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ABSTRACT 

 

Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera 

and are likely delimited in latitudinal range by varying sensitivity to cold. There is now 

sufficient evidence that mangrove species have proliferated at or near their poleward limits 

on at least five continents over the past half century, at the expense of salt marsh. Avicennia 

is the most cold-tolerant genus worldwide, and is the subject of most of the observed 

changes. Avicennia germinans has extended in range along the US Atlantic coast and 

expanded into salt marsh as a consequence of lower frost frequency and intensity in the 

southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and 

on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and 

replaced salt marsh in the largest protected coastal wetland in China, the Zhanjiang Mangrove 

National Nature Reserve. In south-eastern Australia, the expansion of Avicennia marina into 

salt marshes is now well documented, and Rhizophora stylosa has extended its range 

southward, while showing strong population growth within estuaries along its southern limits 

in northern New South Wales. Avicennia marina has extended its range southwards in South 

Africa. The changes are consistent with the pole-ward extension of temperature thresholds 

co-incident with sea-level rise, although the specific mechanism of range extension might be 

complicated by limitations on dispersal or other factors. The shift from salt marsh to 

mangrove dominance on subtropical and temperate shorelines has important implications for 

ecological structure, function, and global change adaptation.  
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INTRODUCTION 

 

The increase in global average surface temperature of 0.74°C (1906-2005) (Solomon et al., 

2007) has already caused shifts in the structure and distribution of ecological communities at 

a variety of scales (Walther et al., 2002; Parmesan and Yohe 2003). Arctic shrubs have 

advanced northward in response to decreases in intensity of freezing (Sturm et al., 2001), and 

an advance in range has been demonstrated for butterfly species (up to 200 km) (Parmesan et 

al., 1999) as well as birds (an average of 20 km for 12 bird species in Britain) (Thomas & 

Lennon, 1999). Minimum temperatures globally are increasing at twice the rate of maximum 

temperatures (Walther et al., 2002). In temperate climates, increasing temperature and 

decreasing intensity and frequency of frost are likely to cause transitions in the distribution of 

temperature sensitive higher plants (Bakkenes et al., 2002; Loarie et al., 2008), which in 

many instances provide structural habitat and organic carbon to organisms and ecosystems.  

 

In many ways, mangroves are ideal species for monitoring the impacts of global climate 

change on vegetated habitats. Mangroves are sensitive to several global environmental 

conditions undergoing change, including enhanced atmospheric CO2 (McKee & Rooth, 

2008), sea level (Woodroffe, 1990; McKee et al., 2007), temperature (Alongi, 2008), and 

rainfall (Semeniuk, 2013). All mangrove species are hydrochorous and thus often have some 

potential for dispersal to new localities by sea currents and drift (see Friess et al., 2012; Van 

der Stocken et al., 2013). Mangroves are conspicuous and can be identified from aerial 
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photography at a scale represented in easily accessible geographic applications such as 

Google Earth (www.google.com/earth/index.html) and Nearmap (www.nearmap.com), 

displaying an emergent canopy above salt marsh in temperate and subtropical intertidal 

environments, although on-ground verification may be required when grading to freshwater 

woody vegetation. They are an important habitat for estuarine, nearshore and terrestrial biota 

(Nagelkerken et al., 2008), and play a critical role in coastal environments in stabilising 

shorelines (Gedan et al., 2011), and sequestering atmospheric carbon (Chmura et al., 2003; 

Donato et al. 2011).  

 

Temperature has long been considered the primary limit to the latitudinal range of 

mangroves. Walsh (1974) postulated that this pole-ward threshold corresponded to a mean 

monthly atmospheric temperature of 20°C for the coldest month. Duke et al. (1998) more 

accurately identified the winter position of the 20°C isotherm for sea surface temperature 

(SST) as corresponding to the latitudinal limit in both hemispheres (Figure 1), although SST 

and air temperature at the latitudinal limit of individual species and genera may vary between 

continents (Quisthoudt et al., 2012). While mean temperatures provide a correlative 

explanation for mangrove distribution, quantifying minimum temperature requirements (and 

measures of extreme winter events) provide an even better mechanistic approach for 

quantifying thresholds (Osland et al., 2013). That mangroves will shift their distribution after 

meeting minimum temperature thresholds in response to changing climate is well attested by 

the fossil record. Mangrove species distribution has changed in concert with small changes in 

temperature since the early Holocene. For example, a slight cooling following the mid-

Holocene highstand (6000 years BP) is associated with the less common occurrence of 

Rhizophoraceae in northern NSW (Hashimoto et al., 2006), and the loss of Avicennia marina 

from the Poverty Bay-East Cape region of New Zealand (Mildenhall, 1994).  
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However, caution should be exercized in interpreting changes in distribution and latitidinal 

limits solely to temperature. The effects of temperature upon mangroves are mediated by 

interactions with other aspects of global change (e.g., CO2, precipitation, sea level rise, 

nutrients). Geomorphic changes in response to rising, and then stabilising sea-level exerted 

the strongest control on mangrove extent over the Holocene (e.g. Grindrod et al. 1999; 

Hashimoto et al., 2006). Both fluctuating sea levels and temperature regimes have vastly 

influenced mangrove distributions globally since much older geological time frames than the 

Holocene (Sherrod and McMillan, 1985; Ellison et al., 1999). Contemporary distributions are 

shaped by suitable intertidal habitat, and the capacity of floating propagules to access these 

locations. Impediments to colonization therefore include unfavourable ocean currents, closed 

estuary entrances, or on arid and hard-rock coastlines, an absence of estuaries with 

depositional environments suitable for mangrove establishment (Saintilan et al. 2009). Such 

impediments have slowed the filling of potential niche as defined by temperature thresholds 

for many species (Quisthoudt et al., 2012).  

 

SUGGEST INSERT Figure 1 

 

Several publications have postulated that mangroves will migrate to higher latitudes, 

replacing salt marsh as an outcome of global warming (Woodroffe & Grindrod, 1991; Field, 

1995; Gilman et al., 2008). However, assessments of changes in mangrove extent at pole-

ward limits are restricted to a few site specific studies. In this paper, we use published historic 

records of occurrence and distribution limits, contemporary published surveys, and our own 

observations to provide a global synthesis of evidence for proliferation and extension of 

mangroves at pole-ward limits. Mangroves are absent from Europe and the Mediterranean 
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Sea but co-exist with salt marsh in temperate settings in Asia, Africa, Australia/New Zealand, 

North America and South America. 

 

METHODS 

We present a synthesis of literature from four continents detailing changes in the distribution 

of mangroves. In some cases we provide additional analyses using remote sensing, field 

survey and local expert observations. We used Google Earth Pro 

(www.google.com/earth/index.html) to confirm occurrence within estuaries and poleward 

extent in each of the focus regions using the most recent available imagery. These images 

included photography of Cedar Keys, Florida (imagery dated 19 January 2012), Virilla 

estuary, Peru (imagery dated 19 January 2010, DigitalGlobe), and Piura estuary, Peru 

(imagery dated 10 February 2011, DigitalGlobe). We also used Google Earth Pro’s polygon 

area function to estimate the extent of mangroves where these had expanded from the time of 

previously published estimates, including an update of the estimates in Stevens et al (2006) 

for the US Gulf Coast, and the area of mangroves in Piura, Peru. We interpreted mangrove 

and salt marsh using techniques defined in Wilton and Saintilan (2000). Our identification of 

mangroves in Vichayal, Peru using Google Earth Pro was confirmed by photographs 

provided by Edwin Gerardo and Manuel Ravelo.  

  

RESULTS and DISCUSSION 

 

Northern Hemisphere 

 

North America 
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Mangroves occupied intertidal locations in the southeastern USA at least as far back as the 

early Eocene Epoch (~45 Million years BP), but those fossil deposits were associated with a 

vastly different coastline boundary driven by a warmer climate and higher sea level (Berry, 

1916; Berry, 1924; Westgate and Gee, 1990). Mangrove forests from the Eocene Epoch 

likely occurred at densities similar to those seen in modern-day Neotropical mangrove 

forests, just much farther north (Sherrod and McMillan 1985; Gee, 2001). The first fossil 

evidence of Avicennia in the Caribbean appeared in the late Miocene Epoch (~10 Million 

years BP), and by the mid-Pliocene Epoch (~3.5 Million years BP) multiple mangrove genera 

were evident (Graham, 1995). A prominent lack of mangrove fossil evidence along the 

northern Gulf just preceding the Pleistocene Epoch (~11,700 years BP) until 3000-4000 years 

BP (from Holocene peat deposits in south Florida) suggests an eradication event for 

mangroves along the northern Gulf of Mexico, perhaps related to colder temperatures when 

mangroves were aligned in distribution closer to the equator (Sherrod and McMillan, 1985).   

 

At the northern limits of present-day mangrove extent in the Gulf of Mexico, population 

extent has in the recent past been periodically reduced by frost (McMillan & Sherrod, 1986), 

with heavy frost in 1983 and 1989 leading to 95-98% loss amongst several of the 

northernmost populations (Lonard & Judd, 1991; Everitt et al., 1996; Montague & Odum, 

1997). This observation prompted Snedaker (1995) to suggest that periodic heavy frost would 

limit northern expansion for some time. Ecotypic differences in cold tolerance among natural 

mangrove populations in the Gulf do have the potential to buffer this impact somewhat. This 

is especially true for populations of Avicennia germinans (McMillan, 1971); those 

populations growing along the Texas coast were especially tolerant to freezing among others 

surveyed in the wider Caribbean region (Markley et al., 1982). However, in more than 20 

years since the 1989 freeze event, winters have been sufficiently mild to allow rapid 
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expansion of mangroves at their northern limits into salt marsh, documented in Texas 

(Comeaux et al., 2012; Bianchi et al., 2013), Louisiana (Perry & Mendelssohn, 2009; 

Alleman & Hester, 2011; Pickens & Hester, 2011) and Florida (Stevens et al., 2006).  

 

Avicennia germinans coverage increased from 57 ha in 1986 to 1182 ha in 2006 in Louisiana, 

but fluctuated from a maximum documented coverage of approximately 2180 ha in 1983 

before the freeze of that same year (Giri et al., 2011b). By another account, A. germinans 

increased in abundance by nearly fivefold between 2002 and 2009 within the Louisiana 

deltaic plain (Michot et al., 2010). Populations of A. germinans seem to be regulated strongly 

by air temperatures of -6.7 to -8.9°C or less (Lonard and Judd, 1991; Stevens et al., 2006; 

Osland et al., 2013). This threshold is more restrictive for other Neotropical mangrove 

species (Lugo and Zucca, 1977; Krauss et al., 2008). For instance, there was no reported 

survival of transplanted Rhizophora mangle seedlings after the 1983 freeze in Texas (Sherrod 

et al., 1986), and embolism is a common consequence of temperatures slightly below 0°C in 

the same species (Fig. 2, A and B). Likewise, Laguncularia racemosa trees are highly 

susceptible to repetitive freeze-induced dieback events (Fig. 2, C), although re-sprouting from 

the base is a common response in both L. racemosa and A. germinans. 

 

 SUGGEST INSERT FIG 2 

 

Indeed, after extensive losses during the 1983 freeze, mangroves have extended in many Gulf 

study sites since 1984 (Giri et al., 2011) although have not reached pre-1983 extent (Giri, 

unpublished data). Mangrove trees have been documented visually in Louisiana as early as 

1938 (Penfound and Hathaway, 1938) and in Texas as early as 1853 (cited in Sherrod and 

McMillan 1981). Using an historical time-series of aerial photography extending back to 



 9

1956, Perry and Mendelssohn (2009) were able to demonstrate that mangroves first occupied 

their Louisiana site in 1995. Along with a reduced incidence of freeze-induced mortality, 

recent expansion of mangroves in Louisiana has been assisted by widespread dieback of S. 

alterniflora resulting from drought; Avicennia germinans was unaffected by drought and 

proliferated (McKee et al., 2004). Environmentally mediated competition between S. 

alterniflora and mangroves also occurs along latitudinal gradients in Florida (Kangas and 

Lugo, 1990) and was probably of importance during post-Pleistocene recolonization of 

mangroves toward northern latitudes. A recent analysis applied to the northern Gulf suggests 

that short-statured A. germinans vegetation has an overall lower requirement for water use in 

early growing season assessments than S. alterniflora (Krauss et al., 2013). This may help to 

explain the differential survival of A. germinans over S. alterniflora during drought, and 

suggests an interaction between climate variability in both temperature and rainfall (Krauss et 

al., 2013).  

 

Much of what we are now documenting in the Southern USA is the northern boundary of the 

post-Pleistocene recolonization (sensu Sherrod and McMillan, 1985). Currently, mangroves 

(primarily A. germinans) have also extended north on the Florida Atlantic coast at least as far 

as St Augustine, occupying back-barrier intertidal flats as scattered clusters of individuals 

(29° 57’59” N), and have expanded within this estuary since the early 1990’s. In fact, A. 

germinans has expanded into salt marsh at several other sites on the Atlantic coast, including 

the Indian River lagoon (Harris and Cropper, 1992). To the south, Rhizophora mangle has 

expanded landward more than a kilometre into previously Cladium and Eleocharis 

marshlands in the Everglades (Ross et al. 2000), possibly in response to higher sea-levels, 

changing water levels, and shifting fire regimes (Smith et al., 2013). Similar landward 

expansion has been noted on the Pacific coast of Mexico at Magdalena Bay, Baja California. 
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Here, a 20% increase in mangrove extent through landward encroachment into sparse 

halophytic shrubland was attributed to sea-level rise, and was particularly pronounced during 

El Nino seasons (Lopez-Medellin et al., 2011). 

 

On the Gulf Coast of Florida, mangroves increased coverage in the Ten Thousand Islands 

National Wildlife Refuge by 35% since 1927, principally at the expense of salt marsh (Krauss 

et al., 2011). Over a similar time period, oscillations between marsh and mangrove area have 

been documented in other Gulf coastal areas of Florida (Egler, 1952; Bischof, 1995; Smith et 

al., 2013); sometimes to the detriment of marsh and sometimes to the detriment of 

mangroves. In the absence of any discernable change in mean number of freeze days over the 

period, encroachment of mangroves onto marsh was attributed primarily to the increase in sea 

level over the period (2.24mmy-1 at the Key West station: Krauss et al., 2011). After 

comparing mangrove extent at three sites in Cedar Keys between 1995 and 1999, Stevens et 

al. (2006) predicted that all three sites would develop complete mangrove cover within 25-30 

years, if not impacted by frost. Our assessment of the same sites using 2012 aerial 

photography (Google Earth imagery, 19 January 2012) suggests that this outcome has been 

realized in less than half the predicted time. 

 

 

Asia 

There are insufficient historic data on the southeast Japanese coast to unequivocally argue for 

an extension in natural range of Kandelia obovata (syn. K. candel). The northern limit of K. 

obovata in Japan was reported by Wakushima et al. (1994) to be Kiire, Kagoshima Prefecture 

(31° 30’ N), although they note the long-term survival of a planted population in the estuary 

of the Aono river in the Shizuioka Prefecture at 34° 38’ N.  
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Determining changes in northern limits of mangroves in China and Taiwan is complicated by 

extensive clearance. A further complication in China is the introduction of mangroves north 

of their natural limits: K. obovata in Zheihang (Li and Lee, 1997); and Sonneratia caseolaris 

and Bruguiera sexangula in Guangdong (Li et al. 1998). One of the few locations where 

mangroves and salt marshes co-exist in near natural state on the Chinese mainland coast is in 

the Zhanjiang Mangrove National Nature Reserve on the Leizhou Peninsula of Guangdong 

Province (21° 34’ N; 109° 45’ E). The reserve is a Ramsar-listed wetland of international 

significance and supports nearly one third of China’s mangroves. Regionally, mangroves 

have declined due to agricultural developments, and extensive dyking restricts landward 

encroachment (Leempoel et al., 2013). However, within the reserve mangroves, dominated 

by Avicennia marina, Aegiceras corniculatum and Kandelia obovata, have expanded 

fourfold, including encroachment on salt marsh (Prof. Guangchun Lei, pers. comm.; 

Durango-Cordero et al., 2013; Figure 3).  

 

 SUGGEST INSERT FIG 3 

 

The northernmost mangrove community in Taiwan is located in the Danshui River estuary 

(21° 09’ N; 121° 26’ E) and is the largest Kandelia obovata forest in the world (Lee and Yeh 

2009). The mangrove and associated Phragmites communis salt marsh community has been 

protected in the Danshui Mangrove Reserve since in mid 1980’s. Mangroves have doubled in 

extent since the establishment of the reserve, and in detailed satellite imagery analysis Lee 

and Yeh (2009) were able to demonstrate landward encroachment of mangrove on non-

mangrove vegetation, presumably Phragmites salt marsh.  
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Southern Hemisphere 

Australasia 

The grey mangrove Avicennia marina extends south on the Australian mainland to the 

southernmost intertidal flats within Corner Inlet, Victoria (38° 54’ 25” S), and has occupied 

this range since the earliest historic records from the 19th century. These are the southernmost 

mangroves in the world, and the Bass Strait provides an effective barrier to further dispersal 

to the north coast of Tasmania. Avicennia marina in southern Australia is exposed to more 

frequent but less extreme frosts than those encountered in the US Gulf Coast by A. 

germinans, and has developed a greater resistance to freeze-induced embolism (Stuart et al. 

2007). 

 

Mangrove expansion within estuaries is a near ubiquitous trend in southeastern Australia, 

(Saintilan & Williams, 1999), and New Zealand (Burns & Ogden, 1985; Morrisey et al., 

2003; Lovelock et al., 2007; Stokes et al., 2010), and has been occurring since the time of 

earliest aerial photographic records (1950’s), and perhaps earlier (McLoughlin, 1988, 2000). 

Temperature increases across the region over the past century are likely to be one of a suite of 

regional environmental changes promoting mangrove growth and a corresponding loss of salt 

marsh, including sea-level rise (Rogers et al., 2006), increases in sedimentation following 

catchment development (emphasized in New Zealand studies: Lovelock et al., 2007; Swales 

et al. 2009; Morrisey et al. 2010) and, in Queensland, higher rainfall (Eslami-Andargoli et 

al., 2009). Mangroves in New Zealand have expanded across 29 locations by an average of 

165% since the 1940’s. There is less obvious salt marsh decline than in Australia (Morrissey 

et al. 2010), possibly due to higher sedimentation rates and elevation gain (Stokes et al. 

2010), although some landward encroachment has been noted (Burns and Ogden 1985). A 

median estimate of 30% of salt marsh has been lost to mangrove encroachment across SE 
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Australia (Saintilan and Williams 2000; Straw and Saintilan 2006), with some evidence that 

rates of loss are lower towards the southern limit in Victoria (5-10%) (Rogers et al., 2005), 

although this may be due to competitive resilience of large saltbushes of the genus 

Tecticornia, as much as colder conditions slowing mangrove expansion in the south. 

 

Mangrove floristic diversity declines with increasing latitude on the east and west coasts of 

the Australian continent. On the west coast, patterns in mangrove diversity at a regional scale 

are strongly influenced by aridity, confounding the assessment of temperature effects on 

mangrove species range expansion (Semeniuk, 1983; Wells, 1983). The humid subtropical-

temperate east coast presents an ideal setting to explore changes in mangrove diversity, with 

a cline in temperature extending across more than 150 estuaries, linked by the south-flowing 

East Australia Current south of the Great Barrier Reef. Species of the tropical family 

Rhizophoraceae (Rhizophora stylosa and Bruguiera gymnorrhiza) were common in northern 

NSW during the early to mid Holocene, when temperatures and sea levels were likely to have 

been higher than present (Hashimoto et al., 2006), although were rare in the earliest 

contemporary surveys (Wells, 1983; West et al., 1985) with R. stylosa recorded in seven 

estuaries in northern NSW. Both R. stylosa and B. gymnorrhiza appear to have expanded 

their range in recent decades. B. gymnorrhiza has recently colonized at least three southerly 

estuaries, the Sandon and Wooli Wooli Rivers and Moonee Creek (Wilson 2009). R. stylosa 

has now been recorded within 16 estuaries (Wilson 2009), and has shown strong population 

growth within a number of NSW estuaries (Wilson and Saintilan, 2012). Although it is highly 

probable that R. stylosa was missed in at least two estuaries in earlier surveys in NSW, the 

colonization of others is clearly very recent, based on demographics. The 100 km southward 

extension of R. stylosa from the Corindi estuary to South West Rocks Creek (30° 53’ 16” S), 

corresponds to the southward shift in temperature zones in the region over the past few 



 14

decades (Hennessy et al., 2004). However, colonization of estuaries between these latitudes is 

sporadic rather than incremental, and leaf phenology does not suggest a temperature cline 

limiting growth (Wilson and Saintilan, 2012).  

 

South Africa 

The earliest comprehensive survey of South African mangroves now dates back 50 years, and 

represents aerial photographic and field surveys over a 14 year period to 1962 (Macnae 

1963). South of Port St Johns, Macnae (1963) reported stands of mangroves at the estuaries 

of the Mtata (29° 11’E, 31° 57’S) and Mngazana Rivers (29° 25’E, 31° 42’S), ‘isolated 

clumps’ of mangroves at the estuaries of the Mbashe (29° 25’E, 31° 42’S) and Nxaxo (28° 

31’E, 32° 35’S) Rivers, and ‘occasional trees’ southward. Macnae (1963) reported 

temperature thresholds on the basis of his observations of distribution as being 19°C mean air 

temperature or where the mean of the coldest monthly air temperature does not drop below 

13°C. This placed the Mbashe and Nxaxo estuaries at the southern limit (19.1°C mean, 

11.9°C mean coldest monthly), with Bufallo River in East London outside of the range 

(17.7°C mean, 10.2 C mean coldest monthly).  

 

Mean temperature at the Buffalo River for the period 1973-2011 rose from 17.7°C to 18.7°C, 

and the mean coldest temperature rose from 10.2°C to 14.4°C (Tutiemp, 2012), a shift 

extending the possible range of mangrove in South Africa to East London based on the 

untested thresholds of Macnae (1963). Some dispersal challenges on the Transkei coast 

include the proportionately high number of temporarily open/closed estuaries (17 of the 76 

estuaries are permanently open), and although the Agulhas current flows south 2-3 km 

offshore, a counter-current develops between the Agulhas and the shoreline creating a 

predominantly northward drift (Macnae 1963). In spite of these challenges, and widespread 
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clearing of mangroves, in the 20 years to 1982 mangroves formed extensive stands in the 

estuaries of the Kobonqaba (28° 30’E,  32° 36’ S, to the south of the Nxaxo), Nqabara (28° 

47’ E, 32° 30’ S), Xora (29° 05’ E, 32° 05’ S), and Bulungula (29° 00’ E, 32° 08’ S ) Rivers 

(Ward and Steinke 1982). It is unlikely these were missed by Macnae; mangroves cover a 

larger area on the Xora estuary (16 ha) than the Mbashe (12.5 ha) and Nxaxo (14 ha), and line 

the lower shore of the estuary. In 1969 mangroves were observed for the first time in the 

Kwelera River (32° 54’ S, 28° 04’ E), still the southernmost known natural stand. Natural 

seeding in the Kwelera River is strongly suggested by the results of a drift card dispersal 

experiment, in which one of the cards dropped offshore of the Nxaxo River was retrieved 

within 100 metres of the Kwelera mangrove stand (Steinke and Ward 2003).  

 

Mangrove area has increased by approximately 40% in South African estuaries since the 

1970s, with most of the gains in the Umhlatuze estuary (increase from 197 ha to 489: Bedin 

2001; Ward and Steinke 1982) and the Mtata (increase from 34 to 42 ha 1982-1999: Adams 

et al. 2004). Small declines were observed in more than half of estuaries sampled by Adams 

et al. (2004), and mangroves have been lost entirely from many estuaries (Quisthoudt et al., 

2013). This may be related to limited available habitat for colonization (Wright et al., 1997) 

and in some cases the removal of mangroves manually (the Mnyameni: Adams et al., 2004) 

but is principally attributed to prolonged inundation following long-term closure of the 

estuary mouths on temporarily open/closed estuaries (eg. the Bulungula, Mzimgvuba, Kosi 

and Kobonquaba rivers: Breen & Hill, 1966; Adams et al., 2004). 

 

However, mangroves appear to have established naturally in the Kei River (28°21’42” E, 

32°40’00”S,) to the north of the Kwelera, and the Gqunube River (28° 02’E, 32° 56’S) to the 
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south, with the Kobonquaba River a possible source (Steinke 1986; Steinke and Ward 2003). 

It is uncertain whether the Gqunube River mangroves were naturally dispersed or planted. 

 

A. marina, Bruguiera gymnorrhiza and Rhizophora mucronata have also survived in the 

Nahoon estuary in East London after being transplanted from Durban Bay (Steinke, 1999), 

suggesting that climate was or is no longer a factor limiting their southern natural extent. Of 

these three species, it is only A. marina that has expanded substantially within the estuary, 

and now covers 1.6 ha of previously salt marsh flat, and is expanding at 0.1 ha per year (A. 

Rajkaran pers. obs. 2012; Hoppe-Speer et al. submitted). Quisthoudt et al. (2013) were able 

to successfully predict current distribution of A. marina, B. gymnorrhiza and R. mucronata 

based on current climate variables, with number of growing days above an 18°C threshold 

being the most important. On this basis, they predict latitudinal expansion of mangroves with 

continued climatic warming. 

 

South America 

Mangroves grow south on the Atlantic coast to Santo Antonia Lagoon in the Municipality of 

Laguna (28° 28’S; 48° 50’W) (Soares et al., 2012). This southern limit has not changed in the 

two decades since the survey of Schaeffer-Novelli (1990), although populations of the 

dominant species Laguncularia recemosa show evidence of recent recruitment (Soares et al., 

2012). At this site L. racemosa is stunted, a trait in common with species globally at their 

southern limit, although Avicennia schaueriana grows to 10 m, suggesting a vigour 

characteristic of a species well within its range (Soares et al., 2012). Further southward 

expansion may be limited by a strong northerly current described by Siegle and Asp (2007) 

extending from Ararangua, an estuary 100 km south, to Laguna (Soares et al., 2012).  
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The southern limit of mangrove communities on the South American west coast was 

considered by Clusener and Breckle (1987) to be the River Thumbes at 3° 35’S; beyond 

which were found only a few small individuals of Rhizophora near the village of Bocapan (at 

3° 44’S), and a small stand of Avicennia at the mouth of the Piura River. Mangroves were 

successfully planted within this range in their experimental studies in 1984-85.  

 

South of Cerro Illescas (6° 0’ S) the cold Peruvian current precludes mangrove colonization 

(Clüsener & Breckle, 1987), and because of the aridity of the coast only three estuaries 

between Cerro Illescas and Bocapan provide intertidal conditions suitable for the 

development of mangrove, these being the Virrila estuary (5° 50’S); the Piura River (5° 30’S) 

and the Vichayal estuary (4° 53’S). The ‘small stand’ of Avicennia described by Clusener and 

Breckle (1987) at Piura is now very extensive, lining 9.5 km of shoreline and covering at 

least 38 ha in the north arm and 9 ha in the south arm of the estuary at San Pedro, the 

southernmost confirmed mangroves on the west coast (imagery dated 10 February 2011, 

DigitalGlobe, sourced from Google Earth Pro). The Vichayal estuary has a new stand of 

Avicennia at 4° 53’22.6” S; 81° 08’ 56.4” W covering 1.87 ha (field photographs provided by 

Manuel Ravelo, imagery dated 19 January 2010, DigitalGlobe, sourced from Google Earth 

Pro). These are absent from aerial photographs taken in 1970 (Google Earth Pro) and 

reportedly established during the El Niño event in the first decade of this century (E. Gerardo 

pers. comm. 2012). 

 

 

CONCLUSIONS 
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Dispersal may be problematic in spite of the abundance of buoyant propagules produced by 

Avicennia spp. (Clarke et al., 2001; Sousa et al., 2007), and restricted gene flow in marginal 

populations (Dodd & Afzal Rafii, 2002) also suggests dispersal may be problematic in the 

expansion of range. In many places the latitudinal limit of mangroves appears to lag behind 

changes in temperature thresholds, as documented in New Zealand (de Lange & de Lange, 

1994), east coast Australia (Wilson & Saintilan, 2012), South Africa (Steinke, 1999) and 

South America (Soares et al., 2012). The difference between fundamental and realized niche 

is relatively large for Avicennia and Rhizophora on the basis of global comparisons 

(Quisthoudt et al., 2012), and on some coastlines may reflect slow expansion from 

Pleistocene extents. Disequilibrium between tree species distribution and rapidly changing 

temperature regimes has been noted for terrestrial species also (Willner et al. 2009). It is 

likely that a more complex response than a steady stepping poleward will be the case for 

many mangrove species, especially those on relatively high wave energy coasts with few 

permanently open estuaries or where dispersal is subject to unfavourable currents. This infers 

that there is no simple function relating range extension and warming temperatures, 

something also implied by the global temperature and range analysis of Quisthoudt et al. 

(2012). 

 

Parmesan and Yohe (2003) found poleward range shifts in 75-81% of 1045 species of higher 

plants and animals with quantitative records, with an average shift of 6.1 km per decade. 

Notwithstanding limited opportunities for dispersal and the difficulties of ‘threading the 

needle’ of estuarine entrances, an increase in range has been documented for the mangroves 

A. germinans in the USA and Peru, A. marina in South Africa and R. stylosa and B. 

gymnorrhiza in eastern Australia; and expanding mangrove  populations near poleward limits 

are obvious within estuaries in Australia, New Zealand, the Gulf and Atlantic coasts of the 
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USA, the Pacific and South Atlantic coasts of South America, and the Leizhou Peninsula of 

China, one of the few locations in southern China where large areas of mangrove and salt 

marsh are protected and have been retained. Poleward expansion in the coming decades will 

be most evident on open coasts where temperature currently exerts a strong control on 

contemporary distributions and available habitat exists. Osland et al. (2013) used 

contemporary mangrove forest distribution data and 30 year climate records from the Gulf 

and Atlantic US coasts to identify winter-climate based thresholds and develop mangrove 

species distribution and relative abundance models. Their models and analyses of the 

potential effect of alternative future winter climate scenarios show that, in southeastern USA 

and especially in Louisiana, Texas, and Florida, relatively small changes in winter climate 

can result in relatively dramatic mangrove range expansion at the expense of salt marsh. 

Applying a 2-4°C increase in annual mean minimum temperature would lead to a 95% 

reduction in salt marsh in Louisiana, 100% reduction in Texas and 60% reduction in Florida 

(Osland et al., 2013).  

 

The comprehensive replacement of salt marsh by mangrove (cf., Osland et al., 2013; Guo et 

al., in press) is predicated on temperature as the key delimiting factor of mangrove range 

expansion. In addition to temperature, local patterns of mangrove expansion into salt marsh 

are likely to be influenced by interactions between hydroperiod, sedimentation, elevation and 

salinity, with nutrients playing a role in some settings (Patterson and Mendelssohn 1991; 

Patterson et al. 1997), all of which can be impacted locally by human agency, such as 

building walls and structures in estuaries, dredging, and development in the catchment. In 

coastal Louisiana, mangroves currently tend to dominate higher elevation settings such as the 

shorelines of tidal creeks, and exclusion from lower interior marshes has been attributed to 

higher predation, lower retention of propagules (Patterson et al. 1997), plant competition and 
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greater flooding stress (Patterson et al. 1993). By contrast, mangroves in eastern Australia 

show greater mortality in less frequently inundated higher salinity areas where propagules 

become desiccated (Clarke and Myserscough 1993; Clarke and Allaway 1993). That 

mangroves are invading salt marshes in contrasting settings along the northern Gulf of 

Mexico versus Australia would suggest that different mechanisms are at work, or that global 

changes are contributing to an increased capacity of mangroves to survive in previously 

marginal intertidal environments.  

 

Mangrove expansion into salt marsh mirrors a global trend of woody shrub invasion of 

grassland (Knapp et al., 2008; Williamson et al., 2010), which has been attributed variously 

to altered fire and grazing intensity (Scholes and Archer, 1997; Van Auken, 2009), and 

elevated atmospheric CO2 (Polley et al., 1997; Eamus and Palmer, 2008). On most coastlines, 

there is little evidence that altered fire and grazing regimes are dominant drivers of vegetation 

change in intertidal settings. The proliferation of mangroves in previously salt marsh-

dominated environments is likely to be driven by a suite environmental factors favouring 

mangrove and which are changing globally, including elevated sea-level, elevated 

atmospheric CO2 and higher temperatures (Williamson et al., 2010; McKee et al., 2012). 

Landward encroachment of mangrove into salt marsh and salt pan has been attributed to sea-

level rise in environments as disparate as Baja California (Lopez-Medellin et al., 2011), the 

US Gulf Coast (Krauss et al., 2011; Smith et al., 2013), and east coast Australia, where 

Rogers et al. (2006) demonstrated a lower capacity of salt marsh to respond to sea-level rise 

through vertical accretion. Salt marsh floristic diversity increases in inverse correlation with 

mangrove diversity on the Australian east coast (Saintilan, 2009) and mangrove 

encroachment may place further pressure on an ecological community already listed as 

endangered in New South Wales. 
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The replacement of salt marsh by mangrove in temperate settings has important implications 

for ecosystem organization and function. Experimental studies in the Gulf of Mexico 

(Comeaux et al., 2012) and temperate Australia (Rogers et al., 2006) show improved mineral 

trapping leading to a higher rate of surface elevation gain in encroaching mangrove than 

surrounding salt marsh, suggesting mangrove has greater potential to respond to increasing 

sea levels, although some of these differences may relate to different topographic settings. 

Carbon sequestration may be enhanced in some settings as a result of mangrove 

encroachment (Howe et al., 2009; Bianchi et al., 2013) and reduced in others, if redox 

potential is enhanced by mangrove root formation (Comeaux et al., 2012). The conversion of 

salt marsh to mangrove in the Gulf of Mexico alone could sequester 129 ± 45 Tg C over 100 

years (Bianchi et al., 2013), more than 1% of ‘Blue Carbon‘ estimates globally (Bianchi et 

al., 2013; Hopkinson et al. 2012), and a proportion that may rise if the trend of tropical 

mangrove deforestation continues (Valiela et al., 2001). 
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Figure 1: Global mangrove and salt marsh distribution and the average 20oC sea-surface 

temperature isotherm. Sources: Spalding (2012), Hoekstra et al. (2010), and NOAA (2013). 

Fig. 2: (A) Air temperatures (ºC) for the Ten Thousand Islands region of Florida, USA from 

November 2006 through April 2007, with days having subzero temperatures highlighted 

(inset graphs). These subzero temperatures were responsible for (B) branch tip mortality from 

vasacular embolism in Rhizophora mangle, and (C) complete stem dieback in many 

Laguncularia racemosa trees growing in open environments. Avicennia germinans trees in 

the Ten Thousand Islands region were generally unaffected by this freeze. (Temperature data 

source: DBHYDRO Browser, South Florida Water Management District, 

www.sfwmd.gov/dbhydro, Station SGGEWX, accessed 11 April 2013) 

Fig 3: Colonization of Spartina by juvenile Sonneratia apetela, Leizhou Peninsula, China 

(photograph by Guangchun Lei, used with permission). 
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