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Abstract 

This paper addresses scene understanding in the con­

text of a moving camera, integrating semantic reasoning 

ideas from monocular vision with 3D information available 

through structure-from-motion. We combine geometric and 

photometric cues in a Bayesian framework, building on re­

cent successes leveraging the indoor Manhattan assumption 

in monocular vision. We focus on indoor environments and 

show how to extract key boundaries while ignoring clut­

ter and decorations. To achieve this we present a graph­

ical model that relates photometric cues learned from la­

beled data, stereo photo-consistency across multiple views, 

and depth cues derived from structure-from-motion point 

clouds. We show how to solve MAP inference using dynamic 

programming, allowing exact, global inference in �100 ms 

(in addition to feature computation of under one second) 

without using specialized hardware. Experiments show our 

system out-performing the state-of-the-art. 

1. Introduction 

Over the past decade, computer vision researchers work­
ing with monocular images have pursued substantially dif­
ferent research agendas to those working with multiple 
views. The focus for monocular images has increasingly 
been to infer high-level facts about the world, such as 
the locations of and interactions between objects, semantic 
scene categories, and the spatial layout of the environment. 
In contrast, much of the work concerning multiple views has 
focused on reconstructing metric scene structure and cam­
era poses using techniques such as structure-from-motion, 
stereo, and multiple-view stereo. 

In this paper we leverage multiple view geometry for im­
age understanding purposes. We assume a moving camera 
with a structure-from-motion system estimating its trajec­
tory, and show how to infer semantically meaningful mod­
els of the environment. We focus on the indoor Manhat­

tan representation[l4, 7], in which the world is modeled in 
terms of floor, wall, and ceiling surfaces. This representa-

Figure 1. Automatic reconstructions from our system. 

tion captures many semantically meaningful aspects of the 
environment, including (i) scale: the distance from floor to 
ceiling suggests a scale for distances in the environment; (ii) 
boundaries: walls constrain movement in the environment 
and suggest locations for doors, windows, and other objects; 
(iii) gravity: the orientation of the ground plane implies the 
direction in which gravity operates, which constrains the 
arrangement of objects resting upon one another; and (iv) 
shape: the organisation of walls in an environment suggests 
a functional category (such as "kitchen" or "office"). 

Indoor Manhattan models are useful because they cap­
ture these properties explicitly, whereas to extract such 
properties from a dense polygonal mesh would require ad­
ditional non-trivial inference after reconstruction. Our ap­
proach infers semantic properties of the scene directly from 
multiple-view data, without an intermediate dense recon­
struction step. This makes sense if, as in our case, the se­
mantic properties constitute the ultimate goal of the system. 
Of course, if a photo-realistic reconstruction is itself the end 
goal then our approach is not suitable. 

We build on recent work highlighting the efficacy of the 
indoor Manhattan representation for single view reconstruc­
tion [14, 7]. Previous work employed a set of heuristics as 
a cost function and was limited to monocular images. We 
give a fully Bayesian account in which information from 
image features, stereo, and 3D point clouds is integrated 
into a single MAP optimization, and we learn all parame­
ters from labeled examples. We show that MAP inference 
in our model can be solved exactly and efficiently (�100 ms 
per frame) using a generalization of the dynamic program­
ming algorithm of [7]. 

The remainder of this paper is organised as follows. Sec-
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Figure 2. Three input images and the indoor Manhattan models we 

seek. Notice how each image column intersects exactly one wall. 

tion two places our contribution in context with related 
work. We introduce our model in section three, then we 
describe inference in section four and learning in section 
five. We give experimental results in section six, followed 
by concluding remarks in section seven. 

2. Background 

The Manhattan world assumption was introduced by 
Coughlan and Yuille [ 4] over a decade ago and has seen 
increasing attention in the computer vision literature over 
past years [4, 13, 14, 10, 7]. Furukawa et al. [10] pro­
posed a Manhattan-world stereo algorithm based on graph 
cuts. While their approach is concerned with dense photo­
realistic reconstructions, ours is intended to capture seman­
tic properties of the scene using a concise representation. 
The output of their approach - a polygonal mesh - has 
no immediate semantic interpretation, whereas our models, 
though less detailed, come packaged with a direct interpre­
tation. A by-product is efficiency: we count computation 
time in hundreds of milliseconds, where as Furukawa et at. 

report waiting more than an hour. 
Another approach to interpreting Manhattan worlds is to 

model scenes as a union of cuboids. This approach has a 
long history beginning with Roberts' 1965 thesis [15], and 
has recently been revisited using modern probabilistic tech­
niques [11, 17]. 

Lee et at. [14] first proposed indoor Manhattan models 
(a sub-class of general Manhattan models) for monocular 
reconstructions. They used a branch-and-bound algorithm 
together with a line-sweep heuristic for approximate infer­
ence. Flint et at. [7] employed a similar model but showed 
a dynamic programming algorithm that performed exact in­
ference in polynomial time. In earlier work [8] Flint et 

al. also demonstrated Manhattan reconstructions integrated 
with a SLAM system, but this work inferred models from 
single frames and then extrapolated these forward in time. 
In contrast, our work incorporates both multiple view geom­
etry and 3D points directly into a joint inference procedure. 
We also learn parameters in a Bayesian framework, where 
as neither Lee nor Flint utilized training data in any form. 

Felzenszwalb and Veksler [6] posed the reconstruc-

x 

Figure 3. Each comer in an indoor Manhattan environment can be 

categorized as concave, convex, or occluding. Each vertical line 

intersects exactly one wall segment, the top and bottom of which 

we denote Px and qx respectively. 

tion problem in terms of energy minimization, which they 
showed could be solved using dynamic programming, while 
Barinova et at. [2] modeled outdoor scenes using a CRF. 
However, these approaches do not permit strong geometric 
constraints and so cannot be extended to multiple views. 

Semantic scene understanding has, broadly speaking, 
seen less attention within the multiple view community. 
The CamVid [3] database of outdoor videos with seman­
tic segmentations is an important and encouraging excep­
tion. Brostow et at. [3] showed that simple structure-from­
motion cues lead to pleasing segmentations. Sturgess et al. 

[1] extended this approach to a CRF framework. We com­
pare our method with this approach in section 6. 

3. Proposed Model 

In this section we describe the indoor Manhattan model. 
We consider three sensor modalities: monocular image fea­
tures, stereo features, and 3D point clouds. For each we 
present a generative model relating observed features to the 
Manhattan scene structure, which we denote !'vI. For each 
sensor modality we show that MAP inference can be re­
duced to maximization over a payoff function 7T( X, y). This 
allows us to present a unified dynamic programming solu­
tion in section 4, which efficiently solves MAP inference 
for all three sensor modalities. 

General Manhattan environments have structural sur­
faces oriented in three cardinal orientations. Indoor Man­
hattan environments are a special case that consist of a floor 
plane, a parallel ceiling plane, and a set of vertical walls ex­
tending between them. Each wall extends all the way from 
the floor to ceiling, and walls meet at vertical edges. We 
always consider environments observed from a camera lo­
cated between the floor and ceiling. Since each wall ex­
tends from floor to ceiling, indoor Manhattan environments 
always project as a linear chain of walls in the image, as 
shown in figure 1. Further, the edges at which adjacent walls 
meet can be categorized as concave, convex, or occluding, 
as illustrated in figure 3 and discussed further in [14]. 

We assume that vanishing points for the three Manhat­
tan directions are given. We use the vanishing point detec­
tor described by Zhang et at. [13] in the monocular setting 
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and that of [8] in the multiple view setting. It will greatly 
simplify the remainder of this paper if we can assume that 
vertical lines in the world appear vertical in the image. To 
this end we apply the simple rectification procedure of [8]. 

We now describe our parametrization for indoor Manhat­
tan models. Let the image dimensions be Nx x Ny. Follow­
ing rectification, the vertical seams at which adjacent walls 
meet project to vertical lines, so each image column inter­
sects exactly one wall segment. Let the top and bottom of 
the wall in column x be Px = (x, Yx) and qx = (x, y�) re­
spectively (depicted in figure 3). Since each Px lies on the 
floor plane and each qx lies on the ceiling plane, we have 

(1) 
where H is a planar homology [5]. We show how to recover 
H in section 3.5. Once H is known, any indoor Manhattan 
model is fully described by the values {Yx}, leading to the 
simple parametrization, 

'" _ { }Nr 1Vl - Yx x=l . (2) 
We query this parametrization as follows. To check whether 
a pixel (xo, Yo) lies on a vertical or horizontal surface we 
simply need to check whether Yo is between Yxo and y�o' 
If we know the 3D position of the floor and ceiling planes 
then we can recover the depth of every pixel as follows. If 
the pixel lies on the floor or ceiling then we simply back­
project a ray onto the corresponding plane. If not, we back­
project onto the vertical plane defining the wall at that col­
umn (the depth of which we can recover from YX(). Note in 
particular that the orientation and depth of a pixel can be re­
covered from just the floor/wall intersection in its column; 
this will be important in later sections. 

We now tum to the optimization framework that each 
subsequent section will feed into. Let {cd index the 
columns at which neighbouring walls meet in lVI. We define 
the payoff for M as 

NJ.' 

II(M) = L 11" (x, Yx) - L I(Ci) (3) 
x=l 

where the payoff matrix 11" assigns payoffs for models with 
floor/wall intersections that pass through each pixel, and I 
is a per-corner regulariser which penalizes complex mod­
els. Note that the value of 11"( x, y) is not restricted to depen­
dence on pixel (x, y), nor even to a local region about that 
pixel; indeed, the payoff functions described in the follow­
ing sections incorporate image evidence from widely sepa­
rated image regions. 
3.1. Monocular features 

To infer indoor Manhattan models from monocular im­
ages we assume the graphical model shown in figure 4. We 

Figure 4. The graphical model relating building structures AI to 

monocular image features 1/J. p = (x, y) is a pixel location and a 
is the orientation predicted (deterministically) by M at p. 

turn first to the prior P(M I A). For a model with n1 con­
cave comers, 71,2 convex comers, and 71,3 occluding comers 
(c.f. figure 3), our prior on models is 

P(M I A) (4) 
which corresponds to a fixed probability for "events" cor­
responding to each type of corner and penalizes models for 
additional complexity. Z is a normalizing constant. 

Our model includes hidden orientation variables ai E 
{I, 2, 3} for each pixel, with values corresponding to the 
three Manhattan orientations (shown as red, green, and blue 
regions in figure 1). As described in section 3, a is deter­
ministic given the model AI. We assume a linear likelihood 
for pixel features 'IjJ, 

P('IjJ I a) = waTt 
Lj Wa 'ljJj (5) 

We now derive MAP inference. The posterior on lVI is 
P(M I \If) = 77P(M) II P('ljJi I a;) (6) 

where a; is the orientation deterministically predicted by 
model AI at pixel Pi and 77 is a normalizing constant. We 
have omitted P( ai 1M) since it equals 1 for ai and 0 oth­
erwise. Taking logarithms, 

log P(M I \If) = n1A� + 71,2 A; + n3A� 

+ LlogP('ljJi la;)+k (7) 

where A� = log A3 and similarly for the other penalties, and 
k corresponds to the normalizing denominators in (6) and 
(4), which we henceforth drop since it makes no difference 
to the optimization to come. We can now put (7) into payoff 
form (3) by writing 

11"mono(x, Yx) = L log P( tPi I an y' (8) 
Imono(C) = - Ac 

where Ac is one of A1, A2, or A3 according to the category 
of corner c. We show how to maximize payoffs of this form 
in section 4, which will allow us to solve MAP inference. 
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Figure S. Pixel correspondences across multiple views are com­

puted by back-projection onto the model M followed by re­

projection into auxiliary views. 

3.2. Multiple view features 

We now formulate the payoff function 7r stereo for the case 
that multiple views of the scene are available. We assume 
one base frame 10 and lVI auxiliary frames h, ... ,I!VI. We 
assume that poses are given for each camera, as output for 
example by a structure-t"rom-motion system, and that cam­
eras are calibrated. We normalize images intensities to zero 
mean and unit variance. 

Intuitively, we treat inference in this settings as follows. 
We consider models lVI in terms of their projection into 
10. We explained in section 3 that models parametrized 
in image coordinates specify unique 3D models. Any hy­
pothesized model can therefore be re-projected into aux­
iliary frames, giving pixel-wise correspondences between 
frames as shown in figure 5. From this we compute a photo­
consistency measure PC (. ) , which provides the likelihood 
P( {Id I M). The prior remains as in (4). 

Optimizing over photo-consistency has been standard in 
the stereo literature for several decades [16]; our contri­
bution is to show that (i) in the particular case of indoor 
Manhattan models, photo-consistency can be expressed as 
a payoff matrix; (ii) that we can therefore perform efficient 
and exact global optimization; and (iii) that this fits nat­
urally within a Bayesian framework alongside monocular 
and 3D features. 

Our approach could also be cast as solving the general 
stereo problem where in place of priors based on various 
pixel-wise norms, our prior assigns zero probability to all 
non-indoor-Manhattan reconstructions. 

Let reprojk(p; M) be the re-projection of pixel P from 
the base frame 10 into auxiliary frame h via model M. 
Then 

!VI 
10gP({h} 1M) = 2..: 2..:PC(p,reprojk(p,M)) , (9) 

pElo k=l 

where in our experiments PC(p, q) is the sum of squared 
differences between pixels p and q. 

We explained in section 3 that the depth of each pixel can 
be recovered from the location of the floor/wall intersection 
Yx in column x. Hence we can replace reprojk(p;!'vI) with 

Figure 6. The graphical model relating indoor Manhattan models 

to 3D points. The hidden variable t indicates whether the point is 

inside, outside, or coincident with the model. 

reprojk(p; Yx) and write 
Ny !VI 

7rstereo (x, Yx) = 2..: 2..: PC(p, reprojk (p, Yx) )  , (10) 
y=lk=l 

where p = (x, y). To see this, substitute (l0) into (3) and 
observe that the result is precisely (9). 

Note that the column-wise decomposition (10) neither 
commits us to optimizing over columns independently, nor 
to ignoring interactions between columns. Such interactions 
come into effect when we optimize over the full payoff ma­
trix in section 4, and our results will show that widely sepa­
rated image regions often interact strongly. The derivations 
in this section follow deductively from the indoor Manhat­
tan assumption; the only approximation is the following. 

Occlusions. We have ignored self-occlusions in (9). For 
short baselines (such as frames sampled over a few sec­
onds from a moving camera), this is unproblematic since 
indoor environments tend to be mostly convex from any 
single point of view. Even in highly non-convex environ­
ments our system achieves excellent results by integrating 
3D and monocular features, and enforcing strong global 
consistency, as will be shown in section 6. 
3.3. 3D features 

In this section we explore the context in which a 3D point 
cloud is available during inference. The point clouds gen­
erated by structure-from-motion systems are typically too 
sparse for direct reconstruction, but can provide useful cues 
alongside monocular and stereo data. 

Our graphical model for 3D data is depicted in figure 6. 
The model M is sampled according to the prior (4), then 
depth measurements di are generated for pixels Pi ' Many 
such measurements will correspond to clutter or measure­
ment errors, rather than to the walls represented by lVI. Our 
model captures this uncertainty explicitly through the latent 
variable t i , which has following interpretation. If t i = ON 
then di corresponds to some surface represented explicitly 
in lVI. Otherwise, either t i = IN, meaning some clutter 
object within the room was measured, or t i = OUT, in 
which case an object outside the room was measured, such 
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Figure 7. Depth measurements di might be generated by a surface 

in our model (represented by ti = ON) or by an object inside 

or outside the environment (in which case ti = IN, OUT respec­

tively). 

as through a window. The likelihoods we use are 

P(d I p,lvI, IN) = {aD,' if 0 < d < r(p;lvI) (11) otherwise 

{(3 if r(p; lvI) < d < Nd 
P(d I p, lvI, OUT) = 0,' (12) otherwise 

P(d I p, lvI, ON) = N(d; r(p; lvI), 0' ) . (13) 
where a and (3 are determined by the requirement that 
the probabilities sum to 1 and r(p;!'vI) denotes the depth 
predicted by lvI at p. We compute likelihoods on d by 
marginalizing, 

P(d I p, lvI) = L P(d I p, lvI, t)P(t) , (14) 

where the prior P(t) is a look-up table with three entries 
denoted TIN, TOUT, and TON. 

As explained in section 3, computing the depth of the 
model at pixel p requires knowledge only of the floor/wall 
intersection Yx in column x, so we substitute 

P(d I p, Yx) = P(d I p, lvI) . (15) 
Let D denote all depth measurements, P denote all pixels, 
and Dx contain indices for all depth measurements in col­
umn x. Then 

P(lvI I D, P) =P(lvI) II II P(di I Pi' Yx) (16) 
x iED" 

log P(lvI I D, P) =P(lvI) + L (L log P(di I Pi' Yx)) , 
x iED;r 

(17) 
which we write in payoff form as 

7T30(X,yx) = L 10gP(di I Pi'Yx) (18) 
iED,. 

and the penalty function, remains as in (8). 

3.4. Combining features 

We combine photometric, stereo, and 3D data into a joint 
model by assuming conditional independence given !'vI, 

P(!'vI I Xmono, Xstereo, X30) = (19) 
P(lvI)P(Xmono I lvI)P(Xstereo I lvI)P(X30 I lvI) 

Taking logarithms leads to summation over payoffs, 
7TjOint(X) = 7Tmono(X) + 7Tstereo(x) + 7T30(X) . 

3.5. Resolving the floor and ceiling planes 

(20) 

We resolve the equation of the floor and ceiling planes as 
follows. If C is the camera matrix for any frame and Vv is 
the vertical vanishing in that frame, then n = C-1vv is nor­
mal to the floor and ceiling planes. We sweep a plane with 
this orientation through the scene, recording at each step the 
number of points within a distance 6 of the plane (6=0.1 % 
of the diameter of the point cloud in our experiments). We 
take as the floor and ceiling planes the minimum and maxi­
mum locations such that the plane contains at least 5 points. 
We found that this simple heuristic worked without failure 
on our training set. 

Let the two non-vertical vanishing points be VI and Vr 
and let h = VI X Vr. Select any two corresponding points 
x f and Xc on the floor and ceiling planes respectively. Then 
the Manhattan homology defined in (1) is given by 

H - I vvhT 

- +fJ h' Vv' 
(21 ) 

where fJ = < Vv, Xc, x f' Xc x x f x h > is the characteristic 
cross ratio of H. 
4. Inference 

We have reduced MAP inference to optimization over a 
payoff matrix: 

�I = argmax L 7T(X, Yx) - L ,(Ci) (22) 
M x i 

In previous work [7] we showed that if an indoor Manhattan 
model !vI is optimal over image columns [1, x] , then the 
"cropped" model lVII, obtained by restricting lVI to the sub­
interval [1, Xl] Xl < x, must itself be optimal over that sub­
interval. This permits a dynamic programming solution in 
which �I is built up from left to right. 

Our algorithm differs from that of [7] in the following 
respects. First, we optimize over general payoff matrices of 
the form (3); whereas neither 7Tstereo nor 7T30 decomposes 
as assumed in [7]. Second, we do not include the number of 
comers as a state variable, but instead accumulate penalties 
directly into the objective function, which reduces complex­
ity by O( K) where K is the number of walls in the model. 
For completeness we give revised recurrence relations in an 
appendix. 
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5. Training 

In this section we address the learning of model param­
eters from labeled training data. We tum first to the param­
eter w relating photometric features to the orientation vari­
ables ai via (5). We employ the following bootstrapping 
algorithm to learn w. We begin by sampling k pixels at 
random from the images in the training set and use these to 
train a classifier (in our case a multi-class SVM with three 
classes) for the task of mapping pixel features 'l/J to orienta­
tions a. We then run the complete inference procedure on 
the entire training set, using the current classifier to evalu­
ate the log-likelihood (8). We compute a pixel-wise loss 
lp(NI,!vI) with respect to ground truth. In our experiments 
lp is the relative depth error, 

I (!vI.lVI) = 1 r(p; NI) - r(p; lVI) I. (23) p . r(p; lVI) 

We then sample k additional pixels to be added to the train­
ing set, where each pixel is selected with probability propor­
tional to the loss (23), then re-train the pixel classifier and 
repeat to convergence. That is, we add pixels at which the 

image-level inference procedure is making the greatest mis­
takes, which biases learning towards portions of the training 
set where the inference process as a whole, rather than the 
pixel-level classifier, is making mistakes. 

Model prior parameters A. We assign a beta distribu­
tion with a = {-3 = 1 as hyper-prior for A. MAP estimates 
are then given by 

(24) 

where expectations are over the training set. 
3D indicators. We assign a uniform hyper-prior to all 

T representing a valid probability distribution (i. e. positive 
and unit sum), then perform gradient descent on the poste­
riorP(T I {lVI, {Pi,Xi}}) .  

6. Results 

Our data-set consists of 18 manually annotated video se­
quences of indoor scenes averaging 59 seconds in duration. 
We sample frames at one second intervals and divide frames 
into consecutive groups of 3 (one base frame and two aux­
iliary frames). Our training set consists of 150 such triplets 
generated from 8 ditlerent sequences. Our test set contains 
204 triplets from the remaining 10 sequences. No sequence 
appears in both the training and test sets. 

To acquire ground truth data we reconstructed camera 
trajectories using structure-from-motion software (we use 
the PTAM system of Klein and Murray [12]) then manually 
specify the ground truth floor-plan. Recall that we seek to 
recover the boundaries of the environment, whether or not 

Training samples MAP model 

o ,...., 

Figure 8. Snapshots of our bootstrap learning algorithm. The left 

column the pixels that the SYM was trained on in each iteration 

and the right column shows the corresponding MAP model. Each 

iteration injects incorrect pixels into the training set, leading to a 

concentration about surface boundaries since these locations are 

the most often confused by our model. This corresponds to the 

intuition that pixels near surface boundaries are the most "impor­

tant" for the SYM to correctly classify since our model will lever­

age global consistency to "fill in the blanks" in other regions. 

they are visible at every point. When our algorithm ignores 
clutter within a room, we consider that a success. 

The monocular features 'l/Ji consist of 3 RGB channels, 
3 HSV channels, 24 Gabor filters (4 scales, 6 orientations), 
and 3 binary line sweep features [14]. For stereo we use 
patches of size 5 x 5. 

We compute two error metrics: the labeling accuracy, 
which is the proportion of all pixels that were labeled with 
the correct orientation, and the mean relative depth er­
ror (23). While the latter better captures similarity to the 
ground truth, not all the systems we compare against have 
direct 3D interpretations and in such cases we must com­
pare on labeling accuracy. 

To the best of our knowledge, there is no previously pub­
lished work on precisely this problem (indoor-Manhattan 
reasoning from multiple views) so we compare with two al-
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ternative systems, though neither comparison is ideal. 
Our first comparison is with the approach of Brostow et 

at. [3], who performed semantic segmentation by training 
a per-pixel classifier on structure-from-motion cues. Our 
implementation of their system uses exactly the features 
they describe, with classes corresponding to the three Man­
hattan orientations. While they trained a randomized forest, 
we trained a multi-class SVM because a reliable SVM li­
brary was more readily available to us. Given the margin 
between our results it is unlikely that a dilferent classifier 
would significantly change the outcome. 

The second comparison is with the monocular approach 
of Lee et at. [14]. One would of course expect a mul­
tiple view approach to outperform a monocular approach, 
but as one of the very few previous approaches to have ex­
plicitly leveraged the indoor Manhattan assumption we feel 
this comparison is important to demonstrate the benefit of a 
Bayesian framework and integration of stereo and 3D cues. 

The performance of each system is shown in figure 9. 
Our system significantly out-performs both others. Even 
when restricted to monocular features, our system outper­
forms [3], which has access to 3D cues. This reflects the 
utility of global consistency and the indoor Manhattan rep­
resentation in our approach. 

The initialization procedure of [14] fails for 31 % of our 
training images, so at the bottom of figure 9 we show re­
sults for their system after excluding these images. Label­
ing accuracy increases to within 3% of our monocular-only 
results, though on the depth error metric a margin of 10% 
remains. This illustrates the effect of our training procedure, 
which optimizes for the depth error. 

Figure 9 also shows that joint estimation is superior to 
using any one sensor modality alone. Anecdotally we find 
that using 3D cues alone often fails within large textureless 
regions in which the structure-from-motion system failed 
to track any points, whereas stereo or monocular cues alone 
often perfonn better in such regions but can lack precision 
at corners and boundaries. 

Figure 11 shows timing results for our system. For each 
triplet of frames, our system requires on average less than 
one second to compute features for all three frames and less 
than 100 milliseconds to perform optimization. 

7. Conclusion 

We have presented a Bayesian framework for scene un­
derstanding in the context of a moving camera. Our ap­
proach draws on the indoor Manhattan assumption intro­
duced for monocular reasoning and we have shown that 
techniques from monocular and stereo vision can be inte­
grated with 3D data in a coherent Bayesian framework. 

I This row excludes cases for which [14] was unable to find overlapping lines during initialization. 

Algorithm Mean depth er- Labeling ac-
ror (%) curacy (%) 

Our approach (full) 14.5 75.5 

Stereo only 17.4 69.5 
3D only 15.2 71.1 
Monocular only 24.8 69.2 

Brostow et at. [3] 40.6 
Lee et al. [14] 79.8 45.5 
excluding failuresl 34.1 66.2 

Figure 9. Performance on our data-set. Labeling accuracy is the 

percentage of correctly labeled pixels over the data-set, and depth 

error is a per-pixel average of (23). 

In future work we intend to use indoor Manhattan mod­
els to reason about objects, actions, and scene categories. 
We also intend to investigate structural SVMs for learning 
parameters, which may allow us to relax the conditional in­
dependence assumptions between sensor modalities. 

8. Appendix 

Recurrence relations for MAP inference. Let 
fout(x,y, a), 1 � x � Nx, 1 � y � Ny, a E {1, 2} be the 
maximum payoff for any indoor Manhattan modellv! span­
ning columns [1, x], such that (i) lvI contains a floor/wall 
intersection at (x, y), and (ii) the wall that intersects col­
umn x has orientation a. Then fout can be computed by 
recursive evaluation of the recurrence relations, { fup(x, y - 1, a') -,(x) 

fout(x, y, a) = max fdown(X, Y + 1, a') -,(x) a'E{12} 
, fin(X,y,a')-,(x) 

(25) 
fup(x,y,a) = max (finU,fup(x,y -l,a)) , (26) 

fdown(X, y, a) = max (finU, fdown(X, Y + 1, a)) , (27) 

fin (x, y, a) = ��� (fout(x', y', a) + 6.) , (28) 
x 

6. = 2..= Jr ( i, y') . (29) 
i=x' 

Here we have treated fin, fup, and fdown simply as nota­
tional placeholders; for their interpretations in terms of sub­
problems see [7]. Finally, the base cases are 

fout(O, y, a) = ° \/y,a (30) 
fup(x,O,a) = 00 \/x,a (31) 

fdown(X, Nx, a) = 00 \/x,a. (32) 
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Results above 90th percentile Results near median Failures (below 10th percentile) 
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Figure 10, Models output from our system, The left column shows results above the 90th percentile of performance (relative depth error), 

the middle column shows results near median performance, and the right column shows failure cases. 

Component Time (ms) stddev (ms) 
Monocular features 160 7.6 
Stereo features 730 43 
3D features 8.8 0.05 
Optimization 102 15 
Total 997 43 

Figure II. Timing results for our system, averaged over the test set. 

Times show complete processing time for each triplet of frames 

(base frame plus two auxiliary frames). 
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