
Manger’s Attack Revisited

Falko Strenzke1,2

1 FlexSecure GmbH, Germany�

strenzke@flexsecure.de
2 Cryptography and Computeralgebra, Department of Computer Science,

Technische Universität Darmstadt, Germany

Abstract. In this work we examine a number of different open source
implementations of the RSA Optimal Asymmetric Encryption Padding
(OAEP) and generally RSA with respect to the message-aimed timing at-
tack introduced by James Manger in CRYPTO 2001. We show the short-
comings concerning the countermeasures in two libraries for personal
computers, and address potential flaws in previously proposed counter-
measures. Furthermore, we point out a new source of timing differences
that has not been addressed previously. We also investigate a new class of
related problems in the multi-precision integer arithmetic that in prin-
ciple allows a variant of Manger’s attack to be launched against RSA
implementations on 8-bit and possibly 16-bit platforms.

Keywords: public key encryption scheme, RSA, RSA-OAEP, timing
attack, side channel attack.

1 Introduction

The widely used RSA public key encryption scheme was found to be insecure
[1] when used with PKCS#1 v1.5 encoding [2]. The OAEP encoding [3] was
introduced to overcome these security problems. While being formally secure,
a straightforward implementation of the RSA-OAEP decoding was found to
be vulnerable with respect to timing or fault attacks by James Manger [4].
The current RSA-OAEP specification [3] accounts for these vulnerabilities, and
proposes countermeasures.

In this work, we examine two prominent open source cryptographic libraries
with respect to the realization of appropriate timing attack countermeasures
against Manger’s attack. Specifically, these are the Botan [5] and OpenSSL [6] li-
braries. We find shortcomings in both implementations concerning the realization
of the countermeasures within the RSA-OAEP decoding routine. Furthermore,
we show that both libraries also feature another source of timing differences that
in principle allows Manger’s attack even when the RSA-OAEP decoding routine
is perfectly secured, also enabling attacks against RSA independently of the en-
coding method. We outline a countermeasure against this new vulnerability. The
vulnerability discovered in the OAEP decoding routine of the Botan library was
� A part of the work of F. Strenzke was done at2.

M. Soriano, S. Qing, and J. López (Eds.): ICICS 2010, LNCS 6476, pp. 31–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

32 F. Strenzke

fixed in the 1.9.8 and 1.8.9 versions by the library maintainer Jack Lloyd after
being informed by us.

Furthermore, we show that an even deeper source of timing differences in
the multi-precision integer arithmetic can in principle be used by an attacker to
mount Manger’s attack especially on 8-bit architectures. Again, this vulnerability
is independent of the OAEP decoding method.

2 Preliminaries: RSA-OAEP

In the following, we will very briefly recapitulate the well known RSA public key
encryption scheme and then explain the OAEP encoding.

The RSA private key consists of the private exponent d, the public key is given
by the modulus n and the public exponent e. RSA encryption is performed by
computing the ciphertext c = me mod n, which is decrypted as m = cd mod n.
The knowledge of the prime factors p, q with pq = n is the what enables the
holder of the secret key to determine the correct private exponent d.

In [1] it is shown that RSA used with the PKCS#1 v1.5 encoding [2] is
vulnerable to certain reaction attacks where the attacker manipulates a target
ciphertext he wishes to decrypt, and having access to a decryption oracle is able
to observe whether this manipulated ciphertext can be decrypted correctly. To
thwart these attacks, RSA-OAEP [3] was introduced. The aim of this so called
conversion is to detect any manipulation of the ciphertext during the decryption
phase and to refuse to output the decryption result.

Fig. 1. The RSA-OAEP decoding procedure. Here,
⊕

denotes XOR.

Manger’s Attack Revisited 33

The RSA-OAEP decryption, depicted in Fig. 1, starts with the RSA decryp-
tion. The resulting integer is encoded as an octet string, which is divided into two
parts: starting at the most significant octet of the integer, we find a value used
for later unmasking of a seed. The RSA-OAEP specification [3] demands that
the leading octet of this octet string, denoted by “xx” in the figure, has value
zero. This requirement guarantees that the integer representing the message is
smaller than the RSA modulus when performing RSA-OAEP encryption. This
relation in turn is a requirement of the RSA encryption algorithm. The RSA-
OAEP specification [3] demands that after the RSA decryption it is verified that
this condition is met and that an error is output in case of a violation. In the
remainder of the paper, we will refer to this condition as the first error condition
of the OAEP decoding, and will speak of a supernumerary octet in case this
error condition is met.

Fig. 1 also shows the further processing of the RSA-OAEP decryption opera-
tion. It involves a mask generation function (MGF), specified in [3], which takes
a variable length octet string as input and outputs an octet string of fixed length.
After the final XOR operation, an octet string consisting of three elements is
recovered (the uppermost rectangular box in the figure). The first element, H ′

(called “pHash′” in [3]) is the hash value of an octet string, referred to as the
parameters, which must be available to both the encrypting and the decrypting
party involved. The padding part is of variable length and has to meet certain
requirements for a regular ciphertext, which are of no interest for our analysis.

What is important for our analysis, is that a manipulated ciphertext will
always cause at least the comparison H = H ′ to fail, which we will refer to in the
following as the second error condition. The first error condition, i.e. the check
whether the highest octet of the RSA plaintext equals 00, will not be triggered
in all cases. This is simply due to the fact that the probability for the highest
octet being 00 is at least 1/256 when decrypting random RSA ciphertexts. The
third check concerning the form of the padding, is of no importance for the
vulnerabilities discussed in this work. Even if this check was executed before the
check H = H ′, there is no known attack based on this error condition.

3 The Known Attacks against RSA-OAEP

In [4], it is shown how fault and timing attacks may be possible, if the im-
plementation of the scheme does not include appropriate countermeasures. The
attack exploits the fact that in the RSA-OAEP decryption, errors can occur
at two different points in the algorithm, as explained in the preceding section.
If an attacker can distinguish between these error conditions, he can conduct
an adaptively chosen ciphertext attack with the aim of recovering the message
corresponding to a certain ciphertext. This is explained in detail in [4]. In the
following we only give a brief outline of the principle of this attack, focusing on
the underlying information leak.

The attacker performs the attack by creating manipulated versions of the
ciphertext he wishes to decrypt. Specifically, given the ciphertext c0, he chooses

34 F. Strenzke

an integer f and computes c′0 = fec0 mod n where e and n are the public
exponent and modulus of the key that was used to encrypt c0. The attack builds
on the ability of the attacker to let the decryption device decrypt the manipulated
cipher text c′0 and learn whether m′

0 = fm0 = c′d0 has a supernumerary octet in
the sense described above. Let B be the smallest value of a message m which
features a supernumerary octet, then the information learned by the attacker is
whether fm0 mod n ≥ B is true or false. Repeating this with f chosen based
on previous outcomes, he can by and by narrow down the number of possible
values of m0. This is done with a specific strategy described in [4]. The details
of this attack are not necessary to understand the remainder of the paper, the
only important thing is the source of the information gain.

The way in which an attacker can learn whether the decryption of a certain
ciphertext c0 caused the supernumerary octet is described as twofold in [4].
First, if the error message in this case is different from the error message that
occurs when checking whether H = H ′, and the attacker has access to these
error messages, the attack can be mounted as a fault attack. But even if the
error messages are indistinguishable, there is still a chance for the attacker to
distinguish at which stage in the algorithm the error was caused based on the
running time [4]. The attack becomes especially dangerous if the computation of
the parameter hash value is performed after the check of the first error condition
and the attacker is able to provide parameters of arbitrary length1. Then the
timing differences based on the first error condition can become enormous.

4 Analysis of Two Open Source RSA-OAEP
Implementations

In this section, we analyze the implementation of the RSA-OAEP decoding in
the open source cryptographic libraries Botan [5] and OpenSSL [6] concerning
their defense against Manger’s attack [4].

In advance, we wish to point out that the most dangerous timing attacks,
where the attacker is able to control the size of the parameters to be hashed, are
not possible for RSA-OAEP as it is implemented in Botan and OpenSSL. This
is due to the fact that in Botan the parameters have a preset value which is the
empty string, and in OpenSSL, the OAEP decoding is continued even in case
of the fulfillment of the first error condition, thus ensuring against conditionally
performing the computation of the parameter hash.

4.1 The RSA-OAEP Decoding Operation in OpenSSL

In OpenSSL 1.0.0, the implementation of RSA-OAEP decoding is found in
the file rsa/rsa_oaep.c in the function RSA_padding_check_PKCS1_OAEP().
In List. 1, we show the implementation of the countermeasure against Manger’s

1 Only limited by the input size limit of the employed hash function, which is 264 bits
for SHA-1, for instance.

Manger’s Attack Revisited 35

attack within this function. In Line 109 the difference between the actual number
of non-zero octets of the plaintext octet string (flen) and the maximal allowed
length (num) is computed. The error condition is checked in the if-statement in
the subsequent line. Obviously, the implementer did not consider it a problem
that in case of the fulfillment of the first error condition, the code inside the if-
block causes a timing difference compared to the case where the condition is not
fulfilled. As a consequence, it cannot be excluded that the conditional branching
can be detected through the timing in certain scenarios. Furthermore, based on
the conditional branching, the attack can in principle be mounted as a branch
prediction attack [7].

Basically, it is easily possible to remove this vulnerability by using branch
free code employing the techniques shown in [8,9]. But since implementing the
countermeasure proposed by us in Sec. 5.2 entirely removes the necessity to deal
with whole issue arising in the context of the supernumerary octet, we do not
address such a solution here.

109 lzero = num - flen;

110 if (lzero < 0)

111 {

112 /* signalling this error immediately after detection might allow

113 * for side-channel attacks (e.g. timing if ’plen’ is huge

114 * -- cf. James H. Manger, "A Chosen Ciphertext Attack on RSA

Optimal

115 * Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001),

116 * so we use a ’bad’ flag */

117 bad = 1;

118 lzero = 0;

119 flen = num; /* don’t overflow the memcpy to padded_from */

120 }

Listing 1. The implementation of the countermeasure against Manger’s attack in the
RSA-OAEP decoding routine of OpenSSL-1.0.0.

4.2 The RSA-OAEP Decoding Operation in Botan

The decoding operation in Botan-1.9.7 is found in the file pk_pad/eme1/eme1.
cpp, in the function EME1::unpad(). The beginning of the function is shown
in List. 2. The implementation is not vulnerable to fault attacks, since exactly
the same exception with the same error message is thrown for all possible errors
occurring during the decoding operation. Timing attack countermeasures are not
included. With respect to the implementation of corrective countermeasures in
this function, the same considerations as given for OpenSSL in Sec. 4.1 apply.

36 F. Strenzke

55 key_length /= 8;

56 if(in_length > key_length)

57 throw Decoding_Error("Invalid�EME1�encoding");

58
59 SecureVector<byte> tmp(key_length);

60 tmp.copy(key_length - in_length, in, in_length);

61
62 mgf->mask(tmp + HASH_LENGTH, tmp.size() - HASH_LENGTH, tmp,

HASH_LENGTH);

63 mgf->mask(tmp, HASH_LENGTH, tmp + HASH_LENGTH, tmp.size() -

HASH_LENGTH);

64
65 for(u32bit j = 0; j != Phash.size(); ++j)

66 if(tmp[j+HASH_LENGTH] != Phash[j])

67 throw Decoding_Error("Invalid�EME1�encoding");

Listing 2. The implementation of the RSA-OAEP decoding routine of Botan-1.9.7.

4.3 Potential Risks of Previously Proposed Countermeasures

As mentioned in Sec. 4.1, we aim at a more fundamental countermeasure that
takes effect already before the OAEP decoding routine, this will be discussed
in Sec. 5. But since in [8],[4] and [3] countermeasures to be implemented within
the OAEP decoding have been proposed, we wish to point out the possibility of
creating new power analysis vulnerabilities when following these propositions.

In [8], the authors suggest to react to a supernumerary octet in the following
manner: if the first error condition in the OAEP decoding is fulfilled, one shall
“generate a dummy value (which can be selected arbitrarily from the domain of
OAEPDECODE)”, where the dummy value shall be used as the decoded RSA
plaintext in the further processing of the OAEP decoding. While this statement
is not entirely clear about whether to use random values generated anew when-
ever the error condition is fulfilled, it could at least be interpreted in this way. At
this point, [4] explicitly suggests to use random values. This, however, would be
a problem: it would potentially reveal the error condition by introducing a cer-
tain amount of randomization in the further OAEP decoding procedure, which
is presumably entirely deterministic if the first error condition is not fulfilled. It
might thus be possible to detect the first error condition by repeatedly letting
the device decrypt the target ciphertext and computing the variances of the set
of power consumption samples at the corresponding points in time: the random-
ization should be revealed by a larger variance than for a ciphertext which does
not lead to the fulfillment of this error condition.

Similarly, in [3], it is suggested that if the first error condition is fulfilled
one shall “proceed to step 5 with EM set to a string of zero octets”, where
“EM” refers to the decoded RSA plaintext and “step 5” refers to the remaining
computations of the OAEP decoding. This is also not a good advice, since a
string of all zeros is an extreme case of low hamming weight. Knowing that

Manger’s Attack Revisited 37

differences in hamming weights during a computation are the most common
targets of power analysis attacks [10], it seems highly likely that an attacker will
be able to deduce the fulfillment of the error condition from the power trace.

Instead, if one decides to implement a countermeasure within the OAEP de-
coding routine, one should follow the principle of least modification: simply ig-
nore the supernumerary octet without introducing a timing difference. In this
case, the second error condition will be fulfilled anyway, ensuring the overall
correct decryption result, i.e. the indication of “decryption error”. This is be-
cause, as is immediately obvious, the check for the first error condition is not
contributing to the security of the scheme since Manger’s attack builds on fre-
quently bypassing it.

Naturally, the above considerations only apply to the case where power anal-
ysis attacks are feasible.

5 A New Vulnerability in the Integer to Octet String
Conversion

While the vulnerabilities in the previous section stem from insufficient counter-
measures against Manger’s attack, we will show in this section, that even given
a perfectly secured OAEP decoding routine there are potential vulnerabilities
already in the integer to octet string conversion preceding the OAEP decoding
step. We will then discuss appropriate countermeasures.

5.1 The Integer to Octet String Conversion in OpenSSL and Botan

Concerning the implementation of the integer encoding routine, OpenSSL and
Botan both share the vulnerability that the running time of this routine linearly
depends on the number of octets that are needed to represent the integer. Thus,
if in a given scenario an attacker is able to detect these timing differences, he
would be able to mount Manger’s attack based on this side channel information.

In List. 3 we show the routine used for the integer encoding in Botan-1.9.7,
located in the file math/bigint/bigint.cpp. First, in line 337, the variable
sig_bytes is assigned the number of bytes the resulting octet string will consist
of. Then, in the subsequent line, a loop is started that has as many iterations
as the value of sig_bytes, obviously causing the timing dependency mentioned
above. In OpenSSL, the integer encoding is done in the function BN_bn2bin()
in the file bn/bn_lib.c. It is fully equivalent to the Botan implementation, so
we omit the analysis of that function and simply record that OpenSSL’s integer
encoding routine suffers from the same vulnerability as Botan’s.

5.2 The Solution: No Secret Dependent Branching

The solution for both implementations of RSA-OAEP considered in this work
is to use a modified integer encoding routine. This routine has to satisfy two
requirements: Firstly, it should receive the maximum number of octets allowed

38 F. Strenzke

335 void BigInt::binary_encode(byte output[]) const

336 {

337 const u32bit sig_bytes = bytes();

338 for(u32bit j = 0; j != sig_bytes; ++j)

339 output[sig_bytes-j-1] = byte_at(j);

340 }

Listing 3. The implementation of the integer encoding in Botan-1.9.7.

by RSA-OAEP as a function parameter, called Smax from here on, and discard all
octets that exceed this maximal size. Secondly, it should have the same running
time independently of whether the integer’s natural encoded value comprises
Smax or Smax +1 octets. The first requirement removes the need to check for the
input size in the OAEP decoding operation, since now it is guaranteed that the
maximal size is not exceeded already during the integer encoding. The second
requirement makes sure that not even a “tiny” revealing timing difference occurs
during the integer encoding.

In order to achieve the goal of secret independent running time, we have to
avoid secret based branching in the routine. To this end, techniques similar to
those proposed in [8,9] should be used. Those techniques are based on replacing
conditional statements with logical masking. Furthermore, in order to avoid ba-
sically any possibility of the compiler introducing conditional branching where it
is not desired, one should avoid any use of comparative statements when dealing
with secrets. The reason is that compilers might implement these comparisons
with conditional branching, as is pointed out in [8]. We thus recommend to use
only logical masking in the implementation of the countermeasure and avoid
the use of comparison operators. For the generation of the masks using only
logical operations see for instance the example given in [11]. Furthermore, we
recommend the use of the volatile specifier, that is part of the C program-
ming language specification. Declaring a variable in this way tells the compiler
that it might be changed asynchronously by another process or thread (as it
would for instance be the case when using shared memory). This removes the
compilers freedom of optimizing code involving the variable [12]. Declaring our
logical mask variables in this way, we render it highly unlikely that the compiler
transforms the logical operations into code containing conditional branching.

In App. A we give C++ code employing all the mentioned features to realize
the timing attack secure integer to octet string conversion for the Botan library.

6 New Vulnerabilities in the Multi-precision Integer
Arithmetic

In the previous sections we have seen that prominent implementations of RSA-
OAEP are not entirely secured against Manger’s attack, and that the integer

Manger’s Attack Revisited 39

encoding routines feature timing attack vulnerabilities that have not been inves-
tigated so far. In this section we will show that timing differences based on the
number of leading zero bytes of the plaintext can also appear already within the
RSA computation itself. This, however, seems only possible on 8-bit or 16-bit
platforms as we will show in the following.

Let us assume a particular implementation of RSA that uses so called base
blinding [13] which is a well known countermeasure against timing and power
analysis attacks against the RSA private key. It is shown in Alg. 1.

Algorithm 1. RSA decryption with base blinding side channel countermeasure
Require: RSA ciphertext c, modulus n, public exponent e and private exponent d
Ensure: RSA plaintext m

r ← random number
c′ ← rec mod n
m′ ← c′d mod n
m← m′r−1 mod n

Obviously, the last operation that leads to the recovering of m is a modular
reduction modulo n, which we assume to be implemented as a multi-precision
integer division. We will consider alternatives in the subsequent general discus-
sion. The potential vulnerability we wish to point out will most probably be
present in any straightforward multi-precision integer implementation. But to
ease the discussion, we will turn to a concrete implementation example first,
and afterwards generalize the results.

6.1 The Example of PolarSSL

Since the vulnerability we are going to discover will only be found on 8-bit or
16-bit platforms, we choose a cryptographic library that is intended for the use
on embedded platforms, namely the PolarSSL library [14]2.

In order to understand the vulnerability we first need to understand how
multi-precision integers are implemented in PolarSSL. A multi-precision integer
in PolarSSL is realized as an object that contains a pointer p to an array of
words representing the integer and a native integer n indicating the number of
words allocated in that array. Independently of the specific implementation of the
division routine the integer m is found as the last remainder that occurs during
the division. The multi-precision integer object representing the last remainder
in the division routine of PolarSSL, which goes by the name mpi_div_mpi(),
is a local variable and thus is not the one that is returned by the function
as the result. The multi-precision integer returned by the function is in fact
assigned the value of the local remainder, this is done with the help of the

2 Note, however, that in this library RSA is not actually implemented with base blind-
ing, this is an additional assumption for our analysis.

40 F. Strenzke

function mpi_copy(), shown in List. 4. In this function we see a for-loop running
through Y->p from the highest word of the multi-precision integer Y serving as
the source, stopping once the leading zero words have been consumed. From this
point on, the variable i carries the number of significant words of Y. A call to
mpi_grow() then ensures that X->p is large enough to hold the contents of the
origin. Consequently, with a call to memset() the contents of X are cleared, and
via a call to memcpy() the significant words of Y are copied to X.

It is immediately clear that the size parameter in the call to memcpy() is the
number of significant 8-bit words of Y, i.e. the integer representing the message.
Note that ciL is a compile time constant that equals one when 8-bit words are
used inside mpi. Since the running time of the memcpy() implementation can
generally be assumed to be dependent on the size parameter, we obviously have
found a new source for timing differences based on the number of octets needed
to represent the message.

The remaining operations inside the mpi_copy() routine are also prone of
having associated running times related to the number of 8-bit words in Y, but
all of them are more or less dependent on the number of leading zero words in
the allocated arrays of X and Y , which in turn depend on their “history”, which
we have not analyzed here3. Clearly, one has to be aware of the fact that though
there might also be effects that decrease the running time based on the number
of significant 8-bit words in Y, it cannot be safely assumed that this results in a
total compensation. This could only happen by chance on specific platforms. Of
course, also the net timing effect will clearly be platform dependent.

6.2 Generalization of the Vulnerability

We wish to point out that the basic principle of this type of vulnerability is much
more general than the concrete example analyzed above. Regardless of how the
RSA decryption and the multi-precision integer arithmetic are actually imple-
mented, it is always likely that the last routine dealing with the integer m counts
the leading zero words in order to set the length appropriately or that only the
significant words are copied, be it in a division, subtraction, Montgomery mul-
tiplication, or a copy/assignment routine as in the example above. The chances
for the attacker to be actually able to exploit this vulnerability, however, will
certainly depend on implementation details and the platform.

Also note that the assumption that base blinding according to Alg. 1 is used
in the implementation has the consequence that the system becomes easier to
attack: while in a totally unsecured implementation of the RSA decryption other
timing differences during the whole decryption operation will render the detec-
tion of the supernumerary word very difficult or impossible, the base blinding
randomizes this process. Thus, by repeatedly letting the device decrypt the same
manipulated ciphertext multiple times and averaging over the associated timings
this noise will be reduced.
3 Remember that this analysis basically serves as a case study to show a rather general

type of problem, thus we are not so much interested in the more arbitrary features
of the PolarSSL implementation.

Manger’s Attack Revisited 41

129 int mpi_copy(mpi *X, const mpi *Y)

130 {

131 int ret, i;

132 if(X == Y)

133 return(0);

134 for(i = Y->n - 1; i > 0; i--)

135 if(Y->p[i] != 0)

136 break;

137 i++;

138 X->s = Y->s;

139 MPI_CHK(mpi_grow(X, i));

140 memset(X->p, 0, X->n * ciL);

141 memcpy(X->p, Y->p, i * ciL);

142 cleanup:

143 return(ret);

144 }

Listing 4. The function mpi copy() of the PolarSSL 0.13.1 library. It copies the con-
tents of Y to X.

As a consequence, even given constant time integer encoding and a secure
implementation of the OAEP decoding routine, there are sources of timing dif-
ferences in the multi-precision integer arithmetic that potentially reveal a leading
zero byte. This is the case when the word size used by the multi-precision integer
implementation is 8-bit. In the case of 16-bit words, Manger’s attack would have
to be slightly modified, i.e. the queries would then reveal two leading zero octets
instead of one, where it is unclear in what extend this affects the practicability
of the attack. For implementations using 32-bit words, however, the probability
of four leading zero octets must be assumed to be far too low to enable practical
attacks4. Obviously, this vulnerability, like the one discussed in Sec. 5, is not
bound to the OAEP encoding method.

7 Conclusion

In the author’s opinion, the results of this work suggest that a systematic ap-
proach to identifying all sources of possible timing differences has to be pursued
for each known principal side channel based information gain. In the case of
Manger’s attack, this doesn’t seem to have taken place even though the basic
problem is known for almost 10 years now. Clearly, we cannot claim that the
outlined problems imply exploitable vulnerabilities on all platforms. The level of
analysis pursued in this work is that of principle, theoretic sources of timing dif-
ferences enabling an information gain by an attacker. But the presence of these
4 These assumptions are based on the usual choices for the RSA bit key sizes, that

are at least divisible by 32.

42 F. Strenzke

principle problems forces a developer or user of systems employing implementa-
tions of these cryptographic functions to verify that they are not vulnerable on
the specific platform and in the specific environment he uses.

Furthermore, especially the implementation of the countermeasure against
Manger’s attack in OpenSSL (Sec. 4.1) shows that a common notion about the
relevance of secret related timing differences cannot be assumed. The imple-
menter obviously simply took for granted that the timing differences introduced
by the if-statement do not matter on the platforms and in the environment where
OpenSSL’s RSA-OAEP decoding will be used. This may even be well justified
for the general case, where an attacker has to face noisy timings resulting from
modern superscalar CPUs, multi tasking operating systems and network connec-
tions with varying delays. However sufficient these assumptions may be for the
safety of the countermeasure, the point is, that they are neither made explicit
nor verified. The unaddressed problem is that a user of the library will in general
not be aware of the potential problems and thus cannot know when he runs into
dangers with his specific setup.

References

1. Bleichenbacher, D.: Chosen Ciphertext Attacks Against Protocols Based on the
RSA Encryption Standard PKCS#1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

2. RSA Data Security, Redwood City, CA: PKCS#1: RSA Encryption Standard,
Version 1.5 (1993)

3. RSA Laboratories, RSA Security Inc., 20 Crosby Drive, Bedford, MA 01730 USA:
RSAES-OAEP Encryption Scheme (2000)

4. Manger, J.: A chosen ciphertext attack on RSA optimal asymmetric encryption
padding (OAEP) as standardized in PKCS#1 v2.0. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, p. 230. Springer, Heidelberg (2001)

5. The Botan Library, http://botan.randombit.net
6. The OpenSSL Library, http://www.openssl.org
7. Acıiçmez, O., Koç, Ç.K., Seifert, J.P.: Predicting secret keys via branch predic-

tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006)

8. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The Program Counter Se-
curity Model: Automatic Detection and Removal of Control-Flow Side Channel
Attacks. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168.
Springer, Heidelberg (2006)

9. Coppens, B., Verbauwhede, I., Bosschere, K.D., Sutter, B.D.: Practical Mitiga-
tions for Timing-Based Side-Channel Attacks on Modern x86 Processors. In: IEEE
Symposium on Security and Privacy, pp. 45–60 (2009)

10. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smard Cards. Springer, Heidelberg (2007)

11. Strenzke, F., Tews, E., Molter, H.G., Overbeck, R., Shoufan, A.: Side Channels in
the McEliece PKC. In: Post-Quantum Cryptography. LNCS. Springer, Heidelberg
(2008)

12. Software Engineering Institute,
https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/771-BSI.html

http://botan.randombit.net
http://www.openssl.org
https://buildsecurityin.us-cert.gov/bsi-rules/home/g1/771-BSI.html

Manger’s Attack Revisited 43

13. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

14. The PolarSSL Library, http://www.polarssl.org/

Appendix

A Timing Attack Resistant Integer to Octet String
Conversion

In List. 5 we present a secure version of the integer to octet string conversion
for the Botan library. It follows all the recommendations from Sec. 5.2. In order
to generally avoid timing related vulnerabilities with respect to the properties
of the encoded integer, we design the algorithm in such a way that the running
time is totally independent of the actual number of octets needed to represent
the integer.

Please note that the given implementation assumes a two’s complement ma-
chine, which is a negligible restriction considering the prevalence of this integer
representation. List. 6 and 7 show subroutines called from within the secure
encoding routine, and are adhering to the same principles.

http://www.polarssl.org/

44 F. Strenzke

1 SecureVector<byte> BigInt::binary_encode_ta_sec(u32bit max_enc_len)

const

2 {

3 /* set the number of bytes that the integer would normally need:

*/

4 const u32bit sig_bytes = bytes();

5 volatile u32bit tracker_mask = 0;

6 u32bit act_size = min_ta_sec(sig_bytes, max_enc_len);

7 u32bit offset = max_enc_len - sig_bytes;

8 /* if sig_bytes is larger than max_enc_len, then there shall be

no offset

9 * (which is negative so far)

10 */

11 volatile u32bit offs_mask = offset & (1 << 31); /* is offset

negative ? */

12 offs_mask = expand_mask_u32bit(offs_mask); /* FF..FF if negative

*/

13 offs_mask = ~offs_mask; /* 00..00 if negative offset */

14 offset = (offset & offs_mask); /* offset >= 0 now */

15
16 SecureVector<byte> result(act_size);

17 for(u32bit j = 0; j != max_enc_len; ++j)

18 {

19 /* zero iff j for the first time is too large for the actual

bigint: */

20 volatile u32bit mask_left_range = sig_bytes - j;

21 mask_left_range = expand_mask_u32bit(mask_left_range);

22 /* now lives up to its name: */

23 mask_left_range = ~mask_left_range;

24 /* now update tracker_mask to keep track of whether j has

become too high */

25 tracker_mask |= mask_left_range;

26 /* now make use of the knowledge in tracker_mask: */

27 mask_left_range |= tracker_mask;

28 /* finally access the byte. normal access when in range, when

not in range,

29 * we put a zero. the access into the bigint however will be at

the

30 * beginning of its array. */

31 u32bit result_pos = (max_enc_len-j-1-offset) & ~mask_left_range

;

32 u32bit source_pos = (j & ~mask_left_range) | ((sig_bytes - 1) &

mask_left_range);

33 result[result_pos] = ((byte_at(source_pos) & ~mask_left_range))

|

34 (result[result_pos] & mask_left_range);

35 }

36 return result;

37 }

Listing 5. Constant time integer encoding for the Botan library to be used in the
RSA-OAEP decryption routine.

Manger’s Attack Revisited 45

1 u32bit min_ta_sec(u32bit a, u32bit b)

2 {

3 u32bit a_larger = b - a; /* negative if a larger */

4 volatile u32bit mask_a_larger = a_larger & (1<<31);

5 mask_a_larger = expand_mask_u32bit(mask_a_larger); /* FF..FF if a

larger */

6 return (a & ~mask_a_larger) | (b & mask_a_larger);

7 }

Listing 6. A function that computes the minimum of two unsigned values with purely
logical operations

1 u32bit expand_mask_u32bit(u32bit in)

2 {

3 volatile u32bit result = in;

4 result |= result >> 1;

5 result |= result >> 2;

6 result |= result >> 4;

7 result |= result >> 8;

8 result |= result >> 16;

9 result &= 1;

10 result = ~(result - 1);

11 return result;

12 }

Listing 7. A function that expands a mask in the sense that upon in=0 the output is
0x00. . . 00 and 0xFF. . . FF otherwise, where only logical operations are used.

	Manger’s Attack Revisited
	Introduction
	Preliminaries: RSA-OAEP
	The Known Attacks against RSA-OAEP
	Analysis of Two Open Source RSA-OAEP Implementations
	The RSA-OAEP Decoding Operation in OpenSSL
	The RSA-OAEP Decoding Operation in Botan
	Potential Risks of Previously Proposed Countermeasures

	A New Vulnerability in the Integer to Octet String Conversion
	The Integer to Octet String Conversion in OpenSSL and Botan
	The Solution: No Secret Dependent Branching

	New Vulnerabilities in the Multi-precision Integer Arithmetic
	The Example of PolarSSL
	Generalization of the Vulnerability

	Conclusion
	References

