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Manganese based layered oxides with modulated electronic and
thermodynamic properties for sodium ion batteries

Abstract

Manganese based layered oxides have received increasing attention as cathode materials for sodium ion
batteries due to their high theoretical capacities and good sodium ion conductivities. However, the
Jahn–Teller distortion arising from the manganese (III) centers destabilizes the host structure and
deteriorates the cycling life. Herein, we report that zinc-doped Na0.833[Li0.25Mn0.75]O2 can not only
suppress the Jahn–Teller effect but also reduce the inherent phase separations. The reduction of manganese
(III) amount in the zinc-doped sample, as predicted by first-principles calculations, has been confirmed by its
high binding energies and the reduced octahedral structural variations. In the viewpoint of thermodynamics,
the zinc-doped sample has lower formation energy, more stable ground states, and fewer spinodal
decomposition regions than those of the undoped sample, all of which make it charge or discharge without
any phase transition. Hence, the zinc-doped sample shows superior cycling performance, demonstrating that
zinc doping is an effective strategy for developing high-performance layered cathode materials.
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Manganese based layered oxides with modulated
electronic and thermodynamic properties for
sodium ion batteries
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Manganese based layered oxides have received increasing attention as cathode materials for

sodium ion batteries due to their high theoretical capacities and good sodium ion con-

ductivities. However, the Jahn–Teller distortion arising from the manganese (III) centers

destabilizes the host structure and deteriorates the cycling life. Herein, we report that zinc-

doped Na0.833[Li0.25Mn0.75]O2 can not only suppress the Jahn–Teller effect but also reduce

the inherent phase separations. The reduction of manganese (III) amount in the zinc-doped

sample, as predicted by first-principles calculations, has been confirmed by its high binding

energies and the reduced octahedral structural variations. In the viewpoint of thermo-

dynamics, the zinc-doped sample has lower formation energy, more stable ground states, and

fewer spinodal decomposition regions than those of the undoped sample, all of which make it

charge or discharge without any phase transition. Hence, the zinc-doped sample shows

superior cycling performance, demonstrating that zinc doping is an effective strategy for

developing high-performance layered cathode materials.
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T
he gradual depletion of fossil fuels, together with envir-
onmental concerns over their use, has led to a rapidly
increasing demand for high performance electrochemical

energy storage and conversion (EESC) technologies, driving the
development of secondary batteries1–5. Among various EESC
devices, lithium-ion batteries (LIBs) have the widest applications
in various fields6–9. However, limited lithium availability makes it
difficult to meet the forecast growth in market demand for LIBs.
In contrast, Na is widely distributed around the world and is
inexpensive, making sodium-ion batteries (SIBs) a promising
alternative for LIBs10–18.

As cathode materials are the key determinant for the perfor-
mance of SIBs, various compounds have been investigated as SIB
cathodes, including sodium transition-metal oxides, polyanions,
and alkali-metal hexacyanometalates19–22. Among these materi-
als, sodium-based layered transition-metal oxides (abbreviated as
NaxMO2 where M is a first row transition-metal) have gained
significant attention because of their unique structural advantages
and high theoretical capacities23. To date, O3-type and P2-type
layered structures have been intensely studied among various
sodium-based layered transition-metal oxides, although there is
greater interest in the latter. This is because P2-type NaxMO2

generally performs better electrochemically due to its lower Na+

diffusion barrier and higher ionic conductivity than its O3
phase23,24. In addition, O3-phase samples are too hygroscopic to
be stored at ambient atmosphere25, while P2-phase has sufficient
stability to be stored at ambient condition.

Mn-based layered oxides have been extensively studied for SIBs
due to their low costs, elemental availability and environmental
friendliness13,26,27. However, these materials tend to undergo
large Jahn–Teller distortions induced by Mn3+ ions (t2g3eg1),
leading to severe cyclic degradations during charge or discharge.
Unlike Mn3+ ions, Mn4+ ions (t2g3eg0) occupy the octahedral
sites and stabilize their electronic structures based on
energetics28,29. In order to suppress the Jahn–Teller distortion for
cyclic improvement, several research groups focused on doping
different metal ions (e.g., Mg, Al, and Li) into Mn-based layered
oxides30–34. Even though such metal doping helped to enhance
capacity retention, their capacity retentions are still insufficient
for the practical application of Mn-based layered oxides as con-
ventional cathode materials. Furthermore, due to the larger ionic
radius of Na+ ion, NaxMO2 generally undergoes more drastic
phase transformations during desodiation than LiMO2 during
delithiation, which makes its degradation more disastrous35–37.

Hence, reducing the Jahn–Teller distortion and controlling the
phase transformations in NaxMO2 during repeated charge/dis-
charge look critical for its use as a conventional cathode material.
Some studies attempted to understand their electronic structure
and thermodynamic phase stability upon Na extraction using
both theoretical and experimental approaches, because this sta-
bility is directly associated with the capacity retention of
NaxMO2

38–40. In this regard, reducing the amount of Mn3+ and
suppressing the phase separation during desodiation may be
essential for improving the capacity retention of Mn-based
layered oxides.

Considering that Jahn–Teller distortion is primarily induced by
trivalent Mn ions and the inherent phase transformations of Mn-
based layered oxides are closely linked to their thermodynamic
instability, divalent Zn has been doped into P2-type
Na0.833[Li0.25Mn0.75]O2 (NLMO) to investigate its structural and
thermodynamic contributions in this study. The reason to choose
P2-type NLMO is because introduction of Li into the transition-
metal layer can increase the Na content and thus enhance its
capacity32,41. Specifically, (Na0.833Zn0.0375)[Li0.25Mn0.7125]O2

(NLMO-Zn) has been obtained via Zn doping by a sol–gel pro-
cess combined with a subsequent heat treatment. Such doping not

only alleviates Jahn–Teller distortion by increasing the average
oxidation state of Mn but also reduces the inherent phase
separation or instability. This approach has been rationalized
using first-principles calculation and has been verified using
several analytical techniques, such as X-ray photoelectron spec-
troscopy (XPS), X-ray absorption spectroscopy (XAS), and in situ
X-ray diffraction (XRD). In comparison with bare NLMO, Zn-
doped samples have superior capacity retention. These findings
can be used to formulate rational strategies to improve the phase
stabilities and electrochemical performances of manganese-based
cathode materials in both LIBs and SIBs.

Results
Theoretical prediction of electronic and thermodynamic sta-
bility. The material we targeted for the Zn doping strategy, Na
[Li0.25Mn0.75]O2, is expected to have a mixed Mn valence of 3+
and 4+ to meet the charge balance. We first verified this mixed
valence by computationally modelling the structure of Na
[Li0.25Mn0.75]O2 and calculating the partial density of states
(PDOS) of Mn. As expected, Mn in these oxidation states is
present with the Mn3+ occupying the sites identified by the
purple octahedra (Fig. 1a) and Mn4+ by the purple octahedra
(Fig. 1b).

We then modelled the Zn-doped Na[Li0.25Mn0.75]O2 structure,
and the structure was fully relaxed using first-principles method
(Fig. 1c−e). The PDOSs of the Mn3+, Zn2+, and Mn4+ centers
are illustrated in Fig. 1c–e, respectively. It is found that the Mn3+

centers are oxidized (Fig. 1c), leading to the increased density of
states of the Mn4+ centers in the Zn-doped model compared to
the undoped model. This indicates that Zn-doped Na
[Li0.25Mn0.75]O2, which includes more Mn4+, would experience
less Jahn–Teller distortion and hence better capacity retention
compared to the undoped Na[Li0.25Mn0.75]O2.

Because the capacity retention of cathode material is closely
associated with its thermodynamic phase stability which is mainly
changed during the extraction of charge carriers, the formation
energies of mixing enthalpy (ΔHmix) for Na[Li0.25Mn0.75]O2 and
Zn-doped Na[Li0.25Mn0.75]O2 were calculated with Na content
and shown in Fig. 2a, b. The calculated thermodynamic energy
values have been utilized for plenty of battery materials to predict
their phase stability as a function of charge carrier content. In
these calculations, we have considered all possible combinations
of Na ions and their vacancies in Na1−x[Li0.25Mn0.75]O2 and Zn-
doped Na1−x[Li0.25Mn0.75]O2 when their sodium contents are in
the range of x= 0.0−1.0. From these energy diagrams, Na1
−x[Li0.25Mn0.75]O2 exhibits five ground states, while Zn-doped
Na1−x[Li0.25Mn0.75]O2 includes seven ground states. In details,
both of Fig. 2a, b are composed of four regions with the inverse
Na content. In the first region from x= 0 to x= 0.25, the Zn-
doped Na[Li0.25Mn0.75]O2 has a ΔHmix difference (notated as ΔH1

in Fig. 2a, b, i.e., ΔH1= ΔHmix(x= 0.25) − ΔHmix(x= 0.0)) of
−0.2709 eV, which is lower than that of Na[Li0.25Mn0.75]
O2 (−0.3256 eV), implying that a volumetric strain (εV= ΔV/
Vx=0 where ΔV is the volumetric change and Vx=0 is its unit cell
volume at x= 0) for the Zn-doped structure (εV=−0.027) is
smaller than that for the undoped structure (εV=−0.044) during
the initial desodiation. In the second region, the ground states of
Zn-doped Na[Li0.25Mn0.75]O2 as marked by the red circles in
Fig. 2b lie on the tie line between x= 0.25 and x= 0.5, indicative
of desodiation occurring in the same phase. This is in contrast to
its undoped counterpart, where the appearance of a pseudo
ground state (grey circle) at x= 0.38 suggests the formation of a
new phase, that is, desodiation involves a two-phase reaction in
Na[Li0.25Mn0.75]O2. In the third region (x= 0.50–0.88), the two
pseudo ground states are shown as grey circle above the tie line at
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x= 0.63 and at x= 0.75 are present for Na[Li0.25Mn0.75]O2 and is
indicative of phase separation when desodiated to this extent. By
contrast, Zn-doped Na[Li0.25Mn0.75]O2 only has one pseudo
ground state as illustrated by the grey circle at x= 0.63, indicating
that phase separation may occur only within the narrow region of
x= 0.5 and x= 0.75. The additional ground states in Zn-doped
Na[Li0.25Mn0.75]O2 can contribute to suppressing the inherent
phase separation or transition which can occur in Na
[Li0.25Mn0.75]O2

42.
To investigate the detailed phase separations in the third region

of the two samples, minimum ΔHmix values were fitted using a
double-well function. Then, the homogeneous bulk free energies
(ΔGhom), which can predict spinodal decomposition region and
the related phase separation behaviour43, were calculated at 300 K
and shown in Fig. 2c, d. For Na[Li0.25Mn0.75]O2, the range of
inverse Na content (x value) where spinodal decomposition
would occur looks broad, suggesting that the pristine sample
continues to suffer from a couple of phase separations when
charged above x= 0.57. Meanwhile, due to the additional ground
states accompanied by Zn doping, the doped sample tends to
have a spinodal decomposition just within a much narrower
range of inverse Na content and thereby remarkably reduces the
degree of phase separation when charged above x= 0.54. The
calculated thermodynamic phase stability predicts that Zn-doped
Na[Li0.25Mn0.75]O2 has lower ΔH1 and more stable intermediate
phases, and smaller spinodal decomposition region, finally
enhancing its cyclic stability compared to Na[Li0.25Mn0.75]O2.

Following these computational findings, we also investigated
the phase stability of NLMO and NLMO-Zn at different
temperatures and compositions by calculating their bulk free
energies. NLMO-Zn has a lower free energy than NLMO at all
temperatures and at all extent of sodium extraction (Supplemen-
tary Fig. 1), indicating that the doped sample exhibits higher
stability than its undoped counterpart.

Preparation and structural analysis of materials. Following
computational verification of our hypothesis, we proceeded to

synthesize undoped NLMO and NLMO-Zn using a sol–gel
method combined with a subsequent heat treatment. The pre-
cursor solution was evaporated at 80 °C for 12 h and was then
heated in a vacuum oven at 60 °C for 4 h, yielding a viscous white
mixture (Supplementary Fig. 2). This mixture was pre-calcined
first for 2 h at 400 °C, the temperature at which all volatiles have
been removed according to thermal gravimetric analysis (TGA)
(Supplementary Fig. 3), and then re-ground and pelletized for a
final calcination at 700 °C for 6 h in air.

Figure 3a shows the XRD patterns of NLMO and NLMO-Zn.
All peaks in both samples agree well with the pattern having the
P2-phase from previous studies (Supplementary Fig. 4)32,
demonstrating that the P2-type structure is constructed without
any impurity phase. For more accurate structure determination of
the doped and undoped NLMO, high resolution powder
diffraction (HRPD) patterns were collected using synchrotron
X-ray with a wavelength of 0.7749 Å. Figure 3b, c each show the
Rietveld refinement results for pristine NLMO and NLMO-Zn.
The patterns of both samples have high peak intensities, which
indicate their high crystallinity. The detailed cell parameters for
NLMO and NLMO-Zn are listed in Table 1 and Supplementary
Tables 1, 2. NLMO and NLMO-Zn have a hexagonal structure in
the P63 space group; no other phase is found, confirming the
phase purity of both samples. The corresponding P2-type crystal
structure of NLMO or NLMO-Zn is shown in Fig. 3d, e. When
viewed along the y-axis, the layered structure of P2-NLMO where
O-layers are stacked in ABBAAB sequence is clearly visible.
Therein, Li and Mn ions occupy the same positions (2a and 2b
sites) but with different occupancies. When viewed along the z-
axis, some Na ions seem to surround O ions, while other Na ions
are observed to surround Li and Mn ions. After doping Zn, Zn
ions occupy 6c positions in the Na layer. The detailed description
of crystal structure of NLMO or NLMO-Zn is placed in
Supplementary Note.

The electronic structures of NLMO and NLMO-Zn were
characterized by XPS, and their spectra in the Mn 2p3/2 region are
shown in Fig. 2f. The Mn in NLMO-Zn has a higher binding
energy, which suggests that the oxidation state of Mn in this
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sample is closer to 4+ than that in NLMO. Furthermore, the
higher binding energy of Zn in NLMO-Zn indicates that the Mn
−O bonds in NLMO-Zn are more robust than those in NLMO,
which may contribute to improving the phase stability and
thereby the capacity retention. These XPS results experimentally
confirm our hypothesis and computational design of employing
Zn dopant to reduce the amount of the Jahn–Teller distorted Mn3
+ centers. For completeness, the Zn 2p partial spectrum is
provided in Supplementary Fig. 5. Here, the Zn 2p3/2 and 2p1/2
peaks are located at 1023.13 and 1046.14 eV, respectively,
coinciding with those of ZnCl2 and ZnSO4 (from the National
Institute of Standards and Technology (NIST) database) and
demonstrating that the doped Zn in NLMO-Zn has a valence very
close to +2.

In order to directly validate the location of the doped Zn, we
conducted scanning transmission electron microscopy (STEM)
and solid-state nuclear magnetic resonance (NMR) analyses
together. Bright-field TEM image of the NLMO-Zn particle along
the [010] projection with the corresponding selected area
diffraction pattern (SAED) is shown in Fig. 4a. The P2-type
layered structure is verified again, which is consistent with the
HRPD refinement results. HAADF-STEM images of NLMO-Zn
are displayed in Fig. 4b, and bright contrasts exist in between two

adjacent transition-metal layers, which are marked by the red
arrows in the magnified images on the right side of panel b. It
demonstrates that Zn dopants exist in the Na layers. To further
understand the Zn position, a series of HAADF-STEM image
simulations were done. As shown in Fig. 4c, Zn located at the Na
layer causes a bright contrast, while no significant difference can
be observed compared to the undoped case, demonstrating that
Zn2+ ions are likely to occupy in Na layer. Figure 4d shows that
the contrast caused by Zn at the Na layer varied depending on its
occupancy. These simulation results indicate that the occupancy
of Zn in the Na-atomic columns is less than 10%. The Zn2+ ions
in the Na layers would stabilize the diffusion channels during
charge/discharge processes44. HAADF-STEM can thus visualize
the Zn dopants located at the Na sites. We then performed 23Na
solid-state nuclear magnetic resonance (NMR) spectroscopy for
NLMO and NLMO-Zn to compare their sodium chemical
environments, and the results reveal that the doped Zn2+ ions
do not exist in the transition-metal layer (Supplementary Fig. 6)
45. Altogether, these analyses provide strong evidences that the
doped Zn preferentially occupies the Na layer rather than the
transition-metal layer.

The morphologies and structures of both samples were further
corroborated by scanning electron microscopy (SEM) images and
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elemental analyses using energy dispersive X-ray spectroscopy
(EDS) and inductively coupled plasma optical atomic emission
spectroscopy (ICP-AES). Both NLMO and NLMO-Zn are
predominantly particles of several microns in dimensions
(Supplementary Fig. 7), and all elements are homogeneously
distributed in both samples (Supplementary Fig. 8). All atomic
ratios are similar to their calculated values based on their crystal
structures (Supplementary Fig. 9 and Supplementary Table 3, 4).
Although the sodium content in NaxMnO2 is usually in the range
of x= 0.68−0.76, the introduction of Li into the transition-metal
layer can extend the upper limit of this range to 0.8 or 0.83332,46.

Unfortunately, our attempts to increase the amount of Zn dopant
was unsuccessful; when attempting to increase the atomic percent
of Zn from 0.98% to 1.96% to obtain a stoichiometry of
(Na0.833Zn0.075)[Li0.25Mn0.675]O2, an impure phase (i.e.,
LiMn2O4) emerges in its XRD pattern (Supplementary Fig. 10).
Thus, substituting Zn ions for 5% Mn is found to be the optimum
condition in terms of phase purity.

As an experimental indicator of thermal stability, we
characterized NLMO and NLMO-Zn by TGA and DSC
(Supplementary Fig. 11). Both samples exhibit two exothermic
events as marked by the arrows in Supplementary Fig. 11b, but
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Fig. 3 Structural analyses of NLMO and NLMO-Zn. a Shows the XRD patterns of NLMO and NLMO-Zn. b, c Show the Rietveld refinement results for high-
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Table 1 Crystallographic parameters of NLMO and NLMO-Zn, based on Rietveld refinement results

a= b (Å) c (Å) V (Å3) α= β γ Rwp Rp χ2

NLMO 4.9722(6) 11.0425(7) 236.43 90° 120° 6.94 4.85 3.132

NLMO-Zn 4.9925(2) 11.0404(0) 238.32 90° 120° 6.64 4.46 3.452
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these occur at higher temperatures for NLMO-Zn than for
NLMO, corroborating the computational finding that the Zn-
doped compound possesses higher thermal stability as shown in
Supplementary Fig. 1.

Experimental validation of electronic and thermodynamic
stability. To verify the computational results regarding
Jahn–Teller distortion experimentally, we performed ex situ X-
ray adsorption near-edge structure (XANES) and extended X-ray
adsorption fine structure (EXAFS) analyses for the two samples in
the as-prepared, fully charged, and fully discharged states during
the 1st cycle. The XANES spectra at Mn K-edge region are shown
in Fig. 5a, and its magnified pre-edge region is shown in its figure
inset. In the pre-edge region, two peaks are observable, which is
consistent with previous reports47,48. However, these Mn pre-
edge peaks look similar for both pristine NLMO and NLMO-Zn
owing to their weak intensities. After full discharge to 1.5 V, these
two pre-edge peaks, as well as the main absorption edge in both
samples, shift to lower energies because of the decreased oxida-
tion state of Mn. However, two pre-edge peaks and the main edge
of NLMO are positioned at lower energies than those of NLMO-
Zn, which implies that the Mn in NLMO has a lower average
oxidation state (i.e. closer to the Jahn–Teller active Mn3+), and
thus NLMO would suffer more severe Jahn–Teller distortion than
NLMO-Zn.

From the Fourier-transformed (FT) magnitude plot of the Mn
K-edge EXAFS spectra shown in Fig. 5b, two main peaks are

observable in all cases. The peak at about 1.5 Å corresponds to the
single scattering paths of adjacent oxygen atoms (i.e., Mn-O),
while the peak at approximately 2.5 Å is attributed to the
interactions between Mn ions and their neighbouring metal ions
(i.e., Mn, Zn, or Li)46,47. Note that these distances are not the
actual bond lengths because these FT spectra were not phase-
corrected. For NLMO in the fully discharged state, an additional
peak at 0.98 Å (circled in dashed lines) resulting from Jahn–Teller
distortion can be clearly resolved, but this peak is not observed in
NLMO-Zn in the fully charged and discharged states evidencing
our hypothesis and computational calculations regarding the
suppression of Jahn–Teller distortion by the doped Zn.

To figure out the structural changes of NLMO and NLMO-Zn
during charge/discharge, in situ XRD analysis was carried out
during the 1st cycle, as shown in Fig. 6. For pristine NLMO, the
(002) peak splits into two peaks when the sample was charged to
4.12 V (purple line in Fig. 6a), which indicates that two phases
coexisted in this high voltage region. Because the (002) peak of
the O2 phase is located at around 20°, the newly emerged phase
has nothing to do with the O2 phase49. However, any peak
assigned to the O2 phase does not emerge in both samples
(Supplementary Fig. 12), but the (002) peak splits into two
adjacent peaks for pristine NLMO, demonstrating that a phase
transformation occurs to form a new phase. Because the new
phase is similar to the P2 phase in the structural viewpoint, it is
named P2’ phase. During charge, the (002) peak of the P2 phase
keeps decreasing gradually and finally almost vanishes in the fully

ZA = [010]

002

Doped: Zn@NaUndoped

c

a b

d

3% 5% 7% 9%

Doped: Zn@Mn

Fig. 4 Microscopy structure investigation of NLMO-Zn. a Bright-field TEM image of the particle along the [010] projection. Inset shows the selected area

diffraction pattern from the particle. b HAADF-STEM image of NLMO-Zn. c Simulated HAADF images in the [010] projection of the three cases: undoped

NLMO, 5%-Zn occupying the Na site in NLMO-Zn, and 5%-Zn occupying the Mn site in NLMO-Zn. d Simulated HAADF images showing the different

contrasts by the variation of Zn-occupancy (3%, 5%, 7%, and 9% Zn in the Na layer)
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charged state. The phase transformation and two-phase beha-
viour of pristine NLMO are induced by the phase separation
stemming from thermodynamic phase instability as predicted by
our first-principles calculations above. The (002) peak of the P2’
phase gradually shifts to high angles during the charging process
from 4.12 V to 4.4 V, which is indicative of the decrease of layer
spacing. The (010) and (012) peaks also shift to high angles
during charge because of their reduced lattice parameters as well.
Figure 6b shows the in situ XRD patterns of pristine NLMO
during discharge. As Na ions are inserted back into interlayers,

the (002) peak of P2’ phase gradually shifts to lower angles, and
its intensity simultaneously decreases. Then, it completely
disappears when discharged to 2.08 V. On the other hand, the
(002) peak of the P2 phase reappears, and its intensity gradually
becomes higher during discharge. Likewise, the (010) and (012)
peaks gradually return to the original angles in the initial state
during discharge.

Supplementary Fig. 13 shows how the cycling performance of
pristine NLMO changes depending on the voltage window. When
charged or discharged between 1.5 and 4.6 V, the P2 phase
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completely transforms into P2’ phase with a drastic capacity
decay for the initial three cycles. Between 1.5 and 4.2 V, the
P2–P2’ transition is avoided, thereby enhancing the capacity
retention. However, with this condition, the initial capacities and
coulombic efficiencies are relatively low. When the charge
terminal voltage is increased to 4.7 V, the electrolyte is completely
decomposed (Supplementary Fig. 14). Both high capacity and
decent capacity retention could be achieved via the improved
thermodynamic phase stability only when the charging voltage is
set to 4.4 V.

Figure 6c shows the in situ XRD patterns of NLMO-Zn when
charged to 4.4 V. Interestingly, any peak assigned to the P2’ phase
is not detected, and the (002) peak of the P2 phase just broadens
during charge, substantiating the argument that the phase
transition or separation into the P2’ phase is suppressed thanks
to the presence of a ground state at x= 0.75 in the mixing
enthalpy diagram (Fig. 2b). The (010) and (012) peaks of NLMO-
Zn shift in a similar manner to pristine NLMO, but less compared
with the pristine sample, proving that NLMO-Zn undergoes less
lattice parameter change during charge. The (002) peak of the P2
phase slightly shifts to lower angles (Fig. 6d), indicating that the
interlayer spacing of NLMO-Zn is a little increased during
discharge. Just like the pristine sample, the (010) and (012) peaks
return back to their original positions before cycling. Hence, it is
completely verified that NLMO-Zn does not undergo P2 to P2’
phase transition unlike the pristine NLMO, which well agrees
with the thermodynamic phase stability results from first-
principles calculation. Hence, Zn doping may well contribute to
improving the cycling performance of NLMO-Zn over the
undoped counterpart.

The (002) peak of the P2 phase in NLMO and NLMO-Zn was
also observed after the 2nd and 100th cycles (Supplementary
Fig. 15). The (002) peak of NLMO-Zn has no obvious change
even after the 2nd and 100th cycles, whereas the undoped NLMO
has a new peak located beside the (002) peak, which is assigned to
the P2’ phase. The intensity of this peak becomes higher as the

cycle number increases because the P2’ phase cannot completely
revert to the P2 phase every cycle, demonstrating that the phase
separation of undoped NLMO becomes more serious with the
cycle number.

Electrochemical performance. Based on the computational and
experimental results above regarding the reduction of the
Jahn–Teller distorted Mn3+ centers and the improved phase
stability, Zn doping must enhance the capacity retention of
NLMO. We verified this by comparatively evaluating the elec-
trochemical performances of NLMO and NLMO-Zn in coin cells
using Na as the anode. In the 1st cycle of the cyclic voltammo-
gram (CV) in Fig. 7a, NLMO exhibits two oxidative peaks at 4.15
V and 4.38 V. Herein, the peak at 4.15 V can be assigned to the
oxidation of Mn3+ and O2−, while the peak at 4.38 V may be
attributed to the phase transformation as previously
reported26,28,29,35. We nonetheless also considered the possibility
of anion redox-based on some recent literature findings29,32,41 as
well as ex situ XPS characterisation for the charged or discharged
electrodes (Supplementary Fig. 16). In the CV of NLMO-Zn, only
one oxidation peak at 4.20 V is present, which is assigned to the
oxidation of O2− and Mn3+ ions. Herein, the absence of the
second oxidation peak may indicate that this material does not
undergo phase change as previously demonstrated. The reductive
sweep during the 1st cycle shows the cationic reduction of Mn4+

as well as anionic reduction of O2
n−. The redox peaks appear

asymmetric because the reaction process during desodiation is
different from that during sodiation in the 1st cycle as reported in
previous papers32,41. In addition, all redox peaks have sizeable
magnitude of current densities, indicating the involvement of
significant amount of redox-active centers.

As shown in the charge/discharge curves of NLMO (Fig. 7b)
and NLMO-Zn (Fig. 7c) for the 1st, 2nd and 100th cycle, both
samples exhibit similar changes in electrochemical behaviours
upon repeated cycling in spite of the apparent superiority of
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NLMO-Zn. The charge curves of both samples look similar
during the whole cycling in that there is a sloping region between
2.2 and 3.8 V and thereafter a plateau region. Actually, as the
cycle number increases, the capacity contribution of the sloping
region becomes larger, whereas that of the plateau region keeps
falling down. The changes are the most prominent up to the 2nd
cycle, but get less from the 3rd cycle onward. These changes have
been observed in previous studies as well and attributed to the
activation of Mn4+ to Mn3+32,41. This plateau region decreases
from the 1st to the 100th cycle more rapidly in NLMO than in
NLMO-Zn, which is attributed to their different desodiation
pathways as shown in the CV curves (Fig. 7a) and in the in situ
XRD patterns. Although the charge and discharge curves of both
NLMO and NLMO-Zn undergo continuous shape change as the
cycling proceeds, the capacity contribution above 3.9 V is a bit
higher for NLMO-Zn than for NLMO after the 1st cycle
(Supplementary Fig. 17). While discharge proceeds, both samples
show similar discharge curves in which the continuous slope is
maintained down to the cut-off voltage, 1.5 V, but the discharge
capacity of NLMO displays much faster decay than that of
NLMO-Zn up to the 100th cycle.

Figure 7d shows the cycling performance of NLMO and
NLMO-Zn. Because the redox-active Mn centers are partially
substituted by the redox-inactive Zn dopant in NLMO-Zn, the
doped sample exhibits lower initial capacity than that of NLMO.
However, with repeated charge/discharge cycles, NLMO-Zn
maintains very stable capacity retention, while the capacity of
NLMO gradually decays up to the 60th cycle, finally rendering the
capacity of NLMO-Zn to surpass that of NLMO. In the 1st cycle,
the charge and discharge capacities of the doped sample
respectively correspond to 0.241 Ah g−1 and 0.166 Ah g−1, which
are a little lower than those of its undoped counterpart (0.252 Ah
g−1 and 0.179 Ah g−1, respectively). However, NLMO-Zn
exhibits a discharge capacity of 0.162 Ah g−1 in the 100th cycle,
which is similar to its 1st cycle discharge capacity and exceeds
that of NLMO that has dropped down to 0.139 Ah g−1. Up to the

200th cycle, NLMO-Zn still maintains the same discharge
capacity reaching 0.161 Ah g−1, which is two times higher than
that of NLMO (0.074 Ah g−1), and a coulombic efficiency (CE) of
100.06%, which is superior to that of the undoped sample at
98.20% (Supplementary Fig. 18). Hence, these results clearly
demonstrate that Zn doping in NLMO enables superior capacity
retention, which can be attributed to the suppression of
Jahn–Teller distortion and phase separation as consistent with
our hypothesis and computational predictions above. From the
morphological observation of the electrodes before and after
cycling (Supplementary Fig. 19), the particle sizes of both samples
are well maintained even after 100 cycles. In addition, the
reproducibility of these electrochemical results was confirmed
(Supplementary Figs. 20−22).

Discussion
Figure 8 shows the changes in the electronic and crystal structures
of NLMO and NLMO-Zn during the 1st cycle. The initial
valences of Mn ions in pristine NLMO and NLMO-Zn are
commonly close to +4, even if that of NLMO-Zn is quite higher
than that of pristine NLMO, thus suppressing Jahn–Teller dis-
tortion. Hence, the charge capacities of NLMO and NLMO-Zn
may significantly depend on the oxygen redox reaction (O2−

→

O2
n−), as evidenced by XPS spectra in the O 1s region in the fully

charge/discharged states (Supplementary Fig. 16). During the 1st
charge, the phase transition from P2 to P2’ takes place in NLMO,
but this is not observed in NLMO-Zn. The phase transition in
NLMO results from higher O 2p than Mn 3dt2g50, which makes
an irreversible oxygen loss inevitable. During the 1st discharge,
the P2’ phase reverts to the P2 phase, and the reduction reactions
of O2

n− and Mn4+ occur simultaneously. During discharge, the
phase reversion from P2’ to P2 is accompanied by the reduction
of both O2

n− and Mn4+ in NLMO. During recharge, the
reduction from Mn4+ to Mn3+ becomes higher in NLMO than in
NLMO-Zn because of the oxygen loss resulting from the phase
transition from P2 to P2’.
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As the activation process of Mn4+ ions occurs for both sam-
ples, the change of Mn valence in NLMO and NLMO-Zn was also
observed after 50 cycles, and the ratios of Mn3+ to Mn4+ in
NLMO and NLMO-Zn are 1:7.2 and 1:15.2, respectively (Sup-
plementary Fig. 23). The poor phase stability of NLMO leads to
the phase transition from P2 to P2’ and significant oxygen loss,
which is accompanied by more reduction of Mn ions, thereby
continuously increasing the amount of Mn3+ during the repeated
cycling. After 50 cycles, the differences in capacity retention
between NLMO and NLMO-Zn become larger and larger with
the cycle number.

Due to the difference in electronegativity, the doped Zn likely
occupies the original Mn3+ sites in NLMO, and thereby reduces
the amount of Mn3+ through modulating the electron density in
NLMO-Zn. Considering this positive and advantageous effect of
the Zn dopant, other non-transition metals were screened com-
putationally as well to figure out whether they have similar
benefits (Supplementary Fig. 24, 25). Interestingly, Mg-doped Na
[Li0.25Mn0.75]O2 is predicted to show significantly reduced
Jahn–Teller distortion because its Mn electronic structure is
similar to that of Zn-doped Na[Li0.25Mn0.75]O2. In good agree-
ment with our predictions, a recent paper showed the improved
structural stability of Na2/3Mn1−yMgyO2 (y= 0.05 and 0.1)51.

In addition, Zn doping significantly contributes to improving
the thermodynamic phase stability of the Mn-based layered oxide.
The influence of Zn doping on the electrochemical performance
of other Mn-based cathode materials were also investigated, and
P2-type Na2/3MnO2, O3-type NaMnO2, and their Zn-doped
counterparts were synthesized. As demonstrated by the capacity
retention results (Supplementary Fig. 26, 27), both P2-type and
O3-type Mn-based cathode materials clearly exhibit enhanced
cyclic retention after Zn doping.

Here, all experimental results agree well with the predictions
from our first-principles calculations. Based on our empirical and
computational findings, it seems that Zn doping has two positive
effects on NLMO. First, Zn2+ would primarily results in
Jahn–Teller distortion of Mn3+. Secondly, and Zn2+ doping
makes the phase stability of the P2 structure robust during
charge/discharge and thus helps to prevent its phase transition to
the P2’ structure. Consequently, NLMO-Zn could exhibit sig-
nificantly improved phase stability and capacity retention in
comparison with NLMO. Even if the content of Zn in NLMO-Zn
is not that high, it looks sufficient for stabilizing the crystal
structure of NLMO, as similar to the previous reports with small
amount of doping31,52. Thus, Zn doping may be an effective and
broadly applicable strategy for Mn-based cathode materials.

Methods
Material preparations. NLMO and NLMO-Zn were prepared using a sol–gel
method with a subsequent heat treatment. For NLMO-Zn, LiCH3COO (49.5 mg,
0.750 mmol), NaCH3COO (211.2 mg, 2.575 mmol), Mn(CH3COO)2∙4H2O (523.9
mg, 2.138 mmol) and Zn(NO3)2 (33.5 mg, 0.113 mmol) were dissolved in deionized
water. Citric acid (1.73 g) and PEG400 (2 mL) were added to the solution and
continuously stirred for 30 min. The transparent solution was evaporated at 80 °C
for 12 h and then heated in a vacuum oven at 60 °C for 4 h, yielding a viscous white
precursor. This precursor was calcined at 400 °C for 2 h and then annealed at 700 °
C for 6 h in air. After cooling to room temperature, the product NLMO-Zn was
obtained as a purple powder. For NLMO, the amount of Mn precursor, Mn
(CH3COO)2∙4H2O, was changed to 551.5 mg (2.25 mmol); the Zn precursor was
not added.

Calculation methods. Densities of states and thermodynamic values were calcu-
lated using the density functional theory (DFT) and implemented using a Vienna
ab initio simulation package (VASP), which was based on a plane-wave set with the
pseudopotentials of a projector-augmented wave (PAW). A generalized gradient
approximation (GGA) of a Perdew–Burke–Ernzerhof (PBE) was used for a func-
tional exchange-correlation parameterization. A Li pseudopotential was treated
with one 2s electron and two 1s electrons, and one 3s electron and six 2p electrons

for Na, to achieve their valence states. Standard potentials were used for Mn and
Zn.

To find a strong correlation between transition-metal 3d bands, a Hubbard-type
U correction was used in the GGA and PBE with spin-polarized calculations. For
standard computational parameters, a kinetic energy cut-off of 400 eV and a k-
point mesh in a reciprocal space of 4 × 4 × 2 were applied to all calculations. For all
DFT calculations, cell parameters and atomic positions were fully relaxed to
achieve optimized electronic structures.

The homogeneous bulk free energy (ΔGhom) was calculated by the
thermodynamic mixing enthalpies using a double-well function with the enthalpy
coefficient, Ω, as follows:43,53

ΔHmix � x � xið Þ2 xf � x
� �2

¼ ΔHhom; xi � x � xf ð1Þ

where ΔHhom indicates the homogeneous mixing enthalpy from xi to xf. ΔGc
hom can

be obtained using a theoretical model including the configurational entropy, ΔShom,
with temperature (T) as follows:

ΔGhom ¼ ΔHhom � TΔShom � x � xið Þ2 xf � x
� �2

þ2kBTx ln x þ 2kBT 1� xð Þ ln 1� xð Þ

ð2Þ

where kB refers to the Boltzmann constant.

Material characterizations. The crystal structures of the samples were analyzed
by powder X-ray diffraction (Rigaku Ulyima IV, Cu Kα, operating at a current of
30 mA and a voltage of 40 kV). The morphologies and microstructures of the
samples were characterised using a field emission-scanning electron microscopy
(FESEM, JEOL, JSM-6700F) and a transmission-electron microscopy (TEM, JEOL,
JEM-2100F). Elemental analyses were performed using energy dispersive X-ray
spectrometer (EDS, X-MaxN, Oxford Instruments) and an inductively coupled
plasma-optical emission spectrometer (ICP-OES, OPTIMA 8300, Perkin-Elmer).
The oxidation states of the elements in the samples were characterised by XPS
(Perkin Elmer PHI 1600 ESCA system). Thermogravimetric analysis (TGA) and
differential scanning calorimetry (DSC) were conducted using a thermal gravi-
metric analyzer (TA instruments, SDT Q600) and a DSC analyzer (DSC 200 F3
Maia, NETZSCH), respectively. 23Na solid-state nuclear magnetic resonance
(NMR) experiments were performed at 132.3 MHz on a Bruker Avance II spec-
trometer using a 4 mm MAS probe at rotor spinning speed of 60 kHz.

HAADF-STEM images were collected by a transmission electron microscope
(JEM-2100F, JEOL, Japan) at 200 kV with spherical-aberration correction (CEOS
GmbH, Germany). The powder was pre-treated by grinding and ion-milling and
was then transferred onto a TEM grid. HAADF-STEM image simulations were
performed via QSTEM [Christioph Koch, Determination of Core Structure
Periodicity and Point Defect Density along Dislocations, PhD thesis, Arizona State
University (2002)].

Mn-K edge X-ray adsorption near edge structure (XANES) spectra of the
samples were collected at the 10 C beam line at Pohang Accelerator Laboratory
(PAL) in Pohang, South Korea,. All spectra were normalized to the main-edge
jump. Additionally, high-resolution powder diffraction (HRPD) patterns were
collected at National Synchrotron Radiation Research Center (NSRRC) in Taiwan.
Synchrotron X-ray was monochromated to a wavelength of 0.7749 Å using a
double-crystal Si (111) monochromator. The Rietveld refinement was performed
by utilizing the GSAS software54,55.

In situ synchrotron powder XRD data were recorded in a powder diffraction
beamline at the Australian Synchrotron with a wavelength of 0.6888 Å. The
wavelength was calibrated according to the standard reference material (LaB6 660b)
of the National Institute of Standards and Technology (NIST). The cell used for the
data collection was charged at a rate of 0.3 C, and the voltage window was 1.5
V–4.4 V. All in-situ XRD patterns were transferred based on Cu Kα standard.

Electrochemical characterizations. All electrochemical tests were conducted in
CR2032 coin-type cells. The working electrode consisted of 80 wt.% active mate-
rials, 10 wt.% conductive carbon (super P) and 10 wt.% polyvinylidene fluoride
(PVdF) binder. The mixture was dispersed in N-methyl pyrrolidone (NMP) and
then hand-ground for 30 min. The slurry was cast onto a Cu foil and dried at 110 °
C for 12 h under vacuum. The loading of the undoped NLMO and NLMO-Zn was
between 1.9 mg cm−2 and 3.2 mg cm−2. The coin cells were assembled using glass-
fibre filter paper as separator, Na disc as both counter and reference electrode, and
80 μL of 1M NaPF6 in ethylene carbonate/diethyl carbonate (EC/DEC, 1:1 v/v) as
electrolyte. All cell assembly was performed in an argon-filled glove box. Galva-
nostatic charge/discharge tests and cyclic voltammetry (CV) were conducted using
a WBCS battery cycler (WonATech). For charge/discharge tests, 0.25 A g−1 was
used as 1 C.
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Data availability
The data that support the findings of this study are available from the corre-
sponding author upon request.
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