from this common functionality, the core logic of a routing protocol implementa-
tion is embodied as a set of Event Source and Event Handler components within the 
ManetControl CF (Event Sources only emit events—typically driven by a timer—
whereas Event Handlers process events, and may emit further events in response.) In 
general, interaction among these fine-grained components follows the same approach as 
interaction at the coarse-grained level: individual CFS elements and sub-elements com-
municate both either via events or via direct calls.  

4.3   Other Key Frameworks 

We now briefly introduce two further key CFs supported by MANETKit. These are 
the above-mentioned System CF, a singleton CF that abstracts over low level systems 
oriented functionality; and the Neighbour Detection CF, which provides generic sup-
port for network topology management. Aside from these, MANETKit provides a 
wide range of other utility components/CFs such as timers, threadpools, routing tables 
and queues. 
 
The System CF. As we have seen, the System CF (see Fig. 4) is a base layer CFS 
unit on top of which ManetProtocol instances are stacked. Thanks to MANETKit’s 
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abstraction of inter-component communication, the System CF itself and ManetProto-
col instances above it, need not be aware of the kernel-user boundary or whether the 
System CF itself is implemented as a kernel or a user-space module. The main role of 
the System CF is to facilitate portability by acting as a surrogate for OS-specific func-
tionality such as thread management and routing environment initialisation. Its C 
component provides OS-independent operations to initialise the host’s routing envi-
ronment (e.g. IP forwarding, ICMP redirects) and provide access to system-oriented 
context information to inform dynamic reconfiguration. Its S component provides 
operations to manipulate the kernel routing table, and query/list network devices. Its F 
component provides send/receive primitives for the exchange of protocol messages 
that abstract over the use of multiple network technologies. Both the C and F elements 
provide and require events which higher-level ManetProtocol instances can specify in 
their event tuples. The raising and capturing of events is ultimately grounded in 
mechanisms such as network sockets, packet capture libraries (such as libpcap), and 
packet filters (like Netfilter in Linux or the NDIS intermediate driver in Windows).  

 

 

Fig. 4. The System CF 

 
Neighbour Detection CF. This is a generally-useful ManetProtocol instance that 
maintains information on neighbouring nodes that are one or two hops away. Based 
on this information, it generates events to notify ManetProtocol instances about link 
breaks with lost neighbours for purposes of route invalidation. The information main-
tained by the CF is also useful as a means of optimising flooding approaches such as 
Multipoint Relaying. It is designed to be pluggable so that alternative mechanisms can 
be applied where appropriate (e.g. HELLO message based, or link layer feedback 
based). The CF additionally offers a useful means of disseminating information peri-
odically to neighbours via piggybacking. For instance, AODV implementation might 
piggyback routing table entries so that neighbours can learn new routes.  
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section. This has the beneficial effect that Event Handlers can always be assumed to 
run atomically.  

In more detail, MANETKit supports the following concurrency models: single-
threaded, thread-per-message or thread-per-ManetProtocol. Note that these designa-
tions apply only to the handling of events originating from ‘below’ the selected 
MANETKit instance (i.e. originating from the System CF): regardless of the concur-
rency model in use, it is always possible to use multiple threads to call MANETKit 
from above. In the single-threaded model, all ManetProtocol instances rely on a sin-
gle thread hosted by the System CF. In cases where an event needs to be passed to 
more than one higher-layer ManetProtocol instance, the same thread is used to call 
each ManetProtocol instance in turn. Besides the obvious benefit of the absence of 
race conditions, this model potentially allows MANETKit to be applied in primitive 
low-resource environments such as sensor motes. 

In the thread-per-message model (a slight variant of this, called the thread-per-n-
messages model, is midway between single-threaded and thread-per-message) distinct 
threads are used to shepherd individual events up the protocol graph. Where an event 
needs to be passed to more than one ManetProtocol instance in the layer above, a new 
thread is created for each, thus providing more concurrency than the single threaded 
model. Regardless, events are always processed in the same FIFO order so that 
ManetProtocol instances sharing the same interest in a set of events all process them 
in the same order.  

Finally, in the thread-per-ManetProtocol model the ManetProtocol instance instan-
tiates its own dedicated thread and an associated FIFO queue in which to store wait-
ing events. A thread passing an event from a ManetProtocol instance in the layer 
below will immediately return, with the event being handed off to the higher-layer 
ManetProtocol’s dedicated thread/queue. The thread-per-ManetProtocol model repre-
sents an intermediate point in terms of protocol throughput and resource overhead 
between the single-threaded model (low resource overhead and low protocol through-
put) and the thread-per-message model (high resource overhead and high protocol 
throughput). 

To select either of the single-threaded or thread-per-message model it is only nec-
essary to ask the System CF to use one or other model, and the selected model is 
applied throughout the MANETKit instance. The thread-per-ManetProtocol model, 
on the other hand, can be selected on a per-ManetProtocol instance basis, and will 
function the same regardless of whether the System CF uses one or more threads. 

4.5   Reconfiguration Management 

The focus of MANETKit is on enabling the dynamic reconfiguration of ad-hoc rout-
ing protocols. A fully comprehensive dynamic reconfiguration solution for ad-hoc 
routing protocols would involve a closed-loop control system that comprises: (i) con-
text monitoring, (ii) decision making (based, e.g., on feeding context information to 
event-condition-action rules), and (iii) reconfiguration enactment. MANETKit pro-
vides the first and last of these elements (as described next) but leaves the decision 
making to higher-level software. For example, a complete reconfigurable system 
could be built by combining MANETKit with the decision-making machinery  
proposed in [13]. 
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Context Monitoring. The System CF provides a range of event types relating to 
context information such as link quality, signal strength, signal-to-noise ratio, avail-
able bandwidth, CPU utilisation, memory consumption and battery levels.. In addi-
tion, individual ManetProtocol instances can choose to provide protocol-specific 
context events. For example, our DYMO implementation provides events relating to 
packet loss, and the number of route discoveries initiated per unit time. MANETKit 
also provides a ‘concentrator’ for context events in the Framework Manager CF (see 
Fig. 2). This acts as a façade for higher-level software and also hides the fact that 
some low level context information might be obtained by polling rather than by wait-
ing for events.  
 
Reconfiguration enactment. We support two complementary methods of reconfigu-
ration enactment. The first is by updating the <required-events, provided-events> 
tuples of ManetProtocol instances. This enables protocol configurations to be rewired 
in a very straightforward, declarative, manner, although only at the coarse granularity 
level. The second method is more general and supports the fine granularity level: it 
follows the standard OpenCom approach of manipulating component compositions—
i.e. by adding/removing/ replacing components and/or the bindings between them. 
This is carried out through standard OpenCom and CF facilities—especially the archi-
tecture reflective model outlined in Section 3. This method of reconfiguration enact-
ment is considerably simplified by the fact that ManetProtocol instances are critical 
sections which only a single thread can enter at a time (see above), thus avoiding the 
possibility of race conditions between a reconfiguration thread and a protocol process-
ing thread. By ensuring that any current processing of protocol events is completed 
before reconfiguration operations are run and further event-shepherding threads are 
blocked, the critical section enables the ManetProtocol instance to be in a stable state 
in which reconfiguration changes can be safely made. To date our experience has 
been that the integrity of almost all reconfiguration operations can be ensured with 
this critical section mechanism alone. For very complex reconfigurations (e.g. involv-
ing transactional changes across multiple ManetProtocol instances), we can fall back 
on OpenCom’s general-purpose ‘quiescence’ mechanism as described in [25].  

The other commonly-cited problematic issue in dynamic reconfiguration is state 
management. We have found that the CFS pattern is of considerable help here as it 
encourages designers to factor out the state from their protocol designs and put it into 
distinct S components. Given this, if it is required to replace one ManetProtocol in-
stance with another while maintaining state it is often enough simply to carry over an 
S component from the old ManetProtocol instance to the new one. 

5   Implementation Case Studies 

To evaluate MANETKit, we have used the framework to implement a number of 
popular ad-hoc routing protocols. In the first instance, as a proof of concept, we used 
an initial Java-based implementation of MANETKit [35] to build the well-known 
AODV protocol. Thereafter, to investigate the feasibility of the framework in more 
memory-constrained devices, we developed a C version of MANETKit (based on the 
C version of OpenCom) and used this to implement RFC-complaint versions of the 
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popular OLSR and DYMO protocols. In the remainder of this Section, we describe 
these implementations. In doing so, we illustrate how MANETKit makes it straight-
forward to develop and deploy ad-hoc routing protocols, and also how variants of 
protocols can easily to created via dynamic reconfiguration when current operating 
conditions call for them.  

5.1   OLSR 

MANETKit’s OLSR implementation is built using two separate ManetProtocol in-
stances: one for OLSR proper and the other for an underlying implementation of Mul-
tipoint Relaying (MPR) [8] that is used by OLSR. MPR is responsible for link sensing 
and relay selection; and maintains state in its S component to underpin these. The 
OLSR ManetProtocol itself uses topology information garnered by MPR and uses the 
latter’s forwarding services to flood topology information.  

 

 

Fig. 5. The composition of OLSR in MANETKit; hatched boxes represent protocol-specific 
components (the rest are reusable generic components)   

 
We have found that MANETKit simplifies the process of writing protocols such as 
OLSR. This is first manifested in the separation of concerns enabled by software 
components in general and the CFS pattern in particular. At a finer granularity than 
the OLSR/MPR split we have already seen, reifying protocol state into a distinct S 
component clarifies thinking about protocol design (as well as easing dynamic recon-
figuration), and the ManetProtocol CF’s plug-in Event Handlers naturally correspond 
to the way designers think about protocols. It is also useful to be able to call  
on MANETKit’s range of generic tools such as routing table templates and timers 
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(e.g. the latter are needed to drive the OLSR Event Source components that periodi-
cally diffuse link state information across the network). 

Having written the elements of the protocol, installing it in a running MANETKit 
deployment mainly involves defining the <required-events, provided-events> event 
tuples of each ManetProtocol instance. The OLSR instance provides a TC_OUT event 
(this corresponds to an outgoing OLSR ‘Topology Change’ message); and it requires 
TC_IN, NHOOD_CHANGE (which notifies a change in the underlying network 
neighbourhood) and MPR_CHANGE (which notifies a change in relay selection). 
The latter two event types are provided by the MPR instance. The MPR instance also 
provides and requires, respectively, HELLO_OUT and HELLO_IN events used for 
neighbour detection. Finally, the MPR instance requires POWER_STATUS events. 
These are context events that report the node’s current battery levels; they are used to 
dynamically determine the willingness of a node acting as a relay to forward mes-
sages on behalf of its neighbours, this ‘willingness’ metric being factored into the 
relay selection process. 

Protocol installation also typically entails reconfiguring some existing MANETKit 
CFs and if necessary, loading additional components to satisfy specific requirements. 
In the OLSR case, the System CF is instructed to load a ‘NetworkDriver’ component 
that requires and provides HELLO_OUT/TC_OUT and HELLO_IN/TC_IN respec-
tively, and a ‘PowerStatus’ component that generates POWER_STATUS events. Fig. 
5 illustrates the final protocol composition for our OLSR implementation; only the 
major inter-layer bindings are shown in the figure for the sake of clarity.  
 
Protocol Variations. It is straightforward to dynamically reconfigure our OLSR 
implementation to better suit new operating conditions it may encounter. We describe 
here two such variations: power-aware routing and fish-eye routing. The power-aware 
routing variant is based on the algorithm described in [33], and aims to maximise the 
lifetime of a route between selected source-sink pairs within the MANET. It operates 
by trying to find and maintain the route between such a pair that has the least energy 
consumption of all possible routes. It is interesting to consider this as an OLSR varia-
tion because it is only beneficial when an application requires this particular QoS 
emphasis (i.e. long lifetime connectivity between particular node pairs). If there is no 
such requirement, or the requirement goes away because the application no longer 
needs it, the variation becomes a hindrance (and therefore should be removed) be-
cause it incurs significantly more overhead than standard OLSR routing. To imple-
ment and deploy the power-aware routing variation, the MPR ManetProtocol’s Hello 
Event Handler and MPR Calculator components (see Fig. 5) are replaced by power-
aware versions (the new Hello Handler determines link costs in terms of transmission 
power; and this is then used by the new MPR Calculator to determine relay selection). 
In addition, a new ‘ResidualPower’ component is plugged into the OLSR CF to de-
termine the node’s residual battery level and to disseminate this to other nodes in the 
network via MPR’s flooding service. Both adding and removing the variant behaviour 
is straightforward and incurs only a small number of operations on the OLSR CF’s 
architecture reflective meta-model. 

The purpose of the fish-eye routing variant [34] is to aid scalability when networks 
grow large, albeit at the cost of sub-optimal routing to distant nodes. It basically 
works by refreshing topology information more frequently for nearby nodes than for 
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distant nodes. This variant is straightforwardly implemented as a component that 
modifies TC_OUT events according to the fish eye strategy outlined above (in fact it 
works by modifying the TTL and timing of OLSR Topology Change messages). The 
component is specified to both require and provide TC_OUT events; and so all that is 
required to insert it into the protocol graph is to request re-evaluation of the automatic 
event-tuple-based binding process. This automatically results in the component being 
interposed in the path of TC_OUT events passing between the OSLR and MPR CFs.  

5.2   DYMO 

The MANETKit configuration for DYMO consists of one new ManetProtocol in-
stance atop the System CF. It also uses the Neighbour Detection CF that was dis-
cussed in Section 4.3. The three CF instances are configured using <required-events, 
provided-events> tuples is a similar manner to that already described for OLSR. For 
example, in order to be kept abreast of network neighbourhood changes, the DYMO 
instance requires a NHOOD_CHANGE event from the Neighbour Detection instance 
for route invalidation upon link breaks. 

 

 

Fig. 6. The composition of DYMO in MANETKit; hatched boxes represent protocol-specific 
components (the rest are reusable generic components) 
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ManetProtocol instance for the purposes of (respectively): route discovery (i.e. when 
no route is found for an outgoing data packet), extending existing route lifetimes, and 
initiating route invalidations. On successful route discovery, the DYMO ManetProto-
col instance sends a ROUTE_FOUND event to the Netlink component to trigger the 
re-injection of buffered packets into the network.  
 
Protocol Variations. The variations we describe for DYMO are optimised flooding 
and multi-path DYMO. In the optimised flooding variant, DYMO, like OLSR, uses 
Multipoint Relaying as a flooding optimisation. As with OLSR, this curbs the over-
head associated with broadcasting control messages when a network topology is 
dense, although at the expense of maintaining additional state. To apply this variation, 
the Neighbour Detection CF is simply replaced with the MPR ManetProtocol instance 
discussed in the previous Section. If a co-existing OLSR ManetProtocol instance is 
already deployed in the framework, then the MPR CF is directly shareable between 
the reactive and proactive protocols, thus leading to a leaner deployment.  

The goal of the multi-path DYMO variant is to reduce the overhead of frequent 
flooding for route discovery, although at the expense of additional route discovery 
latency. It works by computing multiple link-disjoint paths within a single route dis-
covery attempt, based on the algorithm described in [10]—with the notable difference 
that our implementation is real rather than merely simulator based. To configure 
multi-path DYMO, three components need be replaced (please refer to Fig. 6). Firstly, 
the S component is replaced with a new version that accommodates the new formats 
of protocol messages and routing table entries (a path list now exists for each route). 
Secondly, the RE (Routing Element) Event Handler is replaced with a new version 
that contains the logic to compute link-disjoint paths. Atomic execution of this Han-
dler (as guaranteed by MANETKit) is essential since duplicate route requests are no 
longer systematically discarded but rather processed to find alternative paths. Lastly, 
the RERR Event Handler is replaced with a new version that handles route error 
events/ messages differently. For instance, on receiving a SEND_ROUTE_ERROR 
event, the new Handler only sends a route error message when an alternative path is 
not available; otherwise, it installs the new path in the OS’s kernel routing table. 

6   Evaluation 

Section 5 has illustrated the feasibility of supporting the dynamic deployment of mul-
tiple ad-hoc routing protocols in MANETKit, and also of supporting their fine-
grained dynamic reconfiguration—i.e. the satisfaction of the first of the three goals set 
out in the introduction has already been demonstrated. In this Section, we evaluate the 
remaining two goals: i.e. Goal 2: to compare favourably with equivalent monolithic 
implementations of ad-hoc routing protocols in terms of performance (Section 6.1) 
and resource overhead (Section 6.2); and Goal 3: to shorten the protocol development 
cycle and time to port protocols (Section 6.3). 

All measurements in this Section are based our C/Linux implementation of 
MANETKit and use the OLSR and DYMO implementations described above. These 
were deployed on a testbed consisted of an 802.11b/g ad-hoc network of 5 nodes (3.2 
GHz CPU with 2 GB of RAM) running Ubuntu 7.10, with an Ethernet backplane for 
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testbed management. The 5 nodes are arranged in a linear topology: we used a combi-
nation of MAC-level filtering and the MobiEmu emulator [28] to emulate the required 
multi-hop connectivity. We used Unik-olsrd [32] as a comparator for our OLSR im-
plementation, and DYMOUM v0.3 [29] for our DYMO implementation. These were 
chosen because they are the two most popular public domain implementations of 
these protocols. For comparability we configured our MANETKit implementations 
with the single threaded concurrency model and with identical configuration parame-
ters to the comparator implementations (e.g. identical HELLO and Topology Change 
intervals, and route hold times). 

6.1   Performance 

Our metrics for performance are (i) Time to Process Message—i.e. the time taken to 
process a protocol message from receipt to completion within an MANETKit de-
ployment (for OLSR this is a Topology Change message; and for DYMO it is a 
RREQ message); and (ii) Route Establishment Delay—i.e. the time taken to establish 
a route in our testbed environment (for OLSR this is the time taken for a newly-
arrived node arriving at one end of the existing linear network topology to compute a 
fully-populated routing table; and for DYMO it is the time taken to perform a route 
discovery operation under similar circumstances). The former metric is a ‘micro’ 
level indicator of the overhead of MANETKit’s componentisation of the protocol 
processing path, while the latter is a ‘macro’ measure of control plane performance.  

Table 1. Comparative Performance of MANETKit Protocols 

 Unik-olrsd MKit-OLSR DYMOUM-0.3 MKit-DYMO 

Time to Process Message (ms) 0.045 0.096 0.135 0.122  

Route Establishment Delay (ms) 995 1026 37 27.3 

 
Referring to Table 1, we can see that on the Time to Process Message metric, the 
measurements are very small in absolute terms and, as such, probably insignificant in 
practice. The Route Establishment Delay metric puts them in perspective, and shows 
that comparable real-world performance levels are attained by the MANETKit im-
plementations: MANETKit-OLSR is 3% slower than Unik-olrsd in establishing a 
route in our experimental set-up, whereas MANETKit-DYMO is actually 35% faster 
than DYMOUM-0.3. (Overall, our implementation of OLSR is slower on both met-
rics than the comparator, but our implementation of DYMO is faster on both.) We can 
conclude that that MANETKit achieves broadly comparable performance to typical 
monolithic implementations.  

6.2   Resource Overhead  

To assess the relative resource overhead of the MANETKit-implemented protocols 
we again compared these implementations with their monolithic counterparts—this 
time in terms of the memory footprints incurred. Memory footprint is the most direct 
measure of MANETKit’s applicability for resource-constrained mobile nodes. 
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As can be deduced from in Table 2, MANETKit-OLSR incurs an 31% memory 
overhead over its monolithic competitor, and MANETKit-DYMO incurs an 48% 
overhead. These overheads are not surprising and are mainly due, of course, to the 
(necessary) inclusion of the generic MANETKit machinery and the OpenCom run-
time (the latter occupies 22KB)3. However, as soon as we accept the premise that it is 
important to be able to deploy multiple ad-hoc routing protocols, as argued in this 
paper, we can see the benefits of MANETKit: the footprint of deploying the two pro-
tocols together in MANETKit is 8% smaller than the sum of the two monolithic pro-
tocol implementations; and the difference will clearly become more significant still as 
more protocols (plus variants) are added and the fixed MANETKit/ OpenCom over-
heads are further amortised. The key conclusion is that the overhead/flexibility trade-
off is already in MANETKit’s favour with only two protocols deployed. 

Table 2. Comparative Resource Overhead of MANETKit Protocols 

 Unik-olsrd MKit-
OLSR

DYMOUM-
0.3 

MKit-
DYMO

Unik-olsrd + 
DYMOUM-0.3

MKit OLSR+ 
MKit-DYMO 

Memory Footprint (KB) 136.3 179.0 120.4 178.1 256.7 236.6 

6.3   Time Taken to Develop and Port Protocols 

We now evaluate the extent to which the MANETKit approach can minimise the time 
needed to develop and port protocols. We do this in an indirect manner—specifically, 
by measuring the degree of code reuse achieved across the MANETKit implementa-
tions of OLSR and DYMO.  

Table 3. Reused generic components in MANET protocol compositions 

 Lines of Code OLSR DYMO 
System CF Forward 1276 X X 
System CF State 702 X X 
Netlink (+ Kernel Module) 734  X 
Queue 60 X X 
Threadpool 591 X X 
Timer 228 X X 
PacketGenerator 950 X X 
PacketParser 795 X X 
RouteTable 1046 X X 
ManetControl CF 827 X X 
NeighbourDetection CF 1684  X 
MPRCalculator 745 X  

MPRState 3876
4
 X  

Configurator 405 X X 

Reused Generic Components - 12 12 
Protocol-specific Components - 4 5 

                                                           
3 Once a desired configuration has been achieved (which possibly includes multiple protocols) 

it is possible to unload the OpenCom kernel to free up memory space. The overheads would 
drop in such a case to 15% for OLSR and 30% for DYMO.  

4 The reason that this component is so large is that there are several different types of table 
involved for the various types of data stored. There remains significant scope for optimising 
this figure by coalescing table handling routines. 
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Table 3 gives a coarse-grained indication of the degree of code reuse by listing the 
generic components used in the implementation of these protocols (we also show the 
size of each component in terms of lines of code). In both cases, the generic compo-
nents outnumber the specific ones (shown at the bottom of Table 3) by a factor of at 
least 2. This is especially significant because OLSR and DYMO are considered to be 
very different protocols. 

Fig. 7 takes a finer-grained perspective by showing the number of lines of code in 
the generic, as well as the protocol-specific, components used by each protocol. The 
proportion contributed by the reusable components to each protocol’s codebase is 
57% for OLSR and 66% for DYMO, indicating a substantial saving in developer 
effort. Overall we can see that the structure of MANETKit fosters a significant degree 
of code reuse across protocols. Based on these measures and our knowledge of other 
ad hoc routing protocols we fully expect to see similar levels of reuse when we add 
further protocols to the framework.  
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Fig. 7. The proportion of reusable code in each protocol 

7   Conclusions and Future Work 

This paper has proposed a run-time component framework for the implementation, 
deployment and dynamic reconfiguration of ad-hoc routing protocols. It is motivated 
by the fact that the range of operating conditions under which ad-hoc routing proto-
cols must operate is so diverse and dynamic that it is infeasible for a single protocol to 
be optimal under all such conditions. MANETKit therefore supports the serial and 
simultaneous deployment of multiple protocols, plus the generation of protocol vari-
ants and hybrids via fine-grained dynamic reconfiguration. It uses the ‘CFS’ pattern 
and <required-events, provided-events> tuples to allow protocols to be easily stacked 
or composed in a variety of ways and to be straightforwardly dynamically reconfig-
ured. Another novel feature of MANETKit is its use of pluggable concurrency mod-
els, which enables it to be used in a variety of deployment environments with varying 
performance/resource trade-offs. MANETKit also helps protocol developers in the 
traditional way by providing a rich set of tools specifically tailored to the ad-hoc rout-
ing environment, and by isolating developers from OS specificities (including 
whether protocols are implemented in kernel or user space). And it also enables re-
searchers to experiment with protocol optimisation techniques. 
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We have evaluated MANETKit by showing how it can be used to straightfor-
wardly build and dynamically deploy two major ad-hoc routing protocols (i.e. OLSR 
and DYMO) and how these deployments can be variegated in a number of ways to 
suit different operating conditions. Furthermore, our empirical evaluation shows that 
MANETKit meets our stated goals by achieving comparable performance to mono-
lithic implementations of the same protocols, achieving smaller resource overheads 
when more than one protocol is implemented in comparison to the monolithic ap-
proach, and also achieving significant code reuse across protocols (the latter being a 
strong indicator that the MANETKit approach should generally shorten protocol de-
velopment and porting time). 

In the future, our immediate plans are to integrate MANETKit into a wider dy-
namic reconfiguration environment by incorporating policy-driven decision making. 
This will be based on existing work [13], and will also include coordinated distributed 
dynamic reconfiguration as well as merely per-node reconfiguration. We also plan to 
further explore reconfiguration strategies in real-world application scenarios, to fur-
ther investigate the hybridisation of protocols, and to generally gain more experience 
of implementing protocols in the MANETKit environment.  

A version of the MANETKit software is available for download from 
http://www.comp.lancs.ac.uk/~ramdhany/. 
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