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Abstract: Alzheimer’s disease (AD) is a progressive neurological illness with few effective treatments.
Thus, ameliorating the effects of AD using natural products has attracted global attention with
promising efficacy and safety. In this study, ten tropical fruits including Ananas comosus ‘Phulae’,
Ananas comosus ‘Pattavia’, Carica papaya ‘Khaekdum’, Carica papaya ‘Khaeknuan’, Durio zibethinus
‘Monthong’, Durio zibethinus ‘Chanee’, Psidium guajava ‘Kimju’, Psidium guajava ‘Keenok’, Mangifera
indica ‘Kaew’ and Mangifera indica ‘Namdokmai’ were screened for their inhibitory activities against
the key enzymes, cholinesterases and β-secretase (BACE-1), involved in AD pathogenesis. The top
three fruit extracts with promising in vitro anti-AD activities were further investigated using rat
pheochromocytoma PC-12 neuronal cell line and Drosophila AD model. Data showed that M. indica
‘Kaew’, M. indica ‘Namdokmai’ and P. guajava ‘Kimju’ reduced Aβ1–42-mediated neurotoxicity by
promoting glutathione-dependent enzymes, while M. indica ‘Namdokmai’ limited Aβ1–42 peptide
formation via BACE-1 inhibition and amended locomotory behavior of the Drosophila AD model. Re-
sults indicated the potential anti-AD properties of tropical fruits, particularly M. indica ‘Namdokmai’
in the prevention of Aβ1–42-mediated neurotoxicity and as a BACE-1 blocker.

Keywords: Alzheimer’s disease; cholinesterases; Drosophila melanogaster; enzyme inhibition; guava;
mango; neuroprotective effect; phenolic profile; β-secretase

1. Introduction

Alzheimer’s disease (AD) is the most general form of dementia, accounting for up
to 75% of all cases and leading to death within 3 to 9 years after diagnosis [1,2]. AD
pathogenesis is characterized by the aggregation of amyloid beta (Aβ) peptides into Aβ

plaques deposited in the brain, resulting in neurotoxicity and apoptotic cell death [3].
Degradation of amyloid precursor protein (APP) to produce Aβ peptide composed mainly
of 40 and 42 amino acid forms (Aβ1–40 or Aβ1–42) is proceeded via hydrolysis of β-secretase
(BACE-1), followed by γ-secretase. Apparently, the difference in two amino acids of Aβ

cause significantly different structures, bioactivities, and clinical behaviors. Aβ1–42 peptide
is aggregated faster than Aβ1–40 peptide and becomes more neurotoxic. The cerebrospinal
fluid Aβ1–42/1–40 ratio is currently used as an effective biomarker in AD pathology [4].
BACE-1 and Aβ aggregation inhibitors have been widely investigated as alternative path-
ways of AD treatments [5,6]. Other than the neurotoxicity of Aβ plaques, loss of cholinergic
neurons via hydrolysis of the neurotransmitter, acetylcholine, by cholinesterases (ChEs),
including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), can also lead to
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AD pathogenesis [7]. Several ChE inhibitors have been approved by the US Food and Drug
Administration (FDA) as medicinal pathways to reduce AD symptomatic progression [8].
Additionally, brain neuronal cells are especially vulnerable to oxidative damage due to
their high oxygen consumption rate and lack of antioxidant enzymes compared to other
organs. Several studies have demonstrated that natural antioxidants could reduce or block
neuronal apoptosis in AD pathophysiology [9].

Numerous plant phytochemicals have been reported to possess potential neuroprotec-
tive effects against AD by several mechanisms. The most common structurally diverse class
of dietary phytochemicals is phenolics, previously reported as effective inhibitors of the
key enzymes relevant to AD occurrence, while some act as Aβ aggregation inhibitors [6,10].
Gallic acid, a commonly found phenolic acid in most fruits, improved memory and spatial
learning in AD-induced rats (via intrahippocampal injection of Aβ1–42) [11]. Flavonoids, as
a sub-class of phenolics, are related to many functions in AD generation including antioxi-
dant activity, reduction of β-amyloid aggregation, hyperphosphorylation of tau protein,
gliosis and pro-inflammatory markers [12]. Flavonoids also elevate synaptic activity and
pro-survival neurogenesis markers [13]. Various flavonoids such as apigenin, hesperetin,
naringin, quercetin and rutin also improve the cognitive performance of animals in the
Morris water maze [14].

Due to Thailand’s suitable climate (tropical wet and dry or savanna), the country
has a large diversity of tropical fruits with vast potential biological activities [15]. Several
tropical fruit extracts have been investigated to determine their inhibitory effects on key
enzymes controlling obesity and diabetes as well as suppression of cancer initiation [15].
Extracts of Thai mulberry fruit cultivar ‘Chiang Mai’ have also been previously reported
to exhibit anti-AD properties both in vitro and in vivo [16,17]. Interestingly, aqueous
ethanolic extract of pineapple (Ananas comosus, Prima) has previously been reported to
enhance cognitive function in scopolamine-induced mice [18], while a miniature review
on the health benefits of papaya (Carica papaya, unknown variety) summarized its role in
oxidative stress-induced AD [19]. A protective effect against H2O2-induced neurotoxicity of
hot water extracted guava (Psidium guajava, unknown variety) has also been reported [20].
Additionally, ethanolic extract of durian (Durio zibethinus) cultivar ‘Monthong’ was able to
inhibit neurotransmitter degrading acetylcholinesterase and Aβ aggregation and also had
an enhanced neuroprotective effect against Aβ [21]. Aqueous ethanolic extract of mango
(Mangifera indica ‘Namdokmai’) has also been reported to exhibit a neuroprotective effect
and cognitive enhancement in mild cognitively impaired rats [22].

Despite this information, the anti-AD properties of some tropical fruits—especially
Thai varieties—remain unavailable. Based on consumption popularity, tropical fruits
including A. comosus ‘Phulae’, A. comosus ‘Pattavia’, C. papaya ‘Khaekdum’, C. papaya
‘Khaeknuan’, D. zibethinus ‘Monthong’, D. zibethinus ‘Chanee’, P. guajava ‘Kimju’, P. guajava
‘Keenok’, M. indica ‘Kaew’, and M. indica ‘Namdokmai’ were selected at their usual con-
sumption maturity stages. Although anti-AD properties are available for some varieties
of these fruits (D. zibethinus ‘Monthong’ and M. indica ‘Namdokmai’), it is interesting to
compare the results with other varieties of the same species, with some having different
consumption stages and others exhibiting different physical appearance, taste, and texture.
The fruit extracts were screened for in vitro ChEs and BACE-1 inhibitory activities. The top
three fruit extracts based on overall strong inhibitory activities were selected for further in-
vestigation of phenolic profiles by liquid chromatography–electrospray ionization–tandem
mass spectrometry (LC-ESI-MS/MS), neurotoxicity, and neuroprotective effects using a
neuronal-like PC-12 cell model and an in vivo Drosophila model of AD (co-expression of
human APP and BACE-1).

2. Results
2.1. In Vitro Screening on Enzyme Inhibition

Inhibition of the key enzymes relevant to AD including both ChEs (AChE and BChE)
and BACE-1 of ten fruit extracts (A. comosus ‘Phulae’ and ‘Pattavia’, C. papaya ‘Khaekdum’
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and ‘Khaeknuan’, D. zibethinus ‘Monthong’ and ‘Chanee’, P. guajava ‘Kimju’ and ‘Keenok’,
and M. indica ‘Kaew’, and ‘Namdokmai’) were investigated to screen the top three extracts
according to overall strong enzyme inhibitory activity for further analyses on phytochemical
profiles, neurotoxicity, and neuroprotective effect on the PC-12 cells and Drosophila model
of AD. Results indicated that M. indica and P. guajava with an extract concentration of
0.25 mg/mL exhibited higher AChE inhibitory activities (ranging 69–83% inhibitions)
than the other fruit extracts (38–85% inhibitions) using higher extract concentration of
0.5 mg/mL (Table 1). Among these fruit extracts, M. indica ‘Namdokmai’ exhibited the
highest AChE inhibitory activity followed by P. guajava ‘Keenok’, while P. guajava ‘Kimju’
and M. indica ‘Keaw’ equally held the third place.

Table 1. Inhibitory activities on the key enzymes related to Alzheimer’s disease (AD) of ten fruit
extracts in comparison to an AD drug, donepezil.

Fruit Extracts
Enzyme Inhibitory Activities (%Inhibition)

AChE 1 BChE 1 BACE-1 2

Ananas comosus
‘Pattavia’ 84.67 ± 1.99 a 18.94 ± 0.97 d 58.56 ± 4.26 a

‘Phulae’ 55.81 ± 1.51 c 24.48 ± 0.65 c 39.29 ± 1.98 c

Carica papaya ‘Khaekdum’ 54.89 ± 0.36 c 32.05 ± 1.46 a 41.11 ± 3.31 c

‘Khaeknuan’ 49.19 ± 0.80 d 27.35 ± 2.09 b 41.34 ± 1.02 c

Durio zibethinus
‘Chanee’ 58.68 ± 0.70 b 21.39 ± 2.04 d 51.58 ± 2.67 b

‘Monthong’ 38.36 ± 0.25 e 13.34 ± 0.51 e 27.34 ± 1.50 d

Mangifera indica ‘Namdokmai’ 83.14 ± 0.4 A 84.14 ± 0.64 A 48.88 ± 2.57 A

‘Keaw’ 69.12 ± 0.21 C 54.72 ± 1.61 C 36.89 ± 1.65 B

Psidium guajava ‘Kimju’ 69.69 ± 0.41 C 70.31 ± 2.50 B 32.09 ± 1.13 C

‘Keenok’ 70.69 ± 0.83 B 68.95 ± 0.55 B 28.59 ± 0.90 D

Donepezil (IC50) (µM) 3.12 ± 0.37 2.14 ± 0.43 1.31 ± 0.07
All data are expressed as mean ± standard deviation (SD) of triplicate experiments (n = 3). Different capital letters
indicate significantly different enzyme inhibitions of M. indica and P. guajava, while different lowercase letters
indicate significantly different enzyme inhibitions of A. comosus, C. papaya, and D. zibethinus in the same enzyme
assay at p < 0.05 calculated by one-way analysis of variance (ANOVA) and Duncan’s multiple comparison test.
AChE: acetylcholinesterase; BChE: butyrylcholinesterase; BACE-1: β-secretase; IC50: half maximal inhibitory
concentration; 1 concentration of fruit extracts = 0.5 mg/mL, except for M. indica and P. guajava, which used
0.25 mg/mL; 2 concentration of fruit extracts = 0.25 mg/mL, except for M. indica and P. guajava, which used
0.125 mg/mL.

Similar results were observed for BChE inhibitory activities (Table 1). M. indica and
P. guajava at an extract concentration of 0.25 mg/mL exhibited higher BChE inhibitory
activities (ranging 55–84% inhibitions) than the other fruit extracts (13–32% inhibitions)
using a higher extract concentration of 0.5 mg/mL. Again, M. indica ‘Namdokmai’ exhib-
ited the highest BChE inhibitory activity followed by both varieties of P. guajava and M.
indica ‘Keaw’.

For BACE-1 inhibitory activities, M. indica and P. guajava exhibited higher inhibition
(ranging 29–49% inhibitions) at extract concentration of 0.125 mg/mL than the other fruit
extracts (27–59% inhibition) using higher extract concentration of 0.25 mg/mL (Table 1).
Under the same extract concentration, M. indica ‘Namdokmai’ exhibited the highest BACE-1
inhibitory activity followed by M. indica ‘Keaw’ and P. guajava ‘Kimju’.

It is clear that M. indica ‘Namdokmai’ exhibited the highest inhibitory activities on
AChE, BChE and BACE-1. Although P. guajava ‘Keenok’ exhibited the second highest AChE
and BChE inhibitions, it came fourth for anti-BACE-1 inhibition. Therefore, M. indica ‘Keaw’
and P. guajava ‘Kimju’, with the second and third highest inhibitions on all three enzymes,
were chosen. From the enzyme inhibitory screening results, M. indica ‘Namdokmai’, M.
indica ‘Keaw’ and P. guajava ‘Kimju’ were selected for further analyses on phenolic profile
and neuroprotective effect on PC-12 cells and Drosophila model of AD.
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2.2. Phytochemical Profile

Utilizing 24 authentic standards of phenolics, phytochemicals of the selected fruit ex-
tracts with the top three highest enzyme inhibitions were investigated using LC-ESI-MS/MS
analysis (Table 2, Supplementary Figures S1 and S2 and Supplementary Tables S1–S3).
Only one phenolic acid, gallic acid, and one flavonoid, quercetin, were detected in both
varieties of M. indica. Comparing between varieties, M. indica ‘Keaw’ exhibited 1.6 times
higher gallic acid content than M. indica ‘Namdokmai’, while the latter exhibited 8.0 times
higher quercetin content than the former. Likewise, P. guajava ‘Kimju’ contained only
one phenolic acid, gallic acid; however, its content was 8.0–13.1 times lower than M.
indica. P. guajava ‘Kimju’ contained four flavonoids including quercetin, isorhamnetin,
naringenin and kaempferol, with contents of the last lower than the limit of detection
(0.122 µg/mL) [23]. Interestingly, P. guajava ‘Kimju’ contained much higher quercetin than
M. indica (up to 283.3 times higher). Lower contents of isorhamnetin and naringenin in P.
guajava ‘Kimju’ were detected compared to quercetin.

Table 2. Phenolic profiles of M. indica ‘Namdokmai’, M. indica ‘Kaew’, and P. guajava ‘Kimju’ extracts
using liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS).

Phenolics
(µg/g Extract)

Mangifera indica Psidium guajava

‘Kaew’ ‘Namdokmai’ ‘Kimju’

Gallic acid 7802.07 ± 199.68 aA 4790.75 ± 36.74 aB 596.80 ± 12.98 bC

Quercetin 6.59 ± 0.44 bB 52.65 ± 5.23 bB 1867.27 ± 138.86 aA

Naringenin ND ND 3.50 ± 0.34 c

Kaempferol ND ND <LOD
Isorhamnetin ND ND 53.73 ± 2.27 c

All data are expressed as the mean ± standard deviation (SD) of triplicate experiments (n = 3). Different lowercase
letters indicate significantly different contents of phenolics in the same fruit extracts, while different capital letters
indicate significantly different contents of the same phenolics in different fruit extracts at p < 0.05 using one-way
analysis of variance (ANOVA) and Duncan’s multiple comparison test (more than two data) or Student’s unpaired
t–test (two data). ND: not detected; LOD: limit of detection.

2.3. Neurotoxicity of the Selected Fruit Extracts

Toxicity of the selected fruit extracts (M. indica ‘Namdokmai’, M. indica ‘Kaew’ and
P. guajava ‘Kimju’) was investigated using a resazurin assay to determine the neuronal-
like PC-12 cells. The cells were incubated with the selected fruit extracts at different
concentrations (25, 50, 100 and 150 µg/mL) for 24, 48 and 72 h before determining cell
viability and compared to the untreated control (no fruit extracts).

Results indicated that fruit extract concentrations did not cause cytotoxicity at 24–72 h
time intervals (Figure 1 and Supplementary Table S4). At 24 h, no fruit extracts showed
any sign of cytotoxicity on PC-12 cells at any concentrations. A significant reduction in cell
viability in M. indica ‘Kaew’-treated cells was found when increasing incubating time to 48
and 72 h using extract concentrations of 100 and 150 µg/mL (Figure 1A). Interestingly, only
100 and 150 µg/mL of M. indica ‘Namdokmai’ extract significantly decreased cell viability
at 72 h, while no significant difference in cell viability was observed at 48 h (Figure 1B).
Similar to the effect of M. indica ‘Keaw’ extract, P. guajava ‘Kimju’ extract significantly
reduced cell viabilities when increasing incubating time to 48 h using extract concentration
of 150 µg/mL and 72 h using extract concentration of 100 and 150 µg/mL (Figure 1C).
Nevertheless, all fruit extracts were determined to be not toxic to PC-12 cells, because more
than 50% cell viabilities were achieved.
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Figure 1. Percentage of cell viability when treating PC12 cells with different concentrations (25, 50,
100 and 150 µg/mL) of (A) M. indica ‘Kaew’, (B) M. indica ‘Namdokmai’, and (C) P. guajava ‘Kimju’
extracts at different incubating time periods (24, 48 and 72 h). Control: no exposure to fruit extracts
(untreated control); * significance at p < 0.05 compared with untreated cells using two-way analysis
of variance (ANOVA) followed by Tukey’s multiple comparisons test.

2.4. Neuroprotective Effects of the Selected Fruit Extracts

Oxidative damage of PC-12 cells caused by either H2O2 or Aβ1–42 can induce apoptosis
(cell death) in many biological and pathological pathways. In this study, neuroprotective
effects of the selected fruit extracts (M. indica ‘Namdokmai’, M. indica ‘Kaew’ and P. guajava
‘Kimju’) on oxidative damage induced by H2O2 and Aβ1–42 were investigated. The PC-12
cells were treated with fruit extracts (25, 50, 100 and 150 µg/mL) for 24 h before treating
with either H2O2 (200 µM) or Aβ1–42 (10 µM) for another 24 h. The viability of PC-12 cells
treated with only oxidative inducers (inducer treated control) was then compared to the
untreated control (no treatment of fruit extracts and oxidative inducers), while cell viability
of PC-12 cells with exposure to both fruit extracts and oxidative inducers was compared to
its inducer treated control (same oxidative inducer).

As shown in Figure 2A and Supplementary Table S5, treatment of PC-12 cells with
H2O2 reduced cell viability to 56.82% compared to the untreated control. Incubation of
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PC-12 cells with 25–150 µg/mL of all selected fruit extracts significantly prevented the
cytotoxic effects of H2O2. All fruit extracts significantly increased cell viability of PC-12
cells in a dose-dependent manner (60.68–81.90%). At the highest extract concentration
(150 µg/mL), M. indica ‘Namdokmai’ showed a protective effect of more than 80%.
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Figure 2. Neuroprotective effect of fruit extracts (M. indica ‘Kaew’, M. indica ‘Namdokmai’, and
P. guajava ‘Kimju’) on oxidative damaged PC-12 cells examined using a resazurin assay. Percentage of
cell viability induced by (A) H2O2 and (B) Aβ1–42 was compared to the untreated control group, while
co-treatment between selected fruit extracts at different concentrations (25, 50, 100 and 150 µg/mL)
and oxidative inducers were compared to its oxidative inducer treated group. C: untreated control;
H2O2: H2O2-treated control; Aβ1–42: Aβ1–42-treated control; # significance at p < 0.05 compared to the
untreated control, * significance at p < 0.05, ** significance at p < 0.01 and *** significance at p < 0.001
compared with either H2O2- or Aβ1–42-treated cells using one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparisons test.

Similar to the cytotoxic effects of H2O2, Aβ1–42 induced cytotoxicity in PC-12 cells.
After exposure to Aβ1–42, cell viability decreased to 50.92% (Figure 2B and Supplementary
Table S5). However, no significant difference in cell viability was observed when treating
PC-12 cells with the selected fruit extracts at the concentration of 25 µg/mL before Aβ1–42
exposure. Significant increase in cell viability was detected with fruit extracts at concentra-
tions of ≥50 µg/mL compared to the Aβ1–42-treated group in a concentration-dependent
manner. Again, M. indica ‘Namdokmai’ extract at concentration of 150 µg/mL increased
cell viability to more than 80%.

Apoptotic cell death induced by oxidative damage also led to a loss of plasma mem-
brane integrity, resulting in the release of cytosolic enzyme, i.e., lactate dehydrogenase
(LDH). This stable enzyme is normally found in the cytosol of all cells; however, when
the plasma membrane is damaged, it is rapidly released into the medium. In this study,
the membrane protective effect of the selected fruit extracts was investigated. The LDH
activity assay was used to measure membrane integrity in the form of cytoplasmic LDH
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quality released into the medium. If PC-12 cells induced with H2O2 caused an increase
in LDH release compared to the untreated control, this implied that the integrity of the
cell membrane was damaged. Similar to the cell viability measurement, PC-12 cells were
treated with the selected fruit extracts (25, 50, 100 and 150 µg/mL) for 24 h before treating
with oxidative inducers (200 µM H2O2 or 10 µM Aβ1–42) for another 24 h. Release of
LDH was then determined using the LDH activity assay, and percentage of LDH released
from PC-12 cells treated with only oxidative inducers (an inducer treated control) was
determined compared to the untreated control (no treatment of both fruit extracts and
oxidative inducers), while the percentage of LDH release of PC-12 cells with exposure to
both fruit extracts and oxidative inducers was compared to its inducer treated control.

As shown in Figure 3A and Supplementary Table S5, treating PC-12 cells with
H2O2 increased LDH release to 54.83% compared to the untreated control, with LDH
release of 13.10%. All selected fruit extracts significantly protected PC-12 cells from
H2O2-induced oxidative stress. After exposure of PC-12 cells to various concentrations
(25–150 µg/mL) of P. guajava ‘Kimju’ and M. indica ‘Kaew’ extracts, results indicated that
release of LDH as a result of oxidative damage reduced with application of fruit extracts at
concentration ≥50 µg/mL. By contrast, M. indica ‘Namdokmai’ extract effectively reduced
LDH release at concentration ≥25 µg/mL. These results indicated that the selected fruit
extracts, especially M. indica ‘Namdokmai’, protected cell apoptosis from H2O2-induced
oxidative damage.
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Figure 3. Neuroprotective effect of fruit extracts (M. indica ‘Kaew’, M. indica ‘Namdokmai’, and P. 
guajava ‘Kimju’) on oxidative damaged PC-12 cells examined using a lactate dehydrogenase (LDH) 
assay. Percentage of LDH released in PC-12 cells induced by (A) H2O2 and (B) Aβ1–42 was compared 

Figure 3. Neuroprotective effect of fruit extracts (M. indica ‘Kaew’, M. indica ‘Namdokmai’, and
P. guajava ‘Kimju’) on oxidative damaged PC-12 cells examined using a lactate dehydrogenase
(LDH) assay. Percentage of LDH released in PC-12 cells induced by (A) H2O2 and (B) Aβ1–42

was compared to the untreated control group, while co-treatment between selected fruit extracts
at different concentrations (25, 50, 100 and 150 µg/mL) and oxidative inducers were compared
to its oxidative inducer treated group. C: untreated control; H2O2: H2O2-treated control; Aβ1–42:
Aβ1–42-treated control; # significance at p < 0.05 compared to the untreated control, * significance
at p < 0.05, ** significance at p < 0.01 and *** significance at p < 0.001 compared with either H2O2-
or Aβ1–42-treated cells using one-way analysis of variance (ANOVA) followed by Tukey’s multiple
comparisons test.
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Cell toxicity caused by Aβ1–42-induced oxidative damage also led to LDH release.
Results (Figure 3B and Supplementary Table S5) indicated that treating PC-12 cells with
Aβ1–42 increased LDH release to 52.83%, compared to the untreated control with LDH
release of 13.22%. Similar results on the neuroprotective effect of the fruit extracts against
H2O2-induced oxidative damage were observed, in which M. indica ‘Namdokmai’ extract
effectively reduced LDH release at concentration ≥25 µg/mL, while P. guajava ‘Kimju’ and
M. indica ‘Kaew’ extracts reduced toxicity of Aβ1–42 at concentration ≥50 µg/mL.

Glutathione (GSH) is a predominant antioxidant inside mammalian cells and pe-
ripheral blood, with a significant function in oxidative damage protection of neuronal
cells. Several studies have indicated an imbalance in GSH redox and altered GSH levels
as AD pathology [24]. In this study, PC-12 cells were treated with oxidative inducers
(200 µM H2O2 or 10 µM Aβ1–42) and fruit extracts at different concentrations (25, 50, 100
and 150 µg/mL) for 48 h before measuring GSH level to examine the neuroprotective effect
of selected fruit extracts against oxidative damage. GSH levels of the oxidative inducer
treated groups were compared with the untreated control, while the co-treatment groups
(fruit extracts and oxidative inducers) were compared with their corresponding oxidative
inducer treated groups.

As shown in Figure 4A and Supplementary Table S5, the level of glutathione trans-
ferase (GST) in H2O2 treatment in PC-12 cells markedly decreased to 42.30%, compared to
the untreated control group (98.92%). The level of GSH in H2O2-treated PC-12 cells was
improved by the selected fruit extracts in a dose-dependent manner. The co-treatment
of various concentrations of fruit extracts and H2O2 resulted in significant enhancement
in GSH levels in the range of 46.63–86.47%. The highest GSH level was observed when
PC-12 cells were treated with M. indica ‘Namdokmai’ extract, while the lowest was with
M. indica ‘Kaew’.
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and P. guajava ‘Kimju’) on oxidative stress in PC-12 cells investigated using a glutathione (GSH) assay.
Antioxidant GSH level in PC-12 cells after treatment with (A) H2O2 and (B) Aβ1–42 was compared to
the untreated control group. The GSH levels of the co-treatment between the selected fruit extracts
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at different concentrations (25, 50, 100 and 150 µg/mL) and oxidative inducers (H2O2 and Aβ1–42)
were compared to its oxidative inducer treated group. RLU: relative light unit; C: untreated control;
H2O2: H2O2-treated control; Aβ1–42: Aβ1–42-treated control; # significance at p < 0.05 compared
to the untreated control, * significance at p < 0.05, ** significance at p < 0.01, and *** significance
at p < 0.001 compared with oxidative inducer treated groups using one-way analysis of variance
(ANOVA) followed by Tukey’s multiple comparisons test.

Similar results were observed in PC-12 cells oxidatively damaged by Aβ1–42. As shown
in Figure 4B and Supplementary Table S5, the Aβ1–42-treated group induced a decrease in
GSH level to 49.00% compared to the untreated control group (97.90%). After co-treating
cells with fruit extracts and Aβ1–42, GSH levels significantly increased, with the exception
of M. indica ‘Kaew’ and P. guajava ‘Kimju’, at concentration of 25 µg/mL. The GSH levels
increased in an extract concentration-dependent manner, especially M. indica ‘Namdokmai’
extract that protected GSH at almost the same level as the untreated control.

2.5. Anti-Alzheimer’s Disease Activities in Drosophila Model

To provide in vivo supporting evidence for the anti-AD properties of the three se-
lected fruit extracts (M. indica ‘Namdokmai’, M. indica ‘Kaew’ and P. guajava ‘Kimju’), the
Drosophila model of AD was employed. The flies were co-expressed with both human APPs
and BACE-1, specifically in the central nervous system. These flies eventually produced
amyloid peptides, which is one of the hallmarks of AD; thereby representing the amyloid
production pathway in AD cases. BACE-1 is a rate-limiting enzyme in the amyloid produc-
tion pathway. Inhibition of BACE-1 results in reduced amyloid peptide levels, rendering
it an important target for AD drugs. Therefore, the role of the fruit extracts on BACE-1
function in vivo was first explored as BACE-1 activity, Aβ1–42 formation and climbing
index (Figure 5).

The 1–2-day-old AD flies were treated with safe doses (data not shown) of fruit extracts
at 125 and 250 µg/mL for 30 days. Donepezil, a cholinesterase and BACE-1 inhibitor, was
utilized as an AD drug control and 0.05% (v/v) dimethyl sulfoxide (DMSO) was used as
solvent control. After 30 days of treatment, fly heads were collected and subjected to BACE-
1 measurement. Flies that received DMSO exhibited high BACE-1 activity (10.45 U/mL),
the same as flies that received deionized water (DI) (10.98 U/mL), while BACE-1 activity
greatly reduced by 3.50 folds compared to DMSO-exposed flies, suggesting potential BACE-
1 inhibition of donepezil, as previously demonstrated (Figure 5A). Flies treated with M.
indica ‘Kaew’ and P. guajava ‘Kimju’ extracts, even at the highest dose similar to M. indica
‘Namdokmai’ at 125 µg/mL, exhibited a small reduction of BACE-1 activity that was
not statistically significant. Interestingly, M. indica ‘Namdokmai’ extract at 250 µg/mL
meaningfully reduced BACE-1 activity in the brain of AD flies (6.03 U/mL).

As previously mentioned, BACE-1 is involved in amyloid peptide production. The
number of amyloid peptides was further quantified, especially the most cytotoxic form
(Aβ1–42), in fly brains. Figure 5B illustrates that flies receiving DI or DMSO also showed
high Aβ1–42 compared to flies treated with donepezil, implying that BACE-1 inhibition
led to decreased Aβ1–42. As expected, M. indica ‘Kaew’, P. guajava ‘Kimju’ extracts and M.
indica ‘Namdokmai’ at 125 µg/mL did not reduce amyloid peptide formation, while M.
indica ‘Namdokmai’ extract at 250 µg/mL showed a clear reduction of Aβ1–42, confirming
its role as a BACE-1 blocker in vivo.
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Figure 5. Effect of the fruit extracts (M. indica ‘Kaew’, M. indica ‘Namdokmai’, and P. guajava ‘Kimju’)
on (A) β-secretase (BACE-1) activity, (B) total amount of amyloid beta 1–42 (Aβ1–42) level, and (C) fly
climbing index. One- to two-day-old flies expressing human amyloid precursor proteins (APPs) and
BACE-1 were treated with deionized water (DI), dimethyl sulfoxide (DMSO, solvent control) and
selected fruits extracts (125 or 250 µg/mL) for 30 days before assayed for BACE-1, Aβ1–42 level or
climbing index. * Significance at p < 0.05, ** significance at p < 0.01, and *** significance at p < 0.001
and **** significance at p < 0.0001 compared with a solvent control using one-way analysis of variance
(ANOVA) followed by Tukey’s multiple comparisons test.

Toxic amyloid peptides lead to poor locomotor ability of flies. Thus, to observe the
toxic effect of Aβ1–42 (Figure 5B) and the rescuing effect of M. indica ‘Namdokmai’ extract
at 250 µg/mL, the flies were subjected to locomotor ability assay at day 30. Flies expressing
high levels of BACE-1 and Aβ1–42 (DI and DMSO) exhibited low climbing index, while
donepezil-treated flies showed the highest climbing capabilities (Figure 5C). Low doses
of M. indica ‘Kaew’ and P. guajava ‘Kimju’ extracts did not rescue the climbing index, in
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accordance with their high BACE-1 activities and Aβ1–42 contents, similar to DI and DMSO.
Intriguingly, high doses of M. indica ‘Kaew’ and P. guajava ‘Kimju’ extracts as well as low
and high doses of M. indica ‘Namdokmai’ extracts rescued the climbing capabilities of AD
flies in the similar manner, suggesting that M. indica ‘Kaew’ and P. guajava ‘Kimju’ exerted
their anti-AD properties, albeit not related to the amyloid cascade hypothesis.

3. Discussion

Several tropical fruits have been reported to possess biological activities with potential
pharmaceutical applications in AD, a neurodegenerative disorder with no current treatment
able to reverse brain cell impairment and cognitive loss. Thailand is one of the world’s
largest tropical fruit suppliers, yet limited information on the anti-AD properties of Thai
fruit varieties is available. In this study, ten fruit extracts including A. comosus ‘Phulae’ and
‘Pattavia’, C. papaya ‘Khaekdum’ and ‘Khaeknuan’, D. zibethinus ‘Monthong’ and ‘Chanee’,
P. guajava ‘Kimju’ and ‘Keenok’ and M. indica ‘Kaew’ and ‘Namdokmai’ were investigated
for their in vitro anti-AD properties through inhibition of the key enzymes relevant to AD
including AChE, BChE and BACE-1. Results indicated that the top three fruit extracts
with overall strong enzyme inhibitions were mango (M. indica ‘Namdokmai’ and M. indica
‘Keaw’) and guava (P. guajava ‘Kimju’). These three fruit extracts were further investigated
regarding their phytochemical profiles as well as their neurotoxicity and neuroprotective
effects using the neuronal-like PC-12 cell model and the Drosophila model of AD. Results
suggested that the three fruit extracts exhibited various phenolics with potential AD key
enzyme inhibitory properties and neuroprotective effects from H2O2- and Aβ1–42-induced
oxidative damage. However, only M. indica ‘Namdokmai’ exhibited anti-AD properties by
targeting the amyloid pathway in the fly model of Alzheimer’s amyloidosis.

Although not chosen for further investigation using cell culture and in vivo experi-
ments, pineapple, papaya, and durian were previously reported for their anti-AD proper-
ties. Previous research indicated that pineapple (Prima) could improve cognitive deficit
and memory performance in scopolamine-induced mice and suggested that pineapple
flavonoids might be responsible for such activities due to previous research on anti-AChE
activities of such flavonoids [18]. Temviriyanukul et al. (2021) reported that ferulic acid
was the major phenolic detected in A. comosus ‘Pattavia’, while caffeic acid and hesperidin
were predominant phenolics in A. comosus ‘Phulae’ [15]. Singh et al. (2021) summarized
critical pathogenic factors of ferulic acid as well as its analogues and hybrids on the onset of
AD [25], while a review on hesperidin as neuroprotective agent was also available [26]. Ad-
ditionally, caffeic acid has previously been reported to exhibit AChE and BChE inhibitions
with IC50 values of 4.21 and 5.60 µg/mL, respectively [27]. Despite no previous reports on
the anti-AD properties of papaya, fermented papaya preparation was previously investi-
gated for its neuroprotective role against copper-induced neurotoxicity [28]. Additionally,
sinapic acid, a predominant phenolic detected in C. papaya ‘Khaekdum’ [15], expressed
a neuroprotective effect on a Aβ1–42 induced AD mouse [29]. A protective effect against
H2O2-induced neurotoxicity was also reported in guava [20]. Gallic acid, a predominant
phenolic in P. guajava ‘Kimju’, and quercetin in P. guajava ‘Keenok’ were able to inhibit
ChEs [30,31].

Chosen as an overall high anti-AD source in the present study, different parts of mango
(M. indica) have been widely investigated regarding their phytochemical profiles as well
as ChEs and BACE-1 inhibitions [32], but limited studies have been conducted on mango
pulp. Previous studies suggested that the ripening stage enhanced phenolic contents of
‘Ataulfo’ mango from Mexico, while gallic acid as the most abundant phenolic decreased
when the fruit became mature [33]. This result concurred with our results, indicating gallic
acid as the major phenolic in both varieties of mango. M. indica ‘Keaw’, collected at a
younger stage than M. indica ‘Namdokmai’, possessed higher gallic acid content. Other
phenolic acids including chlorogenic acid, vanillic acid, and protocatechuic acid were also
identified in lower amounts in this variety of mango [33]. M. indica ‘Haden’ from Brazil
when completely ripe was reported to contain quercetin-3-O-glucoside [34]. This result also
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agreed with our findings of quercetin in both varieties of mango. Gallic acid and quercetin
were also reported to exhibit ChEs inhibitory activities [30,31]. Interestingly, both phenolics
inhibited BACE-1 activity as well as disrupted Aβ1–42 aggregation [35–37]. Thus, AChEs
and BACE-1 inhibitory activities in mango might be a function of its predominant phenolic
contents. Despite our hypothesis, only in vitro inhibitory activities on the enzymes relevant
to AD in leaves and stem bark of mango are available [38,39], while no information on
mango pulp has been reported.

Similar to mango, limited information exists on fruit pulp of guava compared to
other parts, especially leaves, which have been widely studied [32,40]. Guava from Brazil
extracted by acidic methanol was found to contain gallic acid, chlorogenic acid, ellagic acid,
kaempferol, catechin, quercetin, and rutin [41]. Rutin, a quercetin glycoside or quercetin-
3-O-rutinoside, was reported to be a major phenolics in guava [41], corresponding to our
results that quercetin is the most abundant phenolic detected in P. guajava ‘Kimju’. Essential
oil extracted from a Thai guava (unknown variety) indicated a 25% inhibition against AChE
using fruit concentration of 0.1 mg/mL [42]. However, no previous information on in vitro
BACE-1 inhibitory activity of guava pulp is available, making the present study the first
report on the inhibitory activity of guava.

The three fruit extracts were further tested for their anti-AD properties in PC-12
neuronal cells. Figures 2 and 3 show that all three fruit extracts prevented either H2O2
or Aβ1–42-mediated cytotoxicity in a dose-dependent manner. Hydrogen peroxide is well
known as a strong oxidative agent, implying antioxidant properties of M. indica ‘Keaw’,
M. indica ‘Namdokmai’, and P. guajava ‘Kimju’ previously reported in vitro [15]. This
led the researchers to believe that Aβ1–42 peptides may cause high oxidative stress as
of H2O2. Amyloid peptides trigger neuronal cell death via oxidative stress in PC-12
cells as H2O2 [43,44]. All three fruit extracts were rich in phytochemicals, particularly
gallic acid and quercetin (Table 2). Hong et al. (2012) reported that gallic acid isolated
from Corni fructus decreased Aβ25–35-induced intracellular reactive oxygen species (ROS)
accumulation, apoptotic cells and caspase-3 activation in a dose-dependent manner in PC-
12 cells (0.5–5.0 µM) [45], while Yu et al. (2020) showed that quercetin at 80 µM exhibited
neuroprotectivity against amyloid peptides in PC-12 cells by induction of antioxidant
enzymes including catalase (CAT), superoxide dismutase (SOD) and plasma glutathione
peroxidase (GSH-Px). The same study also showed that quercetin significantly reduced
malondialdehyde (MDA), a lipid peroxidation marker, in PC-12-cells exposed to amyloid
peptides [46]. Below a concentration of 80 µM, quercetin lacked neuroprotective roles
in these cells [46]. Our results (Figure 4) supported that treatment with the three fruit
extracts rescued GSH levels in PC-12 cells exposed to Aβ1–42. GSH is a small peptide that
contributes to the regulation of oxidative stress and redox balance [47] and is a crucial
co-factor for antioxidant enzymes such as glutathione transferase (GST) and GSH-Px [48,49].
Thus, results in Figure 4 implied that fruit extracts restored a typical redox balance in PC-12
cells. In our study, the three crude fruit extracts at 150 µg/mL contained gallic acid and
quercetin as M. indica ‘Keaw’ (6.90 and 0.01 µM), M. indica ‘Namdokmai’ (4.22 and 0.03 µM)
and P. guajava ‘Kimju’ (0.53 and 0.10 µM). In mango, gallic acid may act as a bioactive agent
quenching oxidative stress in PC-12 cells treated with amyloid peptides; meanwhile, in
guava, other bioactive compounds may play dominant roles over quercetin. In addition
to the anti-AD potential conferred by the antioxidant qualities of the three fruit extracts,
reduction of aggregated amyloid peptides may be another mechanism to rescue PC-12
cell viability after amyloid peptide treatment. This notion is supported since gallic acid
at 2.5 and 5.0 µM reduced Aβ1–42 aggregation, while it increased primary cortical neuron
viability [35], similar to both M. indica ‘Keaw’ and M. indica ‘Namdokmai. Quercetin at
levels from 1.0 µM prevented aggregation of amyloid peptides [37]. The quercetin content
in our extracts was lower than in previous findings by 10–100 folds, implying the roles of
unidentified bioactive compounds or their synergistic effect in guava.

To confirm the findings from both enzyme and cell studies (Figures 2 and 3 and Table 1),
the anti-AD properties of M. indica ‘Keaw’, M. indica ‘Namdokmai’ and P. guajava ‘Kimju’
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were tested in the Drosophila model of amyloidogenic pathway. This Drosophila model has
shown potential for anti-AD agent screening in several studies [50–52]. Advantages of AD
flies are: (i) the UAS/GAL4 system, which enables targeted protein expression exclusively
at desired tissues [53]; and (ii) the fly brain shows an open blood vascular system, thereby
mimicking the human blood–brain barrier (BBB) known for its strong restriction to many
biomolecules and medicines [54]. As a result, studies utilizing neuronal cell models rule
out the significance of the BBB. The data in Figure 5 shows that only M. indica ‘Namdokmai’
exhibited anti-AD properties through inhibition of BACE-1, eventually resulting in reduced
Aβ1–42 levels and improved locomotor ability of AD flies. Hence, this implies that bioactive
agents in M. indica ‘Namdokmai’ extract or derivatives passed to the fly brain and impeded
BACE-1 functions. The previous data demonstrated that gallic acid at 10 µM inhibited
BACE-1 by approximately 20% [55], while quercetin at 5.4 µM inhibited BACE-1 by 50% [36].
At the highest dose in our Drosophila study, the concentrations of gallic acid and quercetin in
M. indica ‘Keaw’, M. indica ‘Namdokmai’ and P. guajava ‘Kimju’ were (11.47, 0.01 µM), (7.04,
0.04 µM) and (0.88, 1.54 µM), respectively. Hence, along with the previously mentioned
BACE-1 activity of gallic acid and quercetin, M. indica ‘Namdokmai’ exhibited significant
anti-AD properties compared to M. indica ‘Keaw’, which was high in gallic acid, and
P. guajava ‘Kimju’, which was high in quercetin (Table 2). Wattanathorn et al. (2014)
also reported that the crude extract of M. indica ‘Namdokmai’ exhibited neuroprotective
properties by improving memory impairment in rats with mild cognitive impairment
(MCI), an intermediate state between normal cognition and dementia [22]. Other bioactive
compounds may inhibit BACE-1 functions in fly brains. Mangiferin, a predominant natural
compound occurring in M. indica, is suspected because this can cross the BBB [56] and exert
anti-AD properties in transgenic AD mice [57]. However, mangiferin in mango flesh is
quite low. This hypothesis requires further study because M. indica ‘Keaw’ lacked anti-AD
potential in AD flies. In this study, only climbing ability, which is behavior assessment,
was employed. Further experiments, such as analysis of fly neuroanatomy or cognitive
functions are worthwhile.

The results obtained in this present study suggest potential anti-AD properties of these
tropical fruits. The effective doses of the fruit extract with the strongest anti-AD properties
as anti-AD agent in animal models should be further studied.

4. Materials and Methods
4.1. Sample Preparation and Extraction

Ten fruits, including A. comosus ‘Phulae’, A. comosus ‘Pattavia’, C. papaya ‘Khaekdum’,
C. papaya ‘Khaeknuan’, D. zibethinus ‘Monthong’, D. zibethinus ‘Chanee’, P. guajava ‘Kimju’,
P. guajava ‘Keenok’, M. indica ‘Kaew’, and M. indica ‘Namdokmai’, were purchased from
vegetable and fruit market, Simummuang, in Lam Luk Ka District, Pathum Thani province,
Thailand. Three fruits of the same variety were selected with the approximated weights as
follows; 150–200 g for A. comosus ‘Phulae’, 2.5–3.0 kg for A. comosus ‘Pattavia’, 1.0–1.3 kg
for C. papaya ‘Khaekdum’, 1.0–1.2 kg for C. papaya ‘Khaeknuan’, 2.5–3.0 kg for D. zibethinus
‘Monthong’, 2.6–3.0 kg for D. zibethinus ‘Chanee’, 250–300 g for P. guajava ‘Kimju’, 150–
250 g for P. guajava ‘Keenok’, 200–300 g for M. indica ‘Kaew’, and 800–1000 g for M. indica
‘Namdokmai’. The main difference between A. comosus ‘Phulae’ and ‘Pattavia’ is that the
former is smaller but has a sweeter taste than the latter. C. papaya ‘Khaekdum’ is normally
consumed in its fully ripen stage as fresh fruit, while C. papaya ‘Khaeknuan’ is consumed
in its younger stage as a salad. Similarly, M. indica ‘Namdokmai’ is consumed in its fully
ripened stage, while M. indica ‘Kaew’ is normally consumed in a younger stage. P. guajava
‘Kimju’ and P. guajava ‘Keenok’ are consumed in their ripened stages. At this maturity stage,
the color of P. guajava ‘Kimju’ flesh is white, while that of P. guajava ‘Keenok’ is pink. D.
zibethinus ‘Monthong’ and D. zibethinus ‘Chanee’ are consumed at the same stage of ripening
and have a unique aroma and texture. Identification and authentication of all samples and
their ripening stages (as shown in Supplementary Table S6) were performed by Assoc. Prof.
Dr. Chusri Trisonthi (Taxonomist, Faculty of Science, Chiang Mai University, Chiang Mai,
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Thailand) based on reliable references [58,59]. Sample preparation and extraction were
performed according to a well-established protocol as previously reported [15]. Briefly,
fresh samples were peeled, seeds removed (if any), cleaned, cut into smaller pieces, and
dried using a −50 ◦C, 0.086 mbar freeze dryer (a Super Modulyo-230 from Thermo Fisher
Scientific, Waltham, MA, USA) for 72 h. The dried samples were then ground using a
grinder (a Philips 600W series from Philips Electronics Co., Ltd., Jakarta, Indonesia). Since
three fruits of the same variety (total of 10 varieties) were selected and prepared as freeze-
dried samples; thus, there were 30 dried samples to be extracted separately. The powdery
samples (100 g) were extracted using a 2:2:1 ratio-solvent mixture of methanol, acetone,
and water (400 mL) for 24 h. Solvent was removed by a rotary vacuum evaporator (Büchi
Corporation, New Castle, DE, USA), and the crude extract was redissolved in distilled
water (500 mL) before loading into a Sep-Pak C18 cartridge (Waters Corporation, Milford,
MA, USA). Water-insoluble components were eluted from the column using ethyl acetate,
and the solvent of the extract was removed using a rotary vacuum evaporator. The dried
extracts were re-dissolved in 10% (v/v) DMSO before analysis.

4.2. Determination of Enzyme Inhibitory Activities

The inhibitory activities on the key enzymes relevant to AD were investigated using
well-established protocols as previously reported [60], while the chemicals and reagents
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Briefly, the AChE and BChE
assays were performed using enzymes, substrates, indicators, and extracts as indicated in
Table 3. The fruit extracts were diluted with 10% (v/v) DMSO to the desired concentrations
before forming the assays.

Table 3. Assay components for determination of acetylcholinesterase (AChE) and butyryl-
cholinesterase (BChE) inhibitory activities.

Assay Enzyme (100 µL) Substrate (40 µL) Indicator (10 µL) Extract
(40 µL)

Detection
Wavelength

AChE
20 ng Electrophorus

electricus AChE
(1000 units/mg)

0.8 mM
acetylthiocholine

16 mM 5,5′-dithiobis(2-
nitrobenzoic acid)

0.25–0.5 mg/mL 412 nm

BChE
50 ng equine serum

BChE
(≥10 units/mg)

0.4 mM
butyrylthiocholine

Enzyme kinetics was performed on a SynergyTM HT 96-well UV–visible microplate
reader and a Gen 5 data analysis software (BioTek Instruments, Inc., Winooski, VT, USA).
The percentage of inhibition was calculated using the following equation:

Percentage (%) of inhibition = 100×
(

1− B− b
A− a

)
(1)

where A is the initial velocity (v0) of the reaction with enzyme but without the extract
(control), a is the v0 of the reaction without enzyme and the extract (control blank), B is the
v0 of the reaction with enzyme and the extract (sample), and b is the v0 of the reaction with
the extract but without the enzyme (sample blank).

The BACE-1 reaction was an end-point assay, performed based on a fluorescence
resonance energy transfer technique with an excitation wavelength (λex) at 320 nm and an
emission wavelength (λem) at 405 nm using a BACE-1 assay kit from Sigma-Aldrich (St.
Louis, MO, USA). Percentage of inhibition was calculated using Equation (1), but instead
of v0, the fluorescent absorbance at a particular wavelength was detected.

Donepezil was used as a standard reference in all three assays, and its IC50 values
were calculated using a plot of percentage of inhibition versus donepezil concentration.
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4.3. Determination of Phytochemical Profiles

The top three fruit extracts with the overall strong enzyme inhibitory activities were
chosen to investigate their phytochemical profiles using LC–ESI-MS/MS. The conditions
and validation of LC–ESI-MS/MS analysis in selective reaction monitoring (SRM) mode
including retention time, linearity (linear range, linear regression, and correlation coefficient
(R2)), limit of detection (LOD), limit of quantification (LOQ), percentage of relative standard
deviation (%RSD), percentage of recovery (%recovery), fragment ions and radio frequencies
(RF-lens) (Supplementary Tables S1 and S2) were followed a well-established procedure as
previously reported [23]. The LC–ESI-MS/MS was performed on a Dionex Ultimate 3000
ultrahigh-performance liquid chromatography (UHPLC) system with a TSQ Quantis Triple
Quadrupole mass spectrometer and a diode array detector (DAD) (Thermo Fisher Scientific,
Bremen, Germany). The fruit extracts were loaded onto a 2.1 mm × 100 mm, 2.6 µm
Accucore RP-MS column (Thermo Fisher Scientific, Bremen, Germany) with a mobile phase
consisting of solvent A: acetonitrile and solvent B: 0.1% (v/v) aqueous formic acid and
eluted using a 0.5 mL/min gradient elution at 10% A and 90% B for 10 min. A molecular
mass analysis was performed on a Chromeleon 7 (version 7.2.9.11323) chromatography
data system from Thermo Fisher Scientific (Bremen, Germany). A total of 24 authentic
standards consisted of apigenin (>98.0% HPLC), caffeic acid (>98.0% HPLC), chlorogenic
acid (>98.0% HPLC), p-coumaric acid (>98.0% gas chromatography (GC)), cinnamic acid
(>98.0% HPLC), 3,4-dihydroxybenzoic acid (≥97% Titration (T)), (−)-epigallocatechin gal-
late (>98.0% HPLC), ferulic acid (>98.0% GC), genistein (>98.0% HPLC), 4–hydroxybenzoic
acid (>99.0% GC), hesperidin (> 90.0% HPLC), kaempferol (>97.0% HPLC), myricetin
(>97.0% HPLC), luteolin (>98.0% HPLC), quercetin (>98.0% HPLC), naringenin (>93.0%
HPLC), sinapic acid (>99.0% GC), and syringic acid (>97.0% T) from Tokyo Chemical
Industry (Tokyo, Japan), rosmarinic acid (≥98% HPLC), gallic acid (97.5–102.5% T), rutin
(≥94% HPLC), and vanillic acid (≥97% HPLC) from Sigma-Aldrich (St. Louis, MO, USA),
isorhamnetin (≥99.0% HPLC) from Extrasynthese (Genay, France), and galangin (≥98.0%
HPLC) from Wuhan ChemFaces Biochemical Co., Ltd. (Wuhan, China). The LC–ESI-
MS/MS chromatogram of 24 authentic standards is shown in Supplementary Figure S1,
while the chromatograms of the fruit samples are shown in Supplementary Figure S2.

4.4. Cell Culture Preparation

Rat Pheochromocytoma PC-12 cell line was purchased from American Type Culture
Collection (ATCC) (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium
containing 10% (v/v) horse serum (HS), 5% (v/v) fetal bovine serum (FBS), 1% (w/v)
L-glutamine, and 1% (v/v) Antibiotic-Antimycotic solution. The cells were grown at 37 ◦C
in a 95% (v/v) humidified incubator with 5% (v/v) CO2. All cells were cultured in culture
flasks precoated with poly-D-lysine. Exponentially growing cells in the final concentration
of < 0.1% (v/v) DMSO were used for all assays. All chemicals and reagents were purchased
from Thermo Fisher Scientific (Waltham, MA, USA).

4.5. Preparation of Aβ Peptides

An aliquot of 1 mM Aβ1–42 peptide (Bachem, Bubendorf, Switzerland) was prepared in
hexafluoroisopropanol (HFIP), which was later removed by drying under N2 evaporation.
The dry residue was then dissolved in phosphate buffer saline (PBS) to a final concentration
of 100 µM and immediately frozen at −75 ◦C until required.

4.6. Cytotoxicity of the Selected Fruit Exacts

The metabolic activity of the PC-12 cells was determined using the CellTiter-Blue®®

Cell Viability Assay (Promega, Madison, WI, USA). To prepare seeded PC-12 cells, the
PC-12 cells at a density of 1.0 × 104 cells/well in a poly-D-lysine (PDL)-coated 96-well
plate were incubated for 24 h at 37 ◦C using a 95% (v/v) humidified incubator with 5%
(v/v) CO2. The seeded cells were then treated with the selected fruit extracts at different
concentrations (25, 50, 100, and 150 µg/mL in 0.1% (v/v) DMSO) for 24, 48, and 72 h. At the
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end of the incubation time, 20 µL of resazurin dye was added to each well with additional
incubation for 1 h at 37 ◦C. Fluorescence intensity at an excitation wavelength of 560 nm
and an emission wavelength of 590 nm was measured using a 96-well microplate reader
(Tecan infinite 200, Tecan Group Ltd., canton of Zürich, Switzerland). Cells treated with
DMSO were used as a negative untreated control. Cell viability was present as a relative
percentage of the untreated control.

4.7. Neuroprotective Effects against H2O2- and Aβ1–42-Induced Cytotoxicity
4.7.1. Cell Viability Assay

The seeded PC-12 cells prepared as mentioned above were pretreated with the selected
fruit extracts (0, 25, 50, 100, and 150 µg/mL in 0.1% (v/v) DMSO) for 24 h before adding
200 µM of H2O2 (Merck, Darmstadt, Germany) or 10 µM of Aβ1–42 and incubating for
another 24 h. Cell survival as a relative percentage of cell viability was measured using
resazurin dye as indicated above.

4.7.2. Lactate Dehydrogenase (LDH) Assay

The LDH assay was performed using a Cytotoxicity LDH Assay Kit-WST (Dojindo
Molecular Technologies, Inc., Kumamoto, Japan). The seeded PC-12 cells were pretreated
with the selected fruits extracts (0, 25, 50, 100, and 150 µg/mL in 0.1% (v/v) DMSO) for
24 h and treated with 200 µM H2O2 or 10 µM Aβ1–42 for another 24 h. The measurement of
LDH activities followed the manufacturer’s instruction, and the results were expressed as
percentage of LDH released.

4.7.3. Glutathione (GSH) Assay

Intracellular GSH was evaluated using the GSH-GloTM Glutathione assay (Promega,
Madison, WI, USA). The seeded PC-12 cells were treated with 200 µM H2O2 or 10 µM
Aβ1–42 and the selected fruit extracts (0, 25, 50, 100, and 150 µg/mL in 0.1% (v/v) DMSO)
for 48 h. The GSH assay was performed following the manufacturer’s instruction, and the
results were expressed as percentage of relative light unit (RLU) of luminescence.

4.8. Drosophila Stock, Culture and Treatment

Flies (elav-GAL4, BDSC 8760 and UAS-APP-BACE-1, BDSC 33798) were received from
the Bloomington Stock Center (BDSC) at Indiana University. Mating between elav-GAL4
and UAS-APP-BACE-1 resulted in the F1 progeny flies expressing human APP and BACE-1
in the central nervous system. The flies were administrated via their food consumption. In
brief, groups of 100 newly eclosed F1 flies were cultured on Formula 4–24 blue®® medium
(Carolina, Burlington, NC, USA) supplemented with safety doses of M. indica ‘Keaw’, M.
indica ‘Namdokmai’ or P. guajava ‘Kimju’ (125 or 250 µg/mL), 10 µM donepezil (drug
control), DI (negative control), or 0.05% (v/v) DMSO (solvent control) at 28 ◦C for 30 days.
To keep the food fresh, it was replenished every three days.

4.9. Drosophila Locomotor Assay

After 30 days of treatment, flies in each treatment were separated into three groups
and put into a clear tube without anesthetic. They were then allowed to rest at room
temperature for 20 min. The tube was then tapped to bring all flies to the bottom of the tube.
Following tapping, the climbing rate was collected and examined as described earlier [61].
Three experiments were conducted independently.

4.10. Determination of Aβ1–42 Peptide by Enzyme-Linked Immunosorbent Assay (ELISA) and
BACE-1 Activity in Drosophila Brain

Quantification of Aβ peptide and BACE-1 activity in fly brain were conducted as
formerly detailed without modification [50]. In brief, for quantification of Aβ1–42 peptide,
25 to 30 fly heads were homogenized in a 5 M guanidine-HCl containing protease Inhibitor
Cocktail (Thermo Fisher Scientific, Waltham, MA, USA) and centrifuged at 12,000× g
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for 15 min at 4 ◦C. The supernatant was then subjected to human Aβ42 ELISA kit (Life
Technologies, Invitrogen, Carlsbad, CA, USA). Concentration of Aβ was determined by
comparing with standard Aβ1–42. For BACE-1 activity, the same numbers of fly heads
were homogenized in T-PER™ Tissue Protein Extraction Reagent (Thermo Fisher Scientific,
Waltham, MA, USA) without protease inhibitor. The lysate was then subjected to BACE-1
activity detection kit (Sigma-Aldrich, St. Louis, MO, USA). One unit of BACE-1 activity
means it hydrolyzes 1.0 picomole of 7-Methoxycoumarin-4-acetyl-[Asn670, Leu671]- Amy-
loid β/A4 Precursor Protein 770 Fragment 667-676- (2,4-dinitrophenyl)Lys-Arg-Arg amide
substrate per minute at pH 4.5 at 37 ◦C.

4.11. Statistical Analysis

All experiments were performed in triplicate (n = 3) or as indicated otherwise. The
results are presented as mean ± standard deviation (SD). One–way or two-way analysis
of variance (ANOVA) with Duncan’s multiple comparison test or Tukey’s multiple com-
parisons test (more than two data) were used to state significant difference among values.
For the comparison of two data sets, significant differences between values using Student’s
unpaired t-test were employed. Statistically analyses were performed using the statistical
package for the social sciences (version 18 for Windows, SPSS Inc., Chicago, IL, USA).

5. Conclusions

The in vitro results indicated the overall strong AChE, BChE, and BACE-1 inhibitory
activities of mango (M. indica ‘Namdokmai’ and M. indica ‘Keaw’) and guava (P. guajava
‘Kimju’) extracts, suggesting their potential roles in anti-AD properties. These three extracts
were thus further investigated using cell culture and Drosophila model of AD. Additionally,
we hypothesized that phenolics might be responsible for the in vitro activities. However, it
is difficult to relate phenolics to their bioactivities due to limited information on LC-ESI-
MS/MS analysis, which only presents the phenolic profiles of the selected fruit extracts (M.
indica ‘Namdokmai’, M. indica ‘Keaw’ and P. guajava ‘Kimju’) and only in vitro experiments
may not be sufficient to define inactive extracts. Thus, excluding seven extracts could be
considered a limitation of the present study. Nevertheless, M. indica ‘Namdokmai’ extract
showed promising anti-AD potential by preventing Aβ-induced oxidative stress in neu-
ronal cells and inhibiting BACE-1 in AD flies. Elucidation of the bioactive agents or effective
doses in higher animal models, however, requires comprehensive further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15050591/s1, Figure S1: The liquid chromatography–electrospray ionization tandem
mass spectrometry (LC–ESI-MS/MS) chromatograms of 24 phenolic standards, Figure S2: The
liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) chro-
matograms of the selected fruit samples including (a) Mangifera indica ‘Kaew’, (b) Mangifera indica
‘Namdokmai’, and (c) Psidium guajava ‘Kimju’, Table S1: The validation parameters including reten-
tion time, linearity (linear range, linear regression, and correlation coefficient (R2)), limit of detection
(LOD), limit of quantification (LOQ), percentage of relative standard deviation (%RSD), and percent-
age of recovery (%recovery) in selective reaction monitoring (SRM) mode of 24 authentic standards
of phenolics using liquid chromatography−electrospray ionization−tandem mass spectrometry
(LC-ESI-MS/MS), Table S2: Fragment ions (ion mass, parent ions, selective reaction monitoring (SRM)
transition and collision energy) and radio frequencies (RF-lens) of 24 authentic standards of phenolics
using liquid chromatography−electrospray ionization−tandem mass spectrometry (LC-ESI-MS/MS),
Table S3: Parameters (mass spectral transition, retention time and area under the curve) for liquid
chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS), Table S4:
Information on neurotoxicity of the selected fruit extracts (M. indica ‘Namdokmai’, M. indica ‘Keaw’
and P. guajava ‘Kimju’), Table S5: Information on neuroprotective effect of the selected fruit extracts
(M. indica ‘Namdokmai’, M. indica ‘Keaw’ and P. guajava ‘Kimju’), Table S6: Images of fruit samples
including Ananas comosus ‘Phulae’, Ananas comosus ‘Pattavia’, Carica papaya ‘Khaekdum’, Carica papaya
‘Khaeknuan’, Durio zibethinus ‘Monthong’, Durio zibethinus ‘Chanee’, Psidium guajava ‘Kimju’, Psidium
guajava ‘Keenok’, Mangifera indica ‘Kaew’, and Mangifera indica ‘Namdokmai’.

https://www.mdpi.com/article/10.3390/ph15050591/s1
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